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Ultra-cold Bose gases can be used to experimentally test many-body theory predictions. Here
we point out that both exact conservation laws and dynamical invariants exist in the topical case
of the one-dimensional Bose gas, and these provide an important validation of methods. We show
that the first four quantum conservation laws are exactly conserved in the approximate truncated
Wigner approach to many-body quantum dynamics. Center-of-mass position variance is also exactly
calculable. This is nearly exact in the truncated Wigner approximation, apart from small terms
that vanish as N−3/2 as N → ∞ with fixed momentum cutoff. Examples of this are calculated in
experimentally relevant, mesoscopic cases.

I. INTRODUCTION

We analyze conservation laws and exact dynamical re-
sults for the one-dimensional (1D) Bose gas, and use
them to evaluate the accuracy of an approximate tech-
nique for quantum dynamics, the truncated Wigner equa-
tion [1, 2]. This is relevant to the topical case of soliton
breather quantum fragmentation, which is an exponen-
tially complex dynamical problem that can be tested in
BEC experiments [3–6]. More generally, it shows that
such phase-space methods may be more precise than ex-
pected, owing to the fact that they are able to maintain
many of the symmetries and conservation laws of the un-
derlying Heisenberg equations. In this case, dynamical
evolution is constrained by local conservation laws [7, 8].
All four local conservation laws are exactly conserved in
the truncated Wigner method, widely used in treating
BEC dynamics [9, 10].

Quantum center-of-mass (COM) position spreading is
another exact result [11, 12]. This is known to occur in
photonic systems, although primarily due to amplifier or
Raman noise [13]. It has been treated with the trun-
cated Wigner method [14]. There are recent claims that
this approximation exactly replicates quantum center-of-
mass position spreading [15, 16]. We find that while the
errors are small, this result is not exact. There is a small
error in the position variance that scales as 1/N3/2 for N
bosons. This is still much smaller than with some varia-
tional methods [3], where large errors occur [4] if too few
natural modes are used.

We remark here that all closed quantum systems have
large numbers of conserved observables, which we denote
Ĥ =

(
Ĥ0, Ĥ1, . . .

)
. These are linear combinations of the

projection operators for the energy eigenstates. Some of
these are simpler than others. For example, the conserva-
tion laws that arise from Noether’s theorem [17] in quan-
tum field theory are spatial integrals of local products of
field operators and their derivatives. The most common
examples of these are the particle number, the energy,
and the momentum, but there is a fourth local conser-
vation law in one-dimensional Bose gases. As well as de-
termining the initial ensemble, such conserved quantities
can be used to estimate the accuracy of approximate the-
ories of quantum many-body time evolution [2, 9, 18, 19].

Since quantum field theories are exponentially complex,
exact results allow estimation of errors in a way not fea-
sible through other means.

Conserved quantities can allow further exact dynami-
cal results to be obtained. One example that we use here
is quantum center-of-mass motion. This can be treated
using quantum phase-space methods [14]. Systems with
distributions of particle number can also be analyzed [20].
More generally, other dynamical results may be available
as well. Such results generally depend on the symmetries
of the problem.

There is a more fundamental significance of these is-
sues. The existence of infinite numbers of conservation
laws means that the equilibrium density matrix can have
a more general form than the usual Gibbs ensemble [21].
The most general form is an arbitrary function of the con-
served operators, ρ̂ = G

(
Ĥ
)
. This is also related to a

paradox raised by Feynman: the von Neumann quantum
entropy is time-invariant in a closed system [22]. From
a Bayesian viewpoint thermal ensembles simply express
one’s ignorance of the conservation laws. The more gen-
eral equilibrium ensembles that must exist are not widely
observed, owing to the difficulty of measuring and calcu-
lating higher conservation laws.

As a general rule, BEC experiments generically in-
volve relatively short time dynamics, mixed states with
variable particle number, finite temperature, decoherence
and non-integrable perturbations. This makes it essen-
tial to have rather general theoretical strategies, such as
the truncated Wigner technique described and evaluated
here. Despite this, it is instructive to examine idealized
non-dissipative cases, as we do in this paper.

In principle quantum dynamics can also be computed
from the exact eigenstates, but this approach involves an
exponentially large number of overlap integrals. Thus,
results are often only applicable at long times [23]. Ex-
act dynamical methods are restricted to small particle
numbers [6], and there are similar limitations with ma-
trix product state methods [5]. However, these methods
make predictions that are qualitatively similar to those
found here, even though for much smaller particle num-
bers; the details are treated elsewhere [24].
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II. BOSE GAS HAMILTONIAN

The general Hamiltonian for a non-relativistic scalar
Bose gas in three dimensions is

Ĥ3D = Ĥ0 + ĤI . (2.1)

The quantum Bose field is Ψ̂ (r) and the particle density
is n̂ (r) = Ψ̂† (r) Ψ̂ (r). The Hamiltonian is divided into
a free-particle Hamiltonian Ĥ0, with mass m and single-
particle potential V :

Ĥ0 =

∫
Ψ̂†HΨ̂d3r , (2.2)

with H = −~2∇2/2m + V (r), and for parabolic trap-
ping, V (r) = mΣiω

2
i r

2
i /2. There is a normally-ordered

interaction term ĤI , with two-body interaction potential
g:

ĤI =
g

2

∫
Ψ̂†Ψ̂†Ψ̂Ψ̂dr . (2.3)

This Hamiltonian is number-conserving. As a result,
the ground state or any energy eigenstate can always be
chosen as a number eigenstate |Ψ〉N , since N̂ and Ĥ com-
mute. For a dilute atomic BEC in the three-dimensional
case has [25]:

g =
4π~2a

m
(2.4)

giving an approximate pseudo-potential where a is the
S-wave scattering length. This must be combined with
a momentum cutoff to eliminate corrections from renor-
malization.

