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Spatially anisotropic solitary vortices, i.e., bright anisotropic vortex soliton (AVSs), supported
by anisotropic dipole-dipole interactions, were recently predicted in spin-orbit-coupled binary Bose-
Einstein condensates (BECs), in the form of two-dimensional semi-vortices (complexes built of
zero-vorticity and vortical components). We demonstrate that the shape of the AVSs – horizontal
or vertical, with respect to the in-plane polarization of the atomic dipole moments in the underlying
BEC – may be effectively controlled by strength Ω of the Zeeman splitting (ZS). A transition from the
horizontal to vertical shape with the increase of Ω is found numerically and explained analytically.
At the transition point, the AVS assumes the shape of an elliptical ring. Mobility of horizontal
AVSs is studied too, with a conclusion that, with the increase of Ω, their negative effective mass
changes the sign into positive via a point at which the effective mass diverges. Lastly, we report a
new species of inverted AVSs, with the zero-vorticity and vortex component placed in lower- and
higher-energy components, as defined by the ZS. They are excited states, with respect to the ground
states provided by the usual AVSs. Quite surprisingly, inverted AVSs are stable in a large parameter
region.

PACS numbers: 42.65.Tg; 03.75.Lm; 47.20.Ky; 05.45.Yv

I. INTRODUCTION

Solitons in two-dimensional (2D) settings have drawn a great deal of interest as they exhibit properties which are
not available in 1D, such as vorticity, chirality, the possibility of the collapse and suppression of the collapse, spatial
anisotropy, etc. In usual 2D systems, all localized modes supported by the ubiquitous cubic self-focusing nonlinearity
are prone to instability driven by the critical collapse in the same setting [1–3]. 2D bright solitons with embedded
vorticity are subject to an even stronger instability against perturbations breaking their axial symmetry [4]. Therefore,
the creation of stable 2D, and even 3D, bright solitary waves and vortices remains a challenging problem, especially in
the fields of optics and Bose-Einstein condensates, where the self-focusing cubic nonlinearity represents, respectively,
the Kerr effect [5] and attractive interactions between atoms, which may be induced by the Feshbach resonance [6–8].
A general method to stabilize solitons in 2D geometry is provided by the use of spatially periodic potentials. In

optics, such potentials can be imposed by virtual photonic lattices in photorefractive crystals [9], and permanent
lattices written in bulk silica [10], while in BECs similar potentials can be induced by interference patterns (optical
lattices) created by coherent laser beams illuminating the condensate [11]. Although the periodical potentials can
provide diverse functionalities, they limits the mobility of solitons. To preserve the full mobility, stabilization of solitons
in the 2D free space is a challenging objective. A possible way is suggested by using self-focusing nonlinearities weaker
than cubic. Indeed, quadratic (alias second-harmonic generating) nonlinearity does not cause collapse in 2D [12–
14]. However, the quadratic nonlinearity does not remove the azimuthal splitting instability of vortex solitons [15].
Another possibility is the use of competing cubic self-focusing and quintic self-defocusing nonlinear terms to stabilize
2D solitons [16–18]. In this setting, all the fundamental solitons are stable, while vortex solitons are stabilized above
a specific threshold [19, 20], which was not, thus far, achieved in the experiment.
The most straightforward means to stabilize fundamental and vortical solitons in 2D free space is offered by the use

of nonlocal nonlinearity. In particular, nonlocal nonlinear response in plasmas is induced by heating and ionization
[21], and the propagation of light in nematic liquid crystals features nonlocality resulting from long-range molecular
interactions [22]. In BECs, nonlocality originates from isotropic long-range Van der Waals interactions between
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Rydberg atoms [23, 24], as well as from dipole-dipole interactions (DDIs) between atoms or molecules possessing
permanent magnetic or electric dipole moments [25–31], or moments induced by an external polarizing field [32].
Permanent quadrupole moments give rise to similar long-range interactions in a molecular BEC [33]. The latter
one, DDI, features strong tunability, which can be isotropic or anisotropic in the 2D plane by setting the dipoles
perpendicular or parallel to the plane.
A completely different approach to the creation of self-trapped fundamental and vortex modes was proposed in

