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A system with externally polarized dipole molecules at half-filling moving along a one-dimensional zig-zag
chain is studied, including ground-state phase diagrams. The dipoles are oriented in-plane. Together with the
geometry of the chain, this gives rise to a bond-alternating nearest neighbor interaction due to simultaneous
attractive and repulsive interactions. By tuning the ratio between the nearest-neighbor interaction and hopping,
various phases can be accessed by controlling the polarization angle. In the ultra-strong coupling limit, the
system simplifies to a frustrated extended axial Ising model. For the small coupling limit, qualitative discussion
of the ordering behavior using effective field theory arguments is provided. We show that when chain angle
is small, the system mostly exhibits BKT-type phase transitions, whereas large chain angle would drive the
system into a gapped (Ising) dimerized phase, where the hopping strength is closely related to the orientation of

dimerized pairs.

PACS numbers:
I. INTRODUCTION

The efficient production of ultra-cold dipolar systems has
paved the way to a wide range of interesting effects, for ex-
ample, strongly correlated systems, chemical reactions at ul-
tracold temperatures, precision tests of fundamental symme-
tries, possibly new scheme of quantum information process-
ing, just to mention a few [1| 2]. Additionally, there has
been great progress in the creation of new techniques for non-
standard optical lattices [3, 4] and optical tweezers [J5] that
would make a quantum simulator using ultracold atoms sys-
tems even more promising and unique. The vast tunability
offered by molecules and lattice configuration has introduced
many ideas to simulate interesting unsolved quantum models
motivated by solid-state physics. In particular, low dimen-
sional systems in this context are of great interest, partly be-
cause of the recent development in creating real solid state
systems that can be described in theoretical models studied
in the past, and also because an ultracold system may pro-
vide a test ground that is beyond the actual material we have
access to today. Topics in low dimensional physics range
from frustrated systems in 1D, 2D [6H11]], and coupled one-
dimensional setups [[12H15]], to non-equilibrium behavior in
certain systems [16} [17]].

With this, we consider a quasi-1D system, where the dipo-
lar particles, regardless of whether they are fermions or hard-
core bosons, are confined in a zig-zag optical lattice and are
polarized in-plane, leading to simultaneous attractive and re-
pulsive interactions (Fig.[I). This means that, while hopping
can be limited to nearest neighbors (NN) in the same way that
this is the case for strictly 1D models, at least one order more
(i.e., next nearest neighbor, NNN) has to be taken into account
for interactions. Depending on the angle of the zig-zag open-
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Figure 1: (Color online) Schematic setup of dipoles moving on a
zig-zag chain with an opening angle . The dipoles are polarized by
an external field enclosing an angle € with the normal of the chain
axis

ing, this model can be viewed as the 1D building block of, for
instance, a hexagonal or kagomé lattice. In this manuscript,
we show that this is a model that, despite its small deviation
from a strictly 1D system, leads to a qualitatively different
and much richer phase diagram (Fig.[2), especially for the two
limiting cases — very small and very large inter-site hopping.
This model can, in principle, be explored with typical species
of polar particles, fermions or bosons, as one of the first mod-
els — and also a very simple model- in the field of ultracold
atoms that add a particular variety of phases (see Fig.[2) to the
traditional linear chain by introducing a dimerization parame-
ter in the chain.

Our main result, which shows the ground state phase dia-
gram of the system for various zig-zag opening angle v and
6 is summarized in Fig.[2] We observe zigzag chain introduc-
ing, in particular, a dimerized phase whose orientation can be
tuned by the depth of the optical lattice.

II. THE MODEL

Throughout the paper, we set the temperature to be zero.
The model we consider is conceptually described in Fig.[T}
This system consists of hard-core dipoles sitting at the vertices
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Figure 2: (Color online) Qualitative ground state phase diagram of our system. The radial degree of freedom shows the inverse of the hopping
parameter of the system, and the argument 6 is the angle of the polarized molecules. Each color shows a different phase. The white shaded

area is the region whose ordering behavior is not studied in this paper.

of the zig-zag chain with chain opening angle v (0 < v < 7,
cf. Fig.[T). The dipoles can be realized using heteronuclear
molecules [I8-20] or dipolar atoms [22]|. The dipo-
lar particles are polarized in-plane, leading to simultaneous
attractive and repulsive interactions from dipole-dipole inter-
actions

Vdip = Edd(l — 3 COS2 0r1—r2)

with the dipolar coupling strength €44 = j1./(4meg|ry —12|3),
where €, (. are the vacuum permittivity and electric dipole
moment of the molecules, respectively, ry and ro are the po-
sition of the molecules, 6., _r, is the angle between (r1 — ra)
and the external electric field that polarizes the molecules. Ad-
ditionally the particles are mobile and can propagate.

In actual experiments, the lattice can be created by appro-
priately angled standing wave laser fields with the correct in-
tensities to create single-chain strands. The molecules can
then be loaded by applying an electric field E perpendicular
to the zig-zag plane, and subsequently changing the orienta-
tion of E adiabatically until it becomes parallel to the plane,
followed by the process of changing E in plane (to vary 6).
This way, there should never be more than one molecule per
site, fulfilling the hardcore condition throughout the experi-
ment (see next subsection for more detail).