A. One dimensional (1D) Bose gas

In one dimensional atomic waveguides the Bose gas
is a quasi-condensate, usually generated from trans-
verse confinement of an atomic Bose-Einstein condensate
(BEC) [26]. If the bosons are confined to a single trans-
verse mode, one obtains an 1D Bose gas theory, valid for
low energies:

Ĥ1D =
~2

2m

∫
Ψ̂†1DH1Ψ̂1Ddr3

+
g1D

2

∫ (
Ψ̂†1D

)2

Ψ̂2
1Ddr3 , (2.5)

where, for an atomic Bose gas in a parabolic trap, H1 =
−~2∂2

3/2m+mω2
3r

2
3/2 and g1D = 2~ω⊥a , with an effec-

tive transverse trapping frequency of ω⊥ =
√
ω1ω2.

In dielectric waveguide or fibre optical experiments [2,
27, 28], the mass and nonlinearity originates in the dis-
persion and nonlinearity of the waveguide. The effective

mass is given by meff = ~/ω′′ , where ω′′ is the second
order dispersion. The nonlinearity is

g1D =
−3~ω′χ(3)ω2

0

4εAc2
, (2.6)

where χ(3) is the third order Bloembergen nonlinearity
parameter in S. I. units, ω0 is the laser carrier frequency,
ω′ is the group velocity, A is the effective mode cross-
section, ε is the permittivity and c is the speed of light.

B. Dimensionless Hamiltonian

The one-dimensional Hamiltonian (2.5) has exact en-
ergy eigenstates in both the repulsive [29] and attrac-
tive [30] case. It can be transformed to dimensionless
form on choosing a length scale r0 and time scale t0 such
that r2

0 = ~t0/2m. Axial distance is scaled to give a
dimensionless distance z = r3/r0, and similarly time is
scaled to give τ = t/t0. The resulting Hamiltonian is
written in the Lieb and Liniger [29] form, using a dimen-
sionless wave-function ψ̂ = Ψ̂1D

√
r0, as:

Ĥ =

∫
dz

[
ψ̂†,z(z)ψ̂,z(z) + C

(
ψ̂†(z)

)2

ψ̂2(z)

]
. (2.7)

Here: ψ̂,z(z) ≡ ∂zψ̂(z) ≡ ∂ψ̂(z)/∂z.
The following ‘Rosetta stone’ can be used to obtain

dimensionless units for a trapped Bose-Einstein conden-
sate [31, 32]:

Ĥ = Ĥ1/E0 (2.8)

E0 = ~/t0 = ~2/2mr2
0

C =
mg1Dr0

~2
= 2mω⊥r0a/~ .

One may also utilize mode operators for plane waves
in a box of a dimensionless length:

ψ̂(z) =
1√
L

∑
k

eikzâk =
1√
2π

∫
dkeikzâ (k) . (2.9)

Since the dimensionless Lieb-Liniger parameter C de-
pends on the length scale, for a uniform gas one can also
define γ = C/n0, where n0 is the dimensionless den-
sity, to obtain a parameter that is independent of length
scales. For solitons [33], one may simply defines r0 as
the characteristic initial soliton dimension, so that C is
of the order of the inverse particle number N .

The resulting Heisenberg equation is the one-
dimensional quantum nonlinear Schrödinger equation.
An almost identical picture holds for 1D photonic sys-
tems [27, 33], except for Raman-Brillouin coupling to
phonons [34, 35]. In either photonic and atomic experi-
ments, there are additional dissipative couplings as well
as linear and nonlinear losses and phase noise. These ef-
fects lead to additional terms in the equations, but here
we focus on the simplest, non-dissipative case.
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The particle density in momentum space is n̂k = â†kâk.
Even with current BEC technology [36] there are typi-
cally at least Poissonian number fluctuations, which we
include here for generality.

This equation and its extensions has been widely
used to calculate quantum dynamical properties of Bose
gases [33, 37] using phase-space techniques that origi-
nate in the work of Wigner [1] and Glauber [38], with
quantitative experimental verification in photonic exper-
iments [27, 39, 40].

III. EXACT QUANTUM DYNAMICS

The uniform, one-dimensional Bose gas with local in-
teractions is exactly soluble. Thus, all the eigenfunctions
and eigenvalues as well as the equilibrium density matrix
can be written down. Yet there are exponentially many
eigenfunctions, each rather complex. One would need
to compute exponentially many multi-dimensional over-
lap integrals to exactly compute dynamics, even knowing
these eigenstates. As a result, the exact solutions do not
necessarily help one to make predictions about dynamical
evolution from an arbitrary initial quantum state.

Surprisingly, therefore, exact solubility in this sense
does not remove the barrier of exponential complexity.
This prevents one from making general dynamical pre-
dictions. As a result, approximate methods are needed.
However, as well as eigenvalues, this system has a large
number of easily constructed conservation laws. These in
turn, allow one to construct other dynamical variables.
In this way one can make rigorous predictions about the
time evolution which can be used to validate approximate
methods.

A. Conservation laws

The usual three conserved operators that are consid-
ered are the conservation of particle number, momentum,
and energy, arising from phase, space and time transla-
tional symmetry using Noether’s theorem [17]. There is
at least one further local symmetry in the case of the
nonlinear Schrödinger equation in one dimension, which
is termed Ĥ3. While higher symmetries exist as well [7],
these are not simple normally ordered local functions of
quantum fields.

Using a standard notation [8, 41], one obtains locally
conserved densities which are

ĥ0 = ψ̂†(z)ψ̂(z) (3.1)

ĥ1 =
i

2

[
ψ̂†,z(z)ψ̂(z)− h.c.

]
ĥ2 = ψ̂†,z(z)ψ̂,z(z) + Cψ̂†2(z)ψ̂2(z)

ĥ3 =
i

2

[
ψ̂†,zz(z)ψ̂,z(z) +

3C

2

(
ψ̂†2(z)

)
,z
ψ̂2(z)− h.c.

]
.