Refs. [34–39]. It relies on the use of defocusing nonlinearity in the D-dimensional space, with the local strength
growing from the center to periphery, as a function of radius r, at any rate faster than rD. It has been shown that
such setting can support extremely robust families of soliton and solitary vortices.
Recently, an unexpected result was revealed by the analysis of a two-component (spinor) self-attractive BEC with

the linear spin-orbit (SO) coupling between the components, viz., the prediction of completely stable 2D solitons of
two types, namely, semi-vortices and mixed modes (MMs) [40–46]. The semi-vortices are built of one zero-vorticity
and one vortical components, while the MMs mix zero and non zero vorticities in both components. These findings
contradict the common belief that any system with the pure cubic self-focusing cannot support stable solitons in the
free 2D space.
In comparison to the stabilization of 2D solitons in free space, a still more challenging objective is creation of

stable anisotropic solitary vortices, i.e., bright anisotropic vortex solitons (AVSs). Obviously, the use anisotropic
DDI, corresponding to the in-plane polarization of the atomic moments, is a natural way to achieve this purpose.
However, stable AVSs supported solely by anisotropic DDIs have not been reported, thus far. On the other hand,
recent consideration of the SO-coupled BEC in the free space, with nonlinearity represented by anisotropic DDIs,
has predicted stable AVSs of the semi-vortex type [47]. Similar vortex modes were predicted as gap solitons in the
simplified 2D free-space model, with kinetic terms dropped in comparison with the strong SO coupling [48]. In the
latter case, the bandgap structure was induced, instead of lattice potentials, by the interplay of the SO coupling with
the Zeeman splitting (ZS).
The anisotropy of these vortices manifests itself in deformation of their shapes. The AVS created in the full model

(which includes the kinetic energy) features a 2D density profile resembling a slim peanut elongated parallel to the (in-
plane) orientation of dipole moments in the condensates (we define it as axis x in the 2D plane, i.e., as the horizontal

direction). In particular, the density profile of the vortex component features two symmetric maxima separated in
the horizontal direction, see Fig.1(a2) in Ref. [47] and the top row in Fig. 1 displayed below. Therefore, we refer
to AVS modes of this type as “horizontal” ones. On the other hand, the profile of AVSs found as the gap solitons
is essentially “fatter” in the vertical direction, perpendicular to the in-plane orientation of the dipole moments, see
Fig. 3(b1) in Ref. [48] and the second row in Fig. 1 below. In particular, the vortex component of the gap-soliton
AVSs features two density maxima separated in the vertical direction. Accordingly, we call similarly shaped AVSs
“vertical” ones. Moreover, these two types of AVSs have opposite signs of their effective dynamical mass, negative
and positive, for the horizontal and vertical modes, respectively.
One objective of the present work is to figure out the reason for the difference between the horizontal and vertical

AVSs, and find a way to control their shapes. Further, we aim to study mobility of the AVSs, and to elaborate
a new species of inverted AVSs, which have their zero-vorticity and vortex constituents placed in the higher- and
lower-energy components, as defined by the ZS. Our study is based on the model of the spinor BEC with the in-plane
polarization of atomic moments, combining the linear SO coupling of the Rashba type, nonlinear long-range DDI, and
the ZS effect.
The paper is structured as follows. The model is introduced in Section II. Basic numerical results for the horizontal

and vertical AVSs, supported by some analytical considerations, are reported in Section III. The mobility problem for
horizontal AVSs is considered, by means of systematic simulations, in Section IV. The novel type of inverted AVSs
(of the horizontal type), which turn out to be excited states, in comparison with the ground states realized by the
usual AVSs, and, quite surprisingly, are stable in a large parameter region, are addressed in Section V. The paper is
concluded by Section VI.