The most general Hamiltonian that describes our system is

H=— Z Z Jj/fjd;-&j/ + h.c.
J 3>

D DI LI (D
J

J'>j g
where J;_ ;s is the hopping parameter between sites j and j',
1 is the chemical potential. Note again that we will only con-

sider NN hopping, and in this case, the creation (destruction)
operators @; (&;) can either be fermionic or bosonic without
any essential difference as there is an exact mapping from
fermion to hardcore boson systems . Vj[j_ /]2/] denotes the
non-local dipole-dipole interactions between particles at site
j and 7', respectively. Note that due to the anisotropic nature
of dipole-dipole interaction and the non-trivial geometry of
the chain, this interaction term V][j_ /ng] depends not only on the
range j —j’ but also on the even-odd of j (expressed by [j/2]).

This V][J_ /2l can be varied dynamically from negative to pos-
itive value with 6 and . As an example, using the standard
form of the dipole interaction, we find, after simple trigono-
metric manipulations, the following explicit expressions for
the NN interaction and next nearest neighbor (NNN) interac-
tion.

VY =eqq [1 — 3cos? (71' — % — ﬂ , 2)
Vf’dd = €4d [1 — 3cos? (% — 9)} , 3)
Vo = Cdd 372 [1 — 3cos’ (g - 0)} G

[2(1 = cos(v))]

Simplification of the Hamiltonian

We simplify the model Eq. (I)) by assuming that there are
exactly half as many molecules as lattice sites. This is a
somewhat less specific assumption than it looks at first glance,
since the remaining parameters can be mostly rescaled for rel-
atively small filling imbalances. In addition, we further im-
pose that the lattice opening angle v > 27/3. This allows
us to safely ignore longer-range hopping (beyond Ji, i.e., NN



hopping) as the overlap between the NNN Wannier orbitals
and beyond is significantly smaller than the nearest-neighbor
ones. Likewise, we make the simplification on the (dipolar)
interaction terms by only taking NN and NNN interactions.
All the contribution from longer-range interaction is small be-
cause of the 1/73 nature of dipolar interaction and we assume
it can be ignored. With this we introduce the dimerization
parameter §:

H = —J1) b +he.—pd iy (5)
J J

+VaN Z[l +0(=1) ]y + Ve Z 12

J J

where Vyn and § are related to V" and VP4 as § =
(‘/leven _ ‘/IOdd)/(‘/IOdd + Vleven) and VNN — (Vlodd + ‘/leven)/z
In this paper we study the model described by this Hamilto-
nian.

We restrict the region of parameters 6 and ¢ by symmetry
arguments. First, we note that the interactions exhibit symme-
tries with respect to 6 = 0 (cf. Fig.[3), which translate directly
into symmetries of the Hamiltonian. Performing the transfor-
mation § — 6 + 7 leaves the Hamiltonian Eq.(6) unchanged
and we can restrict ourselves to the range § € [—m/2,7/2].
Another symmetry is changing the sign of the dimerization
parameter as 6 — —¢ while at the same time inverting theta
@ — —6. However, inverting the sign of J can be achieved
merely by shifting the summation index by +1. Therefore we
can further restrict ourself to ¢ > 0 and 6 € [0,7/2]. This
implies that the translational invariance is broken, yet as we
will see shortly, these symmetries will be reproduced in the
systems’ ground-states.
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Figure 3: (Color online) Dimerization parameter § and interactions
Vi, Vo with respect to 6. The chain opening angle + is set to v =
27/3.

On-site contribution and stability

In general, the models of particles in optical lattices have
an on-site interaction term Un;(n; — 1)/2. This term is of-
ten abandoned when the molecules are polarized by an exter-
nal electric field and thus they can be regarded as hard core
bosons. This results from the basically infinite on-site repul-
sion of two parallel dipoles sitting in the same space, thus
creating a huge barrier. This simplification process, however,
needs extra care in our case since, once the E field id in plane,
the orientation of dipoles changes between strong attractive
and strong repulsive interactions, depending on the (in-plane)
polarization angle. Here we argue that in most of cases the on-
site term can still be ignored mainly because of the quantum
Zeno effect.

To explain, we first give an estimate on the on-site interac-
tion energy U. This is computed as

U=Uy+Ugip

:g/d37°p(r)2 +/d3rd3r'p(r)Udd(r—r')p(r’) (6)

where the first term is the effective contact potential and
the second is the potential coming from the dipole interac-
tion. p(r) = |w(r)|? is the Wannier function density, Ugqg
is the dipolar interaction, and g is the depth of contact po-
tential that is related to s-wave scattering length. The sec-
ond term is expressed in Fourier-transformed p and Uyg as,
1/(2m)? [ d®kp(k)?Ugq(k) Here we assume a strong trap-
ping potential in the z-direction, thereby treating the lattice
site as 2D, and further assume that in this plane each site in the
trap is isotropic. The polarizing E field is also in this plane,
and thus the direction of E field in the zy-plane is irrele-
vant in the discussion. If treating Wannier functions as Gaus-
sians with length scale lgo, then p(k) = exp (—Ilfk?/4),
and Ugq(k) = —md?(1/e — k) + nd?qcos (264 ), where d is
the electric dipole moment and e is the cutoff length that is on
the order of molecule length in true 2D confinement. From
this we arrive at