The globally conserved quantities are then:

Ĥj =

∫ L/2

−L/2
ĥjdz , (3.2)

and one can make the identification with the usual
Noether conserved quantities that Ĥ0 = N̂ , Ĥ1 = P̂ ,
Ĥ2 = Ĥ.

These four conservation laws correspond to a locally
conserved current [42], which means that they have local
as well as global consequences. The consequences of these
local charges and conservation laws have been widely dis-
cussed in recent literature relating to their applicability
to generalized Gibbs ensembles [43, 44]. It is sometimes
useful to write these as sums over mode operators. De-
fine δk = 1 if k1 + k2 = k3 + k4 and δk = 0 otherwise, so
that as well as the standard results of N̂ =

∑
k n̂k and

P̂ =
∑
k kn̂k, we obtain:

Ĥ =
∑
k

k2n̂k +
C

L

∑
k

â†k1 â
†
k2
âk3 âk4δk (3.3)

Ĥ3 =
∑
k

k3n̂k +
3C

2L

∑
k

(k1 + k2) â†k1 â
†
k2
âk3 âk4δk.

These four conservation laws of the quantum nonlin-
ear Schrödinger equation correspond to conservation laws
of the classical nonlinear Schrödinger equation [45], al-
though the higher order ones differ [46]. We will ana-
lyze these in the next two sections, where we show that
these are also exactly conserved in the truncated Wigner
approximation. To do this, one must take account of
symmetrized operator ordering in these polynomial con-
servation laws, in order to make comparisons.

B. Exact dynamical laws

Since the operators Ĥ are conserved, one can also use
them to obtain exact dynamical solutions to time-varying
quantities. This is always possible if the operator solu-
tions can be expressed in terms of the conserved quan-
tities. A useful example is the center-of-mass position
spreading. This has an exact solution because the center-
of-mass position only depends on the conserved total mo-
mentum. However, there are multiple possible definitions
of this with a variable particle number, so one has to
define the terminology. One issue is that a many-body
system can have zero particles, and hence an undefined
position.

In this paper we will use the quasi-intensive center of
mass [20], which corresponds to measurements that are
weighted by the instantaneous particle number, and nor-
malized by the mean particle number, N̄ =

〈
N̂
〉
. This

is nonsingular over the entire many-body Hilbert space,
including particle numbers of zero. An alternative is to
normalize by the number operator, but this has no well-
defined inverse in general. Hence, we define the COM
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position operator as:

ẑ =
1

N̄

∫
dz [zn̂(z)] . (3.4)

The commutator of r ẑ with the total momentum P̂ =∑
kn̂k can be calculated to give

[
ẑ, P̂

]
= i~N̂/N̄ . Since

ẑ commutes with interaction Hamiltonian ĤI , its time
evolution is given by

dẑ

dτ
=
i

~

[
Ĥ, ẑ

]
=

2P̂

N̄
. (3.5)

This is the usual first quantized expression, with an ef-
fective mass of N̄/2. The center-of-mass position at time
τ now has an exact solution in terms of the conserved
momentum P̂ and the conserved particle number N̂ , for
mass distributions localized in a region that does not
overlap the boundaries at ±L/2:

ẑ (τ) = ẑ (0) + 2P̂ τ/N̄ . (3.6)

The above result allows one to calculate the mean vari-
ance ∆2z (τ) in ẑ, which is:

∆2z (τ) =

〈(
ẑ (0) + 2P̂ τ/N̄

)2
〉
− z̄2 (τ) . (3.7)

We now consider the initially stationary case where〈
P̂
〉

=
〈
P̂ ẑ (0)

〉
=
〈
ẑ (0) P̂

〉
= 0. Expanding the vari-

ance, one finds that:

∆2z (τ) = ∆2z (0) +
4τ2

N̄2

〈
P̂ 2
〉
. (3.8)

The position and momentum variance are not
normally-ordered, and can also be re-expressed in nor-
mally ordered form as:

ẑ2 =: ẑ2 : +
1

N̄2

∫
dz
(
z2n̂ (z)

)
P̂ 2 =: P̂ 2 : +

∑
k2n̂k . (3.9)

Here : . . . : is used to indicate operator normal order-
ing. Since P̂ is conserved, this allows the calculation of
the center-of-mass variance purely in terms of the initial
operator expectation values.

C. Poissonian example

Current experiments in photonic or Bose condensate
systems usually have at least a Poissonian variance of
particle numbers, with mean N̄ and number variance N̄ .
The density matrix for a Poissonian probability distri-
bution of particle number states is equivalent to a phase
mixture of coherent states

∣∣α (z) eiθ
〉
, with a coherent

amplitude α (z) eiθ. That is:

ρ̂ =
1

2π

∫
dθ
∣∣α (z) eiθ

〉 〈
α (z) eiθ

∣∣ . (3.10)

Thus, for the case θ = 0, one has ψ̂(z) |α (z)〉 =
α (z) |α (z)〉, and âk |α (z)〉 = αk |α (z)〉. Since none of
the quantities calculated here are phase-sensitive, we let
θ = 0 and calculate results without having to number
or phase-average, by using an initial density matrix that
corresponds to a coherent state, following methods pio-
neered by Glauber [38, 47] in quantum optics, so that
ρ̂eff = |α (z)〉 〈α (z)|.

The true density matrix is a mixed state, but this is
equivalent to ρ̂eff for phase-insensitive observables. It is
useful to define number densities, nC (z) = |α (z)|2, and
mode occupations nCk = |αk|2. In this case, one can
readily calculate any normally ordered quantity, so that:

〈
N̂
〉

=
∑

nCk =

∫
dznC (z) (3.11)〈

P̂
〉

=
∑

knCk =
i

2

∫
dz [α (z) ∂zα

∗ (z)− h.c.]〈
Ĥ
〉

=
∑

k2nCk + C

∫
dz
(
nC (z)

)2
〈
Ĥ3

〉
=
∑

k3nCk +
3iC

4

∫
dz
[(
α∗2(z)

)
,z
α2(z)− h.c.