1 152 .2
Ugip = /dk:2 I:—T&'dQ ( — q) + wd?q cos (2¢y) | e 2lnok
€

_ 2nd? <\/% 1)

lHO €

(7

2
lHO

Typically, o ~ 1pum and € ~ 0.1nm In real experiments the
confinement is not truly flat which will essentially magnify
the value of €. Because of this, depending on the design of the
confinement, Ug;;, may be somewhat comparable to other en-
ergy scales and therefore on-site terms cannot be neglected. In
this case one needs to tune the depth of contact potential g (in
Eq. (6)) to exclude on-site terms if the molecules are nonreac-
tive. If the molecules are reactive then because of the Zeno
effect the on-site term are ignored regardless of the €. (The
Zeno effect is briefly explained in the next paragraph.) There-
fore the on-site energy U is negative with an absolute value at
least several orders of magnitude larger than the other energy



scales such as Jy, Vxn and V5, which are at most on the or-
der of d? /13, If we naively ignore the dynamics and internal
structure of the molecules and assume the system initially is
prepared with one molecule per site at most, we can neglect
the part of the Hilbert space with more than one molecule per
site. This can be done because in the ultracold regime, there
would be no process to dissipate the energy gained from this
on-site contribution.

Often however, the molecules are reactive and hence will
be kicked out of the optical lattice once they come to oc-
cupy the same lattice site. In these situations, attractive dipole
directions enhance such reactive processes and the appropri-
ate dissipative picture is necessary to describe those systems.
This is in contrast to the case where molecules are polarized
to be repulsive and consequently feel the huge potential bar-
rier generated by the dipole interactions before they can ap-
proach close enough to start inelastic processes. Even with
the dissipation process, we point out that when the dissipation
is strong, the decay process of molecules is frozen out. This
counter-intuitive result is due to the continuous Zeno effect
(20, 24] 25]. When v > J, where 7 is the 2-body on-site
loss rate and J is the hopping parameter, the molecules may
again be treated as hard-core, with much slower dissipation
rate of the system 7.7y ~ J?/y < 1/J. Thus, it is necessary
to choose the system parameters such that the tricky cases are
avoided. In what follows this is assumed.

III. ULTRASTRONG COUPLING CASE

In this section we consider first the ultra-strong coupling
limit J; — 0 with an even number of particles, i.e. N € 2N,
where we observe that Hamiltonian (6) reduces to a purely
classical one. We project the system onto a spin-1/2 system
where the spin degree of freedom is encoded in the occupa-
tion number of a single lattice site, which is explicitly done
by the Jordan-Wigner transformation, Sj‘ = a;f 9 8 ;=
aje” ™0, §* = ala; — 1, with O; = Sici ala;. Here the
ST and S~ operators are spin raising and lowering operators

respectively.

Ordering of the ground state

Since the Hamiltonian (6) without the hopping term is clas-
sical, it is fundamentally not difficult to completely iden-
tify the lowest energy configuration (see Appendix). The
ground states are classified into these three phases: anti-
ferromagnetic, dimer and ferromagnetic, depending on the
parameters 6, Vyn and V5. To explicitly write down the
states, the antiferromagnetic state |[AFM) = |... TJ1) ...),
|dimer) = |... 1411 .. .), and ferromagnetic state |FM) =
|... ™1 - . ). To ensure half-filling, the ferromagnetic or-
der |[FM) exhibits domain-walls, dividing the system by half,
corresponding to a domain wall soliton [26]. We can derive
the condition for the system in each of the phases by compar-
ing the energy per site. This is a straightforward task and the

4

result is as follows: anti-ferromagnetic: Egg/L = Va/2, fer-
romagnetic: V5/2 + Vn/2, dimer: Vin(1 — 0)/4. When
Van < 0, V5 is not relevant and the transition point still
lies at 6 = 1. For the case § > 1 the system is in the
dimer phase, and for § < 1, it is in the ferromagnetic phase.
When Vnn > 0, V; significantly affects the phase. When
Va/Van < (1 — §)/2, the system is in the anti-ferromagnetic
phase and when V5 /Vnn < (1—4)/2, itis in the dimer phase.
The phase diagram that summarizes the argument is shown
in Fig.[5} Note that interactions and ¢ cannot be tuned com-
pletely independently. The possible traces are indicated by
the gray dashed lines in Fig.[5| with v = 27 /3 and 57 /6 and
6 varied from 0 to 7/2. It suggests for v = 27 /3 only one
phase transition whereas for v = 57/6 there would be two.
This can be checked by calculating the derivative with respect
to 6 or observing the kinks in the J; = O-curve of Fig.[4]

To finish the discussion of the strong coupling limit, we
remark that for an odd number of particles the nature of the
anti-ferromagnetic and ferromagnetic phases are not altered
and merely the ground-state energy will be different. How-
ever, in the dimer phase it is easy to see that the additional
particle will tend to localize at the edge of the system with a
smaller bond-energy. Hence the bulk-state will still show the
dimerized structure.

Before concluding , we would like to mention the case of a
small but finite J; contribution. From the results of the ex-
act diagonalization we see that the cusp at § ~ 0.097 for
v = 5m/6 (cf. Fig. graph C), corresponding to the boundary
between the anti-ferromagnetic and the dimer-configuration
vanishes as soon as J; # 0 turning into a smooth crossover.
This can be understood intuitively by observing that both
states break translational invariance but exhibit a discrete Zo
symmetry, thus belonging to the same symmetry class. On the
other hand, the ferromagnetic phase preserves translational in-
variance and belongs to a different symmetry class. Hence the
dimer- and ferromagnetic states cannot be related by a contin-
uous distortion and the cusp remains, as can be seen in Fig.[d]
Moreover, the numerical results suggest that the phase transi-
tion stays of first order even for finite J; until it vanishes in
the TLL phase (see the next section). The transition point is
continuously shifted towards large values of § with increasing
J1. However, the question of whether the first order line and
the BKT line meet, and how they close is beyond the scope of
this manuscript.

IV. SMALL COUPLING CASE

Now we will derive a qualitative ground-state phase dia-
gram of this model in the opposite limit — the case of small
dipolar coupling. We assume a finite hopping term .J; and
regard the dipolar interaction as a small perturbation, using
field-theoretic arguments and a bosonization formalism. In
this section, we take the large size (L — o0) and continuum
(lattice spacing a — 0) limits. The discussion below is a well-
studied topic that can be found in standard textbooks in this
literature (see for example [27]) which we closely followed.
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Figure 4:

(Color online) Ground state energy per particle plotted against 0 € [—m/2,7/2] with various hopping parameter J; by exact

diagnolization method. Number of sites L=18. Left: v = 27/3 Right: v = 57 /6. The kinks show the first order phase transition points.
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Figure 5: (Color online) Phase diagram of the ultrastrong coupling
limit. Top: Vn > 0 Bottom: Vn < 0. The dashed lines show the
actual trace of the parameter space when 6 is varied from 0 to 7 /2.

Low energy effective theory of non-interacting fermions

Rewriting the system in the low energy effective form and
in the spin picture, the non-interacting Hamiltonian becomes

Hyx =3 [=h(S)8; +878)]
J

> [ (@ +alsa)]
J

T/a
—Ji / dk cos(ak) dy," dy
w/a

®)

where in the third line we went into Fourier space. For the case
of half-filling, the Fermi points are at k = £7/2a. In the low
energy regime, we can linearize the energy spectrum around
these Fermi points and introduce slow varying fields. The
ground state of this model is now gapless and can be treated
as Tomonaga-Luttinger liquid (TLL). Mapping the XX model
into an effective low energy model is a well-studied subject
and here we will only summarizedthe basic relations to clar-
ify the notations used in this paper.
The Fermi operators can be written as field operators
aj

Ja

where, kp = m/2a and the index j and z are related as
x = ja. Yr(x) and ¢ (z) are (slow varying) right and left
mover operators. These operators can be described using Bo-
son fields ¢ (z) and pg(z):

= M P (x) + e () ©)

eter(z)
= 1
—ipr(x)
bila) = e (1
V2To

The « appearing here is an undetermined regularization pa-
rameter that has the dimension of length. This mapping from
Fermi operator to Boson field operator is called bosonization.
While 1D Fermi systems in general show various peculiarities



that would make perturbative calculation difficult, the mapped
Boson system may be easier to treat. Thus bosonization gen-
erally is a effective method in 1D systems.

It is customary to define the (bosonic) field operators as

6(@) = Z=ler (@) + ¢n(@)]

) = f—len@) —enl@) (2

These operators are conjugate and obey the commutation re-
lation [¢(x),II(z")] = 6(« — 2’). Thus, the effective Hamil-
tonian of the non-interacting spinless fermions (or hard core
Bosons) is expressed as

- oo do\ 2
]‘IXX:aiJ1 dx 7925 +H2
2 J_ dx

In order to obtain this form we removed the minus sign that
should appear in front of J;. This can be done in this case as
long as the hopping range is NN only: we (passively) trans-
formed the system by the commutation-conserving transfor-

13)

mation of sppin operators S — SJI = (- )JSJI ,Sjy —
Y _ i QY z Sz _ z :
S/ = (=178, §§ — S; = S;. This point is important

when interpreting the results of the phase of the system in this
effective theory arguments. The tilde mark on the spins and
Hamiltonian indicates the transformed expression.

Bosonization of Ising coupling terms

Now, the dipolar interaction terms can be added. In spin
language, this is simple Ising coupling, the S* can be written
using the Bose field ¢(x) as

=, 1
Sj:afa]fi
d 1)7
a_d(z) , a(-1)

To

_f dx

where : ... : denotes normal ordering. The nearest neighbor
interaction is expressed, by expanding in a, as

ZZ
E:J j+1 =

a/oodxl (Zi) +W242:COS(V167T¢):+

oo

: sin \/E¢(x) : (14)

15)

where ... donotes the terms we ignore, which includes
quadratic or higher order terms in a and less relevant terms
in the context of renormalization group argument such as
: cos? (v/16m¢) : (this point will be explained later).