]
.

This implies that both position and momentum
variance measurements can be calculated using their
normally-ordered expressions given in Eq. (3.9), together
with the coherent state eigenvalue relations, as

〈
∆ẑ2

〉
=

1

N̄2

∫
dz
(
z2nC(z)

)
〈

∆P̂ 2
〉

=
∑

k2nCk . (3.12)

Physically such an initial state would correspond to a
mixture of ground states of a non-interacting BEC with
an appropriate potential and Poissonian particle number,
or the output of a stabilized coherent pulsed laser.

D. Gaussian and hyperbolic secant cases

As typical examples, we now take the common cases
of an initial gaussian or hyperbolic secant pulse shape.

Gaussian case In the case of an initial gaus-
sian average number density with nC (z) =

N̄ exp
(
−z2/σ2

)
/
√
πσ2, one has

〈
N̂
〉

= N̄ ,〈
P̂
〉

=
〈
Ĥ3

〉
= 0, and the analytic result is that:

〈
Ĥ
〉

=
N̄

2σ2
+

CN̄2

σ
√

2π〈
∆P̂ 2

〉
=

N̄

2σ2〈
∆ẑ2 (τ)

〉
=

1

N̄

[
σ2

2
+

2τ2

σ2

]
. (3.13)
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Hyperbolic secant case In the case of an initial hy-
perbolic secant average number density with nC (z) =
N̄sech2 (z/σ) / (2σ), one has the analytic result that:〈

Ĥ
〉

=
N̄

3σ2
+
CN̄2

3σ
(3.14)〈

∆P̂ 2
〉

=
N̄

3σ2〈
∆ẑ2 (τ)

〉
=

1

N̄

[
π2σ2

12
+

4τ2

3σ2

]
. (3.15)

These predictions hold for an interacting as well as
a free field. They are true for any strength or sign of
interaction. As such, they provide a means to test theo-
retical approximations to interacting many-body systems
in one dimension. The test was used recently to test
multi-configurational variational many-body approxima-
tions [4]. This analysis showed that the number of nat-
ural modes needed for correct results was much higher
than previously thought. Accordingly, it is a useful test
of other many-body approximations as well.

IV. TRUNCATED WIGNER CONSERVATION
LAWS

The nonlinear Schrödinger equation is the lowest order
term in an expansion of the Wigner phase-space repre-
sentation [1] equation of motion in powers of 1/N . When
combined with stochastic initial conditions which repli-
cate the initial state, this is called the truncated Wigner
(TW) approximation. It is known to give quantitatively
correct predictions for one-dimensional quantum squeez-
ing dynamics when compared to exact positive-P repre-
sentation methods [2, 48]. This approach has also been
verified experimentally to high accuracy [28, 40, 49]. It
can be extended to treat linear and nonlinear dissipation
channels [50]. As result, it is important to understand
how accurate this approximation is.

Moments of a Wigner distribution correspond to sym-
metrized rather than normally ordered quantum observ-
ables. Symmetrization is treated in the Appendix, where
we show that the normal-ordered quantum conservation
laws are equal to sums over symmetrized conservation
laws. Since the symmetrized forms of these operators
can diverge at large momentum cutoff, it is essential to
include a momentum cutoff in the calculations. This is
included in all the momentum sums below.

To make it simpler to compare results with different
operator orderings, we will use the notation

〈
Ô
〉
W

to
indicate a quantum observable evaluated using the trun-
cated Wigner method. One would have exact equality
without truncation, but after truncation there are time-
dependent errors that scale as a power of 1/N , depending
on the observable.

We will show that all four conservation laws are exact
in both the full quantum dynamics and in the truncated
Wigner approach. This provides further evidence for the

accuracy of the method, for one-dimensional problems.
This result is due to the fact that the classical nonlinear
Schrödinger equation also has an infinite number of clas-
sical conservation laws [51]. Therefore we simply have
to show that for the first four conservation laws, the dif-
ferences between the exact conserved quantities and the
symmetrized observables equivalent to the classical con-
servation laws are also conserved quantities.

A. Wigner representation

The Wigner distribution W [ψ] is a representation of
any state of a quantum field [1]. It generally is not posi-
tive definite. The time-evolution equation for the density
matrix can be transformed [52] into a differential equa-
tion for W [ψ]. This has third or higher order deriva-
tives if the Hamiltonian is nonlinear, which can be trun-
cated [2, 50, 53], to give a second-order Fokker-Planck
equation. The truncated terms are the highest order
terms in a 1/N expansion for N particles.

To obtain numerical results, and to reduce sampling
errors from vacuum fluctuations, a momentum cutoff
kc = 2π/∆z is introduced. When there is a momentum
cutoff in an M -mode quantum field calculation there are
no more than M independent dynamical variables. As a
result, for a finite momentum cutoff, we assume the inde-
pendent field operators ψ̂ (zj) comprise a discrete lattice
of M points zj , with a spacing of ∆z = L/M in position
space and of M points kj , with spacing ∆k = kc/M in
momentum space [27, 33], each symmetrically distributed
about zero such that:

ψ̂(zj) =
1√
M∆z

∑
k

eikzjak . (4.1)

Hereinafter the summation over k means the summa-
tion over discrete values kl = −kc/2 + ∆k/2 + l∆k,
l = 0 . . .M − 1 for even M and kl = −kc/2 + l∆k for
odd M .