The dimerization part of the nearest neighbor interaction
(Van 6(—1)7) requires a different bosonization calculation,
due to its oscillatory nature that can lead to back-scattering

of a single particle. [27, [28]. Expanding in a, the bosonized
form is expressed as

> (-1)Y8:8;,, = 7/ dz : cos (Vang) : +... (16)

J
Similarly, the NNN interaction term can be written as
g > do 1
Z Sjt2 fa/ [ (dm) ~5aan cos(V16m¢) :]

+ .. a7

Thus, the form of the zig-zag Hamiltonian (density) is ex-
pressed as

o _ady AWan Vo [do(x)\? )
Haig—aag = 2 [(1—’_ rJi 7TJ1> < dx ) +1(z)
V3) : cos (V167o) :

cos (VArg) :

+ g1 @ cos (V16m9) : +gs : cos (Vang) :
(18)

where again we ignored higher order terms in a, and opera-
tors with higher oscillation frequencies that are less relevant
in terms of following renormalization group argument. The
K and u are the Luttinger parameters, calculated to be

1

/1+4A176A2’
4A1 — 6A
u:aJ“/lJrliGQ,
T

where Ay = Van/J1, A9 = Vo /J;. The result is accurate
up to first order in A; and As. The treatment so far does not
deviate from textbook methodology, yet the expression for K
may somewhat look uncommon. Both A; and A, affect K,
yielding unpredictable results. The gi, gs are non-universal
coupling constants. This “non-universality” stems from the
remaining cut-off parameters a and « appearing in these con-
stants. In order to accurately determine these constants one
would need to take into account all orders of the expansion in
Egs. (I5) — (I7). In most cases, this is impossible analytically.
This solution, however, gives a good qualitative picture of the
system.

We observe that, as the angle of molecules 6 changes, A
and A, dramatically change, and consequently the Luttinger
parameter K can take a wide range of values, resulting in a
rich phase diagram. K determines the asymptotic behavior of
the system’s correlation function in TLL, such as the charge-
density wave (CDW) correlation function ccpw. Working at

K =

19)



zero magnetic field this is given by

K
27r2

ccDwW X <$z(x)g§z(0)> + Acos(2mpor) —=

22K
(20)

with a non-universal amplitude A and pg = 1/(2a).

Renormalization Group Arguments

The ordering of the system is qualitatively discussed using a
first order renormalization group argument, which enables us
to discuss the two non-linear terms (g1 : cos (vV/167¢) : and
gs : cos (V/4m¢) :) independently and individually as long as
one of the terms is irrelevant. We may see our model (I8) as
the Sine-Gordon Hamiltonian in treating the non-linear terms.
The renormalization group argument of this model is well
known [27]] and here we apply the result. Because of the zig-
zag nature of the chain we have both alternating terms (giving
rise to gs) and non-alternating terms (generating g;), some-
thing that look uncommon in textbook physics. First we inves-
tigate the relevance of the non-linear terms gy cos (v/167¢)
and g5 cos (v/4m¢). In general, the scaling dimension of an
operator of g exp (iv/4n27¢) type is known to be n2 K, where
K is the usual Luttinger parameter and g is the coupling con-
stant. The scaling equation is known to be [27]

dK 9 4
W— OgCL, (21)

d
di‘? = (2 - n2K)gv
implying that for K = 2/n? the gexp (iv4n2w¢) operator
is marginal, while it is irrelevant for smaller values of K. In
the case of our Hamiltonian, n = 2 for the g; : cos (vV167¢) :
term implying this operator changes its relevance at K = 1/2,
and similarly n = 1 for the gs : cos (v/47¢) : term, changing
its relevance at K = 2. We therefore may classify the system
into these 4 cases: (i) K > 2, (i) 1/2 < K < 2, (iii)) 0 <
K <1/2,(v) K? <0.

(i) K > 2 — Neither of the non-linear terms are relevant,
and the system is described by Gaussian Hamiltonian, whose
ground state is TLL.

(ii) 1/2 < K < 2 — Only the term g5 : cos (vV47¢) :
is relevant, and the bosonic field ¢ tries to minimize gs :
cos (VArp) :. As aresult, /A4rp = +m, depending on the

sign of gs, and thus <5Jz> = 0 (cf.Eq. ), and S’; . 5';-+1 —

S';;H . §i+2 = (—1)7, i.e., resulting in dimerized order. The
sign of gs does not qualitatively change the order. Although
the coupling inducing the dimerization is Ising-like, for large
J1 > €44 this dimerized state is a valence bond state (VBS),
which is explicitly expressed as (| 11) — | {1)/v2) @ (| 14
Y — | 11)/V/2) @ ..., in contrast to the Ising type dimer state
(|dimer) = |... ™11 .. .)) that appeared in previous sec-
tions. For our system, we see that K' < 2 is satisfied in a broad
region (above dashed line in Fig.[6). In particular, this is true
even if the system is barely interacting, namely when A; and
A, are both close to 0. This implies that the g5 cos (v/47¢)
term is relevant and the system is governed by this term no

matter how small the interaction and dimerization are, as long
as they remain finite. This behavior has been described as
“Spin-Peierls instability” [29, [30] — even a tiny distortion of
the lattice (in our case the dimerization) will open an energy
gap. The gap scales as F; o< , when ¢V is small com-
pared to J; and Viyn E, o< (6Viyn)/ 2~5) otherwise. These
two limits are smoothly connected.

(i) 0 < K < 1/2 — Both g1 : cos(v167¢) : and

s : cos (v4mp) : become relevant. Treating these terms in-
dividually no longer holds and the scaling behavior from the
equation Eq. (ZI) is not valid. We therefore do not know the
ordering behavior of this region. However as we will see later,
as long as the dipolar-interaction terms are small compared to
hopping term (Vi n, Vo < Jp) the luttinger parameter usu-
ally stays away from the region (See Fig.[6). Hence we do not
intend to look further into this case.

(iv) K? < 0 — In this situation the system is not in lut-
tinger liquid, to start off, and the system is obviously in a
gapped phase. Eq. indicates that K2 < 0 is realized for
both strong attractive NN interaction and repulsive NNN in-
teraction, implying that the system will be in the dimerized or
ferromagnetic phase depending on the parameters 6, and J1,
but not in the anti-ferromagnetic state.

So far we have excluded the case § = 0 (see Eq. (€) and
Eq. (18)), that is when lattice opening angle v = 7. In this
situation, the gs : cos (v4m¢) : term does not exist. The
ordering behavior discussed so far has to be modified. Since
the only non-linear term in this case is g; : cos (vV'167¢) :,
which changes its relevance at K = 1/2, we need to take into
account these 3 cases: (i) K > 1/2, (ii")) 0 < K < 1/2,
({i")K? < 0.

(i’) K > 1/2 — In this case, the non-linear term ¢; :
cos (v/16m¢) : is not relevant and the system is described as
TTL.

(i) 0 < K < 1/2 — The g1 : cos(V16m¢p) : term
becomes relevant and the system is entirely governed by
this term. The system in this case is driven to either anti-
ferromagnetic or dimer order, depending on the sign of the
coupling constant g;. When g; > 0, the bosonic field
¢(z) appearing in the g; : cos(v/167w¢) : tries to mini-
mize this term and takes the value such that v16m¢(z) =
7 or ¢(x) = /m/4. From Eq.(14) we see that S* =~
(=1)sin (7/2 + nw) = (—1)7, ie., spm changes its sign at
every each site. On the other hand if g; < 0, the bosonic field

is pinned to ¢ = 0, leading to <SJZ > = 0 and the finite dimer

value of S;-S; 1 — S, 1-S;12 = (—1)7. As mentioned earlier,
perturbative theory cannot in general determine the sign of g1,
thus the differentiation between dimer and anti-ferromagnetic
phases has to be done numerically. We will see (cf. Fig.[6),
however, that in our system for large J; at v = 7, K is al-
ways larger than 1/2, implying g; : cos (v 167¢) : is always
irrelevant, and thus we do not go further to discuss this point.

(iii’) K2 < 0 — As before, the system is in a gapped phase.
K? < 0 is realized when angle () of the molecules is rel-
atively large, leading to strong attractive NN interaction and
NNN interaction. Hence the system is in Ferromagnetic order.

We would like to emphasize again that the analysis is per-
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(Color online) Luttinger parameter plotted vs. 6 of the molecules, for different hopping parameters J; and for different zig-zag

angles ~. These results are based on Eq. @), calculated using perturbative renormalization group arguments.

turbative. Going beyond perturbation in Ay, Ao, the Luttinger
parameter K has to be found numerically. There are, however,
special points in the parameter space where K and u can be
obtained analytically. For example, for As = 0,6 = 0 the
model reduces to the XXZ model which allows for an exact
calculation, using e.g. Bethe-Ansatz techniques [31]].

1
2(1 —7~Lcos ~1(Ay))

/1 _ A2
LAl (22)

K =

and thus K € [1/2,00). To check, it can be seen that K in
Eq. (22) has the same form up to first order in A; as Eq. (T9)

Phase Diagrams

The phase diagrams that sum up the discussion are shown
in Fig.2] The phase diagrams are the result of field theoreti-
cal analysis using bosonization techniques and first order per-
turbative renormalization group arguments. They inevitably
involve approximations and therefore unspecified constants,
resulting in an overall qualitative picture of the system rather
than a quantitative one. At this point, numerical methods are
needed to accurately determine many exact transitions in the
phase diagram. The qualitative discussion so far, however,
provides a good picture of the overall behavior of the system.
Each pie in Fig.[2]shows the ground state phases for three dif-
ferent zig-zag angles vy, where the first, v = m, is just the
solution of a straight chain. The diagrams are depicted in po-
lar coordinates, showing the ratio of lattice depth to hopping

as the radius and he angle argument as the actual polarization
angle 6 of the molecules.

The border between the TLL phase and other phases in-
dicates the Berezinsky-Kosterlitz-Thouless (BKT) transition.
When J; is large, the gapped phases border to the gapless
TLL phase , and the system is expected to be dominated by
BKT transitions, as 6 changes from 0 to 7/2. In contrast to
that, when J; is small, the phases are connected with first or-
der transition lines. We have not adequately studied the region
around J; ~ 1, and hence the details of crossing of first order
and the BKT lines are beyond the scope of this paper.