The fundamental commutator for field operators is a
tempered or smoothed commutator,

δ̃ (z − y) =
[
ψ̂ (z) , ψ̂† (y)

]
=

1

L

∑
k

eik(z−y). (4.2)

Hence the commutator of two Bose fields at the same
lattice point is not infinite:[

ψ̂, ψ̂†
]

=
1

L

∑
k

[
âk, â

†
k

]
=

1

∆z
, (4.3)

The result is an equivalent partial differential equation
for the equivalent Wigner field ψ [2, 9, 50]:

dψ

dt
= i∇2ψ − 2iCψ

(
|ψ2| − 1/∆z

)
. (4.4)
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Here the Laplacian differential operator is defined on a
lattice either through finite differences or spectral trans-
form methods, and quantum noise comes from random
initial conditions. Although the conservation laws do
not depend on the initial conditions, we treat a Pois-
sonian number distribution in the numerical examples.
This is equivalent to a coherent state (see Section III C),
with ρ̂ (t = 0) = |α (z)〉〈α (z) |, and |α (z) |2 = n (z). In
the Wigner representation this initial state corresponds
to a complex Gaussian probability. After sampling, the
initial Wigner fields for a coherent state with constant
phase are then:

ψ (z) = α (z) +
1√
2

∑
k

1√
L
ηke

ikz, (4.5)

where ηk are complex random numbers correlated as
〈ηkη∗k′〉 = δkk′ , 〈ηkηk′〉 = 0. The average over the distri-
bution is performed by generating Ns multiple random
initial states. Finally, one averages over the Ns indepen-
dent field modes with equal probability, after evolving
them in time.

The Wigner representation gives a direct represen-
tation of symmetrically ordered operators. Normally-
ordered observables require the transformation of a
Wigner average from a symmetrically ordered to a nor-
mally ordered form, using the techniques of the pre-
vious section. This also removes the divergence of
symmetrically-ordered observables at large momentum
cutoff.

The expectation values of symmetrically ordered oper-
ator expressions can be obtained approximately by inte-
grating this equation over multiple independent trajecto-
ries to produce a set of values ψ(j) and averaging over a
corresponding function of these values, where the trun-
cation error depends on the evaluated operator [54, 55]
and the particle number:〈{

Ô
(
ψ̂, ψ̂†

)}〉
≈
〈{
Ô
}〉

W
= 〈O〉W . (4.6)

Here {. . .} indicates symmetrization, so the last average
refers to the numerically evaluated, sampled average of
the classical function O (ψ,ψ∗), which is approximately
equal to the symmetrically ordered quantum expectation
value:

〈O〉W ≡ lim
Ns→∞

1

Ns

∑
j

O
(
ψ(j),

(
ψ(j)

)∗)
. (4.7)

where Ns is the number of stochastic trajectories.
More generally,

〈
Ô
〉
W

will be used to refer to any
quantum observable evaluated using this technique, with
appropriate commutator terms added to transform the
operator function into a symmetrically ordered function,
as described in the Appendix.

B. Conservation laws as Wigner averages

Since using symmetrization will involve sums over mo-
menta, it is convenient to define these sums in a uniform
way as

Mn =
1

∆kn

∑
k

kn. (4.8)

Obviously, M0 = M and Mn = 0 for odd n; one can find
M2 = M

(
M2 − 1

)
/12 (see Appendix for details). Ap-

plying symmetrization to all four conservation laws gives,
as shown in the Appendix, the following relationship be-
tween the operators:

N̂ =
{
N̂
}
− 1

2
M

P̂ =
{
P̂
}

Ĥ =

{
Ĥ − 2C

∆z
N̂

}
− 1

2
M2∆k2 +

MC

2∆z

Ĥ3 =

{
Ĥ3 −

3C(M + 1)

L
P̂

}
. (4.9)

Here, ∆z is the cell size used for the momentum cutoff,
as defined in (4.1). Since the truncated Wigner method
follows the dynamics of the nonlinear Schrödinger equa-
tion [51], it conserves the following classical quantities:

N =

∫
dz [ψ∗(z)ψ(z)] (4.10)

P =
i

2

∫
dz
[
ψ∗,z(z)ψ(z)− ψ∗(z)ψ,z(z)

]
H =

∫
dz
[
ψ∗,z(z)ψ,z(z) + Cψ∗2(z)ψ2(z)

]
H3 =

i

2

∫
dz

[
ψ∗,zz(z)ψ,z(z)−

3C

2
ψ∗2(z)

(
ψ2(z)

)
,z
− c.c.

]
.

We note the following relationships, due to symmetric
ordering:

〈Hn〉W =
〈{
Ĥn

}〉
. (4.11)

Evaluating the quantum operator expectation values in
the Wigner representation, then gives, for the case of a
symmetric momentum sum:〈

N̂
〉
W

= 〈N〉W −
1

2
M〈

P̂
〉
W

= 〈P 〉W〈
Ĥ
〉
W

=

〈
H − 2C

∆z
N

〉
W

− 1

2
M2∆k2 +

MC

2∆z〈
Ĥ3

〉
W

=

〈
H3 −

3C(M + 1)

L
P

〉
W

. (4.12)
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In each case the correction terms that are obtained are
either constants or conserved quantities. This means that
all four quantum conservation laws are equally conserved
in both the truncated Wigner approximation, and in the
exact operator equations.

C. COM dynamical results

Since the classical moments H are conserved, one can
also use them to obtain exact dynamical solutions to
certain time-varying quantities in the truncated Wigner
method. But will these be the same as the quantum
results? As before, a useful case is the center-of-mass
position. Hence, we can define:

z̄ =
1

N̄

∫
dz [zn(z)] . (4.13)

The center-of-mass position z̄ at time τ has an exact
solution of z̄ (τ) = z̄ (0) + 2Pτ/N̄ for each truncated
Wigner trajectory, in terms of the classically conserved
momentum P and the number N , given a distribution
localized in a region that does not overlap the boundaries
at ±L/2. In the case of a stochastic initial condition,
this allows one to calculate the mean Wigner position
variance ∆2

W z (τ). We consider the symmetric pulse case
where 〈z̄(0)〉W = 〈P 〉W = 〈z̄ (0)P 〉W = 0. Thus:

∆2
W z̄ (τ) =

〈
z̄2 (τ)

〉
W
− 〈z̄ (τ)〉2W =

〈
z̄2 (τ)

〉
W
.