We here remind ourself that we transformed the spin oper-
ators in the beginning of bosonization treatment. In order to
going back to the original (untransformed) system, one simply
needs to perform the same spin operator transformation again
S = &7 = (—1)385?,8;’ — (—1)385-/, §; = 8§ = §;.
Therefore the reinterpretation is simply equivalent to acting
with a unitary operator U = U~ =, = | )T | — | })(} |
on every other lattice site. The phase diagram shows the re-
sult in the language of untransformed spins. An important
consequence of this remapping is that the VBS state is now
remapped into a triplet bound state, or explicitly, ( | 1)+ | {1
Y/V2) @ (| 1) + | 11)/V2) @ .... We call this state an “xy-
dimer” as the dimerized pairs can be seen as polarized in the
xy-plane as opposed to the dimerized order for J; ~ 0 where
the dimerized pairs are polarized in the z-direction (we call
this type “z-dimer”). One observes that when the opening an-
gle ~y is smaller than 7, the system is predominantly in the xy-
dimer state when JJ; — oo where each dimer in spin language
is |L,Mp) = |1,0). (Here, L is the total spin of the dimer-
ized pair). As the optical lattice deepens (i.e., a move in radial
direction in phase diagram) the dimer pair will gradually po-



larize into the z-direction by picking up the M, = 1 compo-
nent until it becomes completely polarized in the z-direction,
becoming |1,1). Thus, the depth of the optical lattice tunes
the polarization direction of the dimerized pairs.

Before concluding, let us briefly discuss the effect of dop-
ing the system, which corresponds to the system being slightly
away from half-filling. When the system is in the gapless TLL
phase, doping creates a finite magnetic field and this simply
results in a finite shift in the bosonic field ¢(z) = ¢’ (x) — Bz.
Here 8 = wm, because the magnetization m is related to ¢ as

m= <S’j> = —1/7 (A¢). Hence, there would be no siginifi-

cant effect on this phase. For the gapped phases, moving away
from half-filling creates mobile excitons that essentially make
the system gapless. Yet, we will call thses phase as ferromag-
netic, antiferromagnetic or dimer due to the large overlap of
the wavefunction with one of these states. There might be,
however, other physics emerging which we will not discuss in
this paper.

V. CONCLUSION

The zigzag nature of the chain induces bond-alternating
nearest-neighbor interactions as a function of the molecules’
aligned angle with the chain axis. We also have taken up
to NNN interaction te-inclade-thelong-rangenature of the
dipole interaction, introducing (Ising-type) frustration in the
system. In the strong coupling limit, the ground state order-
ing is exactly identified, where the system lies in either anti-
ferromagnetic, ferromagnetic or Ising-dimer, depending on
the coupling parameters. In the weak coupling limit, the effec-
tive field theory additionally predicts TLL phase and dimer-
ized phase, whose dimerized pairs have different polarized
direction than the strong coupling case. The polarization of
dimerized pairs should be closely affected by the depth of the
optical lattice. Our methods do not accurately predicts the or-
dering in the region of intermediate hopping and this should
be the included in the future works.

The goal is to utilize this simple quasi-1D model to see
phases beyond typical 1D physics. While we here discussed
only the phase-diagram of polarized hard-core dipoles at half-
filling, moving on a 1D zig-zag chain, first, the richness of the
system is obvious in the phase diagrams shown above. Sec-
ond, the extension to other filling ratios and not only longer-
range interactions but also longer-range hopping is obvious
and very experimentally feasible. This should lead to very
interesting quantum fluctuation that can lead to unconven-
tional quantum phases [32,133]]. Exploring similar phases with
smaller v in our model will be subject to future studies. Mov-
ing away from half-filling and taking longer-range parts of the
dipolar interaction into account can lead to interesting modi-
fication of the Devils’s staircase [34].

Acknowledgements

We are grateful for many insightful discussions with J. F.
Kong, A. Shashi, E. Dalla Torre, T. Calarco, and N. Ghimire.
QYW is grateful for the financial support from Japan Stu-
dent Services Organization (JASSO). JO acknowledges finan-
cial support from the Harvard Quantum Optics Center. This
project was supported by NSF, ASOFR, and was started at
KITP.

Appendix A: Identifying the ground states when J; = 0

Here we would like to show the outline to obtain the phase
diagram in ultrastrong coulpling case. Because I argue that
either of the 3 phases are the ground state, I would like to
explicitly construct a state and compare its energy per site
with either of 3 phases. Here I use symbols like (or

) n = 1,2,3... to denote a "building block" of the sys-
tem, whose meaning is n left (right) sites are filled and n right

(left) sites are empty. For example, is eo with black cir-
cle being the filled sites and white circle empty sites. is
oo o e ee and so on.

Using these "blcok” notations, the 3 presumable ground
states, ferromagnetic, anti-ferromagnetic and dimer state are
described as

AFM) =|I.L|-|1.L]-|LL|-[1.L|- ..
|[FM) = |N/2,L
[Dimer) =|2,L|—|2,L|-[2,L|-[2.L|- .. (AD
and their average energy per site is
V;
BATM — ?2
E}l:’é% _ V'leven +‘110dd+2‘/2
. VE'UETL
BT == — (A2)

It is useful to investigate the energy density of these "build-
ing blocks" for the later comparison. It is easy to convince
oneself that the average energy "per site" is different depend-
ing on whether N is odd or even. To write it explicitly with
the coupling constants V2% Veven Vo,

mVEr 4 (m — D)V 4 (2m — 2)Vy
E,s(2m,Lj)=—1 1
po(2m L) i
mveven 4 mvodd 4 (2m _ 1)‘/2
E, s (2m+1,L|) = —2 4“11 -

(A3)




The difference of these energy are computed as,

AE = B, (2m+D), L) - E,..(2m, L))
- 2‘/10dd + ‘/'2
~ 2m(m + 1)

AE2THE = B, ((2m+D+1, L]) — B, (2m+1, L))

Vodd even 4V-
_ 1 + Vl + 2 (A4)
22m+3)(2m +1)

We see that depending on the sign and magnitude of the inter-
action parameters, AE, ;. can be positive or negative (or 0),
regardless of the value of m (or equivalently /V). This means
that when we fix V% Veven 'V, the energy per site of the
building blocks are either monotonic increase or decrease or
just a constant with respect to m and thus we can find a unique
building block that has the lowest energy per site. We can pre-
sume that the ground state is build with these lowest energy
per site building blocks.