(4.14)

Next we assume that we can approximately write the
field as ψ = ψC + ψV , with a coherent, localized part
ψC and a stochastic, delocalized background part, ψV .
The delocalized stochastic vacuum is time-invariant, that
is, it experiences no COM spreading. This is consistent
with the results given above, since the stochastic terms
are delocalized, and therefore have boundary terms that
cancel the COM spreading. Expanding this, one finds
that, within the truncated Wigner approximation:

〈
z̄2 (τ)

〉
W

=
〈
z̄2 (0)

〉
W

+
4τ2

N̄2

[〈
P 2
〉
W
−
〈
P 2
〉
B

]
,

(4.15)
Here

〈
P 2
〉
B

is a boundary correction which is caused by
the delocalized nature of the stochastic vacuum. From
the symmetrization results in the Appendix, the quan-
tum momentum variance is given by

〈
P̂ 2
〉
W

=
〈
P 2
〉
W
−

M2∆k2/4 . Since there can be no COM spreading in a
pure stochastic vacuum with

〈
P̂ 2
〉
W

= 0, we can esti-

mate the boundary correction as
〈
P 2
〉
B
≈ M2∆k2/4 .

This is exact for a linear Hamiltonian, where the two
terms do not interact, but is generally approximate, not
exact.

From the symmetrization results in the Appendix, the
quantum operator averages can be calculated from the

Wigner classical averages using commutation relations,
giving:

〈
ẑ2 (τ)

〉
W

=
〈
z̄2 (τ)

〉
W
− M2∆z2

4N̄2
(4.16)

Combining these expressions, the truncated Wigner re-
sult is approximately equal to the known quantum result.
However, we expect that this boundary subtraction is not
exact. We find numerically that there is a small correc-
tion that scales as 1/N̄3/2:

〈
ẑ2 (τ)

〉
W
≈
〈
ẑ2 (0)

〉
W

+
4τ2

N̄2

〈
P̂ 2
〉
W

+O
(
N̄−3/2

)
(4.17)

Since P is conserved, this allows the calculation of the
center-of-mass variance from the initial stochastic expec-
tation values. Now, since the initial Wigner distribu-
tion can be chosen to correspond exactly to a quantum
many-body state, it is straightforward to use the sym-
metrization rules to obtain the correct operator results
initially. Yet while the classical dynamical solutions in
the truncated Wigner method look superficially like the
full quantum solutions, they are not the same.

In summary, compared to the exact quantum predic-
tion of Eq. (3.8), we see that evaluating the COM vari-
ance with the truncated Wigner method gives rise to an
error of approximate order N̄−3/2 relative to the exact
result. This is caused by the fact that the vacuum fluc-
tuations behave as real physical fields when truncation
is employed in the presence of nonlinearity, so that the
boundary correction is no longer exact. This error, how-
ever, is small for large N̄ , as we show later in the numer-
ical results.

V. NUMERICAL RESULTS

We illustrate these analytical results with numerical
calculations for higher order soliton or ‘breather’ frag-
mentation in an attractive 1D Bose gas. The breather
oscillates with the period τb = π/4 [56], and Figs. 1, 2
and 3 show the density profiles for N = 103, 3× 103 and
104 at separate oscillations of the breather at the min-
ima and the maxima of the central density. Classically,
all the oscillations would be identical to the first.

This quantummany-body dynamical problem has been
the topic of several publications. The first [3] used an
MCTDHB approach with N = 1000 and two spatial
modes. This calculation was recently criticized as be-
ing not fully converged [4]. The evidence was that the
numerical predictions were in violation of known exact
quantum COM expansion results. Other known results
use methods that are more reliable, but are restricted to
small particle numbers [5, 6].

Here we use the truncated Wigner method, which is
a 1/N expansion, as explained above. This allows large
particle numbers, that is, N ≥ 1000, and large numbers
of independent modes. Numerical data was calculated
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Figure 1. Density profiles of a breather in the peaks (a) and
valleys (b) of the zeroth, second and fourth oscillations. The
simulation has N = 103, C = −8/N , M = 512, L = 20, 105

trajectories, 105 time steps.

with two independent public domain numerical codes [57,
58], using a fourth-order Runge-Kutta interaction picture
algorithm [59], and periodic boundary conditions. All
four known local conservation laws are satisfied within
random sampling errors. Exact COM spreading results
are recovered to a very good approximation, except for
a systematic error of order N−3/2, which is negligible
compared to other effects.

A. Simulation Parameters

We consider a prototypical quantum experiment where
an initial state is evolved in time. The initial quantum
state considered is a Poissonian mixture of uncorrelated
particles with mean value N̄ = 102 − 104.

The initial condition corresponds to the classical soli-
ton shape that would occur with some small initial cou-
pling of Ci = −2/N . This is chosen to correspond to
previous MCTDHB calculations [3, 4], for purposes of
comparison. With r0 as the initial size, one finds in di-
mensionless units,

α(z) =
√
N/2 sech(z) . (5.1)

This Poissonian initial state is chosen as being typ-
ical of experiments, which use a mixture of initial bo-
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u� = u�

(a)

(b)

Figure 2. Density profiles of a breather in the peaks (a) and
valleys (b) of the zeroth, second and fourth oscillations. The
simulation has N = 3 × 103, C = −8/N , other parameters
are the same as in Fig. 1.

son numbers [36]. Thus, the initial boson number is
N = N̄ ±

√
N̄ , where N̄ = 102 − 104. The standard

deviation is ±1− 10%, which is of the order of measured
number fluctuations for this type of ultra-cold atomic
physics experiment.

B. Conservation laws

We focus here on the question of the actual numeri-
cal values of conservation laws. The earlier calculations
demonstrate clearly that these are all conserved, even
after including the corrections due to symmetrization.
However, it is also interesting to investigate how accu-
rately they are conserved, given the inevitable sampling
error in this method.