However we need to take into account the "connection en-
ergy" arising from additional interaction between the connect-

ing building blocks. For example - with N > 2

(eo—eee...000) generates V5 upon connecting (Remember
o is filled and o is empty site.) Since the range of the interac-
tion is at most 2 sites, the contribution of the connection is the
same for all N > 2. Therefore when we consider the connec-
tion, it is sufficient to classify the building blocks into 4 cases:
| LLL[LR][N,L][N,R] with N > 2. To list up all pos-
sible connections, there are 4 X 4 = 16 possible possibilities
— one of those 4 building blocks on the left and one of those 4
on the right. All connections are shown in Table

Before moving onto the next step, we note that the role of
Vedd and VEve™ can be flipped by inserting an empty site at
the left edge of the chain. Instead of performing this we re-
move this redundancy by deliberatively force V244 > Veven
or vise versa, depending on in each case. For example,
|Dimer) has average energy V,°7°™ /4 per site. By inserting an
additional site (or translating by 1 site) the energy is V;?%/4.
In this situation we will just assume V°% < Vpeven, With
all of these information, we would like to explicitly construct
a state that has the lowest energy with given interaction con-
stants and prove that the either one of the 3 phases (dimer,
ferromagnetic, anti-ferromagnetic) has the lowest energy in
any case. From now on, we use n to be general integer that
is larger than or equal to 0, and N to be integer that is larger
than or equal to 2.

When interaction parameters fulfill these conditions the
ground state is obvious.

1. VEver < 0,Vedd < 0,V < 0= [FM)

2. ‘/leven > 07‘/10dd < 0’ ‘/2 > 0 or Vleven < 07‘/10dd >
0,V2 > 0 = |Dimer)

3. VEven > 0,V > 0.V, < 0= |[AFM)

Now let us tackle on the less obvious case. We need to con-
sider these 4 cases:
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Table I: the building blocks on the left are the left component of the
connection. The top ones are right component of the connection.

For example (3,2) element of the table, Vfdd, indicates

connection of gives V;*% energy.

test [LL] [LR] [NL] [NR]
ILL Va 0 Va 0
m Vlodd Vs Vlodd 0
0 0 0 0
NR| | VP +Ve Vo VP42V, 0

L Veven > 0,14 > 0,V > 0
2. VEven < 0,VPdd <0,V > 0
3. VEvem >0,V < 0,1, < 0
4. VEver <0,V > 0,1, <0

First let us look into case 1. (V¢ Vedd Vo, > 0). For
simplicity, we can impose another condition, that is V,**¢" <
V°4 Then we prove that when Vo > V¢ /2 the lowest
energy state is Dimer with average energy per site EZ??”” =
VEve™ /4 and when Vo < V/£Y¢" /2 it is in anti-ferromagentic
order and E/''M = V,/2 just by explicitly computing the
energy.

Now consider a general state

‘n’,L‘— ...—‘n”,R‘— .=, L|—...

made of made of E]

When all the interactions are positive, from Eq.(A4), we
know that the average energy per site of the building blocks is
the smallest when n = 1. This let us exclude the possibility
of n,n/,n” > 2 that appears in Eq.(AS). So the ground state
must be built with "building blocks" whose n is either 1 or 2.

Let’s assume all n appears in Eq.(AS) are 1. Looking at
the Fig.[I we see that the possible lowest energy state is ei-

ther yﬁH 1,R ‘- 1,L ‘- 1,R H 1,L ‘ whose average en-

ergy per site is V;°4 /4, or ———.... (or equiva-
lently -—...) whose average energy per site is V5 /2.

Similarly, when we set all n = 2, possible lowest energy
state is| 2.L H2,LH2, L 2R H2RH2.R|-and the av-
erage energy per site is V" /4.

From these analysis we set an upper bound for the ground
state average energy per site:

Vleven < Vlodd A ‘/2 < Vleven/2 = EG.S S ‘/'2/2
Vleven < Vlodd A ‘/2 > Vleven/Q = EG.S S Vleven/4
(A6)

(AS5)

...0r

Now we need to take into account the third case — state
with n = 1 and n = 2 "building blocks" combined.

One can come up with low energy states such as -

- - repetition of this set of 3 blocks, whose en-

ergy per site is 2V VPt oV, and ‘ 1,LH 1,R‘ -‘ 2,L‘

10




-repetition of this set of 3 blocks, whose energy per site is

odd even
%. Both of these energy exceeds the upper bound
we set previously at Eq.(A6) and cannot be the ground

state. Therefore the ground state configuration must be ei-
ther [2.L H2.L H2,L|.or[2R H2R H 2.R |-, meaning the
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ground state is the (Ising) dimer phase.

The other ground states for less obvious cases can be iden-
tified exactly the same way and we will not list the derivation
here. Again the results that summarize this section is shown

in Fig.[5]
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