The first results we plot are the first four integrals N ,
P , H and H3, that are conserved during the evolution.
To take into account the expected scaling of the results
with simulation parameters, we normalize N and H by
N̄ . The momentum-dependent quantities are zero on av-
erage, as expected, but their fluctuations are strongly
dependent on the momentum cutoff. Accordingly, we
normalize P by 1/∆z, and H3 by 1/∆z3. Fig. 4 shows
that all four conservation laws are within a one stan-
dard deviation sampling error of their exact values at all
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Figure 3. Density profiles of a breather in the peaks (a) and
valleys (b) of the zeroth, second and fourth oscillations The
simulation has N = 104, C = −8/N , other parameters are
the same as in Fig. 1.

times: 〈N〉/N̄ = 1, 〈H〉/N̄ =
(
1 + CN̄

)
/3 (as given by

Eq. (3.14)), 〈P 〉 = 〈H3〉 = 0.

C. Center-of mass spreading

To test a quantity that changes over time, we plot a cal-
culation of center of mass uncertainties, compared with
exact results. In Fig. 5, we show the center-of-mass posi-
tion uncertainty predicted in our numerical calculations.

These results are in excellent agreement with exact re-
sults, apart from sampling error and a small boundary-
related error. In Fig. 6, the residual error is plotted as a
function of N̄ .

This shows that this residual error is an effect that
scales as 1/N̄3/2, which is expected from early sec-
tions, together with the fundamental result that the TW
method is a truncated 1/N̄ expansion. The COM vari-
ance itself is predicted to scale as 1/N̄ , so that the rela-
tive error is of order 1/

√
N̄ , and becomes extremely small

even in relative terms when N̄ is increased.
This is in strong contrast with MCDTHB variational

methods. In this method, the number of modes available
for use is strongly restricted by exponential complexity
issues. The number is typically 2−3 in published results.
The resulting calculations give COM variance predictions
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Figure 4. First four integrals in the simulation with N = 103,
C = −8× 10−3, M = 512, L = 20, 105 trajectories, 105 time
steps. The blue band corresponds to the sampling error, the
black dashed line shows the expected value.

that oscillate in time, and can either be much greater
or smaller, even by orders of magnitude, than the exact
results [4].

The sampling errors can be reduced here simply by
taking more samples, and are smaller than expected ex-
perimental uncertainties in such measurements. Trun-
cated Wigner methods are not immune to truncation er-
ror [60, 61]. However, the agreement with these exact
tests is excellent, especially at large N , showing that for
this type of experiment one might expect reliable results
for other measurements. We see that with a large num-
ber of computed trajectories to reduce sampling error,
the numerical conservation law results are indistinguish-
able from the exactly known behavior, for N ≥ 1000.

VI. CONCLUSION

We have shown that the truncated Wigner approxima-
tion conserves all four local conservation laws of the one-
dimensional quantum nonlinear Schrödinger equation. It
also agrees to very high accuracy with the known exact
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Figure 5. Position uncertainty 〈∆z2〉 over time as compared
with the analytical prediction. Simulation with N = 103,
C = −8×10−3 (a) andN = 104, C = −8×10−4 (b),M = 512,
L = 20, 105 trajectories, 105 time steps. The area between
the simulation curves (solid blue lines) denotes the estimated
sampling error. The dashed grey line corresponds to the ana-
lytical expression (4.16). The small discrepancy between the
predicted and sampled results at N = 1000 is explained in
the text.
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The error bars denote the estimated sampling error.

results for center-of-mass spreading, except for small cor-
rections of order N−3/2 for N particle simulations.

The conservation law and COM agreement obtained
with the TW method may help to explain why this
method was previously successful in agreeing both with
exact quantum stochastic methods and experimental
tests for photonic soliton quantum squeezing and entan-
glement [62].

In essence, quantum dynamical behaviour is restricted
by conservation laws, and a technique that preserves
these exactly has greatly reduced errors as a result. The
present numerical and analytical results support numer-
ical truncated Wigner predictions of a gradual quantum
fragmentation of higher-order soliton breathers that ap-
pears elsewhere [24], in regimes that should be readily
testable in BEC experiments.
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APPENDIX: SYMMETRIZATION

The symmetrization results calculated here are exact,
and simply follow as a result of the operator commutation
relations. They are needed in order to relate normally
ordered conservation laws to the ones calculated in the
Wigner representation. We show in the main text that
the significance of this result is that all four laws are con-
served by truncated Wigner dynamics, in which the time
evolution is a classical field evolution from a statistical
mixture that corresponds to quantum fluctuations.

We start with some general results on symmetrization,
then use these results to obtain exact results for conser-
vation laws in symmetrized form. The symmetrization
relations for the single-mode number operator is:

{n̂} =
1

2

[
â†â+ ââ†

]
= n̂+

1

2
, (6.1)

and for the mode number operator squared,{
n̂2
}

=
1

6

[
â†2â2 + â†ââ†â+ â†â2â†

+ ââ†2â+ ââ†ââ† + â2â†2
]
, (6.2)

which simplifies to the form:

: n̂2 :=
{
n̂2
}
− 2 {n̂}+

1

2
. (6.3)

Another useful result is that:

n̂2 =
{
n̂2
}
− {n̂} . (6.4)
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Lattice and momentum sums

As described in the main text, with a momentum cutoff
the commutator of two Bose fields at the same point is
finite: [

ψ̂, ψ̂†
]

=
1

L

∑
k

[
âk, â

†
k

]
=

1

∆z
, (6.5)

and therefore the symmetrization relation for the number
density is:

n̂ (z) = {n̂ (z)} − 1

2∆z
. (6.6)

Similarly, one obtains, for the square of the number
density:

: n̂2 (z) :=
{
n̂2 (z)

}
− 2

∆z
{n̂ (z)}+

1

2∆z2
. (6.7)

When using a finite momentum cutoff, one must replace
the integration in the Hamiltonian with sums over the
independent fields, giving

∫
dz →

∑
z ∆z. As introduced

in the main text we define sums over integer powers oc-
curring in mode sums as:

Mn =
1

∆kn

∑
k

kn

Remembering that the summation over k means the sum-
mation over discrete values kl = −kc/2 + ∆k/2 + l∆k,
l = 0 . . .M −1 for even M and kl = −kc/2+ l∆k for odd
M , we get

Mn =

{∑(M−1)/2
j=(1−M)/2 j

n (oddM)

2
∑M/2
j=1 (j − 1/2)

n
(evenM).

For M modes, we have M0 = M , M1 = 0 and

M2 = M
(
M2 − 1

)
/12. (6.8)

Number and momentum symmetrization

The normally ordered total number operator is N̂ =∑
k n̂k. Using the result that n̂k = {n̂k} − 1/2, one im-

mediately obtains:

N̂ =
{
N̂
}
− M

2
. (6.9)

This shows that the symmetrized number operator is
also a conserved quantity, as it only differs from the con-
served number operator by a constant. The fact that
the constant is infinite in the limit of large momentum
cutoff is immaterial, as quantum field theories in general
always require finite momentum cutoffs in order have a
reasonable physical interpretation.

The normally ordered total momentum operator is
P̂ =

∑
k kn̂k. Using the result that n̂k = {n̂k} − 1/2,

one uses the odd symmetry of the momentum sum to
obtain M1 = 0, to give:

P̂ =
{
P̂
}
.

Energy symmetrization

The normally ordered energy operator is best written
as:

Ĥ =
∑
k

k2n̂k + C

∫
dzψ̂†2(z)ψ̂2(z) . (6.10)

This is divided up into a kinetic and potential energy
part, Ĥ = ĤK + ĤP . The first part is similar to the
number conservation expression, so that one obtains:

ĤK =
{
ĤK

}
−∆k2M2

2
. (6.11)

The remaining term is:

ĤP = C

∫
dzψ̂†2(z)ψ̂2(z) , (6.12)

which is easily symmetrized in position space, by using
the general results given above, to obtain:

Ĥ2 =
{
Ĥ2

}
− 2C

∆z

{
Ĥ0

}
−∆k2M2

2
+
MC

2∆z
. (6.13)

H3 symmetrization

The normally ordered Ĥ3 operator is divided up into
a kinetic and potential energy term, Ĥ3 = ĤK

3 + ĤP
3 ,

which are best treated in momentum space, using (3.3).
The first term is unchanged by the symmetrization, as it
is an odd momentum sum, hence ĤK

3 =
{
ĤK

3

}
.

The second term can be treated in two parts. Owing
to the delta function in the summation, if k1 = k3 then
k2 = k4, and vice-versa. Hence, if k1 6= k3 and k1 6=
k4, then k2 6= k3 and k2 6= k4. We call this part (A).
If k1 = k3 6= k4, then k2 = k4 6= k1. There are two
permutations of this type, which comprise part (B), and
finally if k1 = k2 = k3 = k4, one has part (C). Thus,
ĤP

3 = ĤA
3 + ĤB

3 + ĤC
3 where:

ĤB
3 =

3C

L

∑
k1 6=k2

(k1 + k2) n̂k1 n̂k2 (6.14)

=
3C

L

∑
k1 6=k2

(k1 + k2) {n̂k1 n̂k2 − n̂k1} ,

and similarly, using the symmetrization rules
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ĤC
3 =

3C

2L

∑
k

2k : n̂2
k : (6.15)

=
3C

2L

∑
k

2k
{
n̂2
k − 2n̂k

}
.

On combining all the terms together, dropping odd mo-
mentum sums, this leads to the symmetrization relation
for Ĥ3 in the large M limit:

Ĥ3 =
{
Ĥ3

}
− 3C(M + 1)

L

{
Ĥ1

}
. (6.16)

Number and momentum variance symmetrization

The number variance is also conserved, as it involves
the square of a conserved quantity. For this non-normally
ordered case, one must calculate

N̂2 =
∑
k

n̂2
k +

∑
k 6=q

n̂kn̂q . (6.17)

Using the general symmetrization relations given
above, one may obtain:

N̂2 =
∑
k,q

{n̂kn̂q} −M
∑
k

{n̂k}+
M (M − 1)

4
. (6.18)

Re-arranging this, we then get:

N̂2 =
{
N̂2
}
−M

{
N̂
}

+
M (M − 1)

4
. (6.19)

One can also symmetrize the momentum variance, by
using the same identities again, to give

P̂ 2 =
{
P̂ 2
}
− M2∆k2

4
. (6.20)

This shows that the apparent momentum variance in
a symmetrically ordered measurement has a background
term caused by the vacuum fluctuations, which must be
subtracted to obtain the true momentum variance.

Position variance symmetrization

The position variance is similar to the number vari-
ance, and can be written as a lattice sum over localized
number operators n̂z, using localized creation and anni-
hilation operators with commutators of 1/∆z:

ẑ2 =

(
∆z

N̄

)2
∑

z

z2n̂2
z +

∑
z 6=y

zyn̂zn̂y

 . (6.21)

Using the general symmetrization relations given
above, one may obtain:

{
ẑ2
}

=

(
∆z

N̄

)2
[∑

zy {n̂yn̂z} −
1

4∆z2

∑
z

z2

]
.

(6.22)
Re-arranging this leads to

ẑ2 =
{
ẑ2
}
− 1

4N̄2∆z

∫
z2dz =

{
ẑ2
}
− M2∆z2

4N̄2
. (6.23)

This demonstrates that the apparent position variance
in a symmetrically ordered measurement also has a back-
ground term caused by the vacuum fluctuations that are
included in this type of measurement. Just as with the
momentum variance, this background contribution must
be subtracted from a symmetrized calculation, to obtain
the true position variance.
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