II. THE MODEL

Under the mean-field approximation, the evolution of the spinor wave functions of the dipolar BECs, ψ = (ψ+, ψ−),
is governed by the coupled Gross-Pitaevskii equations, written here in the normalized form, which include the SO
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coupling and ZS, with strength Ω:

i∂tψ+ = −
1

2
∇2ψ+ + λD̂[+]ψ− − Ωψ+ + ψ+

∫

dr′R(r− r
′)(|ψ+(r

′)|2 + |ψ−(r
′)|2),

i∂tψ− = −
1

2
∇2ψ− − λD̂[−]ψ+ +Ωψ− + ψ−

∫

dr′R(r− r
′)(|ψ+(r

′)|2 + |ψ−(r
′)|2). (1)

Here operators of the SO-coupling are

D̂[±] = ∂x ∓ i∂y, (2)

and its strength is fixed to be λ ≡ 1, by means of rescaling. The DDI’s kernel is

R(r− r
′) =

1− 3 cos2 θ

(ǫ2 + |r− r′|2)3/2
, (3)

where cutoff ǫ is determined by the confinement in the transverse (third) dimension [48]. The form of this kernel
implies that the dipoles are polarized (by an external magnetic field), as said above, in the positive x direction in 2D
(x, y) plane, hence cos2 θ ≡ (x− x′)2/|r− r

′|2.
Stationary states are looked for as the usual form, ψ±(r, t) = φ±(r)e

−iµt, where φ± are stationary wave functions,
and µ is a real chemical potential. A dynamical invariant of the system is the total norm, which is proportional to
the total number of atoms in the binary BECs:

N = N+ +N− =

∫

dr(|φ+|
2 + |φ−|

2). (4)

It is also relevant to define the relative share of the total number of atoms which are kept in the vortex component:

F− = N−/ (N+ +N−) . (5)

The other dynamical invariants are the linear momentum [see Eq. (15) below] and total energy,

E = EK + EDDI + ESOC + EZS , (6)

where EK, EDDI, ESOC and EZS are the kinetic energy and the terms representing DDI, SO coupling and ZS,
respectively:

EK =
1

2

∫

dr
(

|∇φ+|
2 + |∇φ−|

2
)

,

EDDI =
1

2

∫∫

drdr′
(

|φ+(r)|
2 + |φ−(r)|

2
)

R(r− r
′)(|φ+(r

′)|2 + |φ−(r
′)|2),

ESOC =

∫

dr(φ∗+D̂
[+]φ− − φ∗−D̂

[−]φ+),

EZS = −

∫

drΩ(|φ+|
2 − |φ−|

2). (7)

Note that the anisotropic system does not conserve the total orbital angular momentum, but its standard definition
for each component,

〈L±〉 =
1

N±

∫

φ∗±L̂φ±dr, (8)

where L̂ = −i(y∂x − x∂y) is the angular-momentum operator, can be used to characterize the degree of vorticity of
the components.
Bright-soliton modes of the semi-vortex type in various systems may be produced by the simple input [40],

φ0+ = A+ exp(−α+r
2), φ0− = A−r exp(iθ − α−r

2), (9)

where A± and α± are positive constants, φ+ and φ− being the zero-vorticity (fundamental) and vortex components,
respectively. Starting from this input AVS can be produced by the imaginary-time-integration method [49–51]. In
the following sections, we numerically identify different types of AVSs by varying two control parameters, viz., the
total norm of the soliton, as given by Eq. (4), and the ZS strength, i.e., Ω in Eq. (1).
Note that, fixing Ω > 0 in Eq. (7), ansatz (9) implies that the fundamental and vortical components are lower-

energy and higher-energy ones, respectively. The opposite situation, with Ω < 0 (the inverted AVS) is possible too
and is considered below in Section V.
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FIG. 1: Displayed in the first row (from left to right) are, severally, the density profiles of the fundamental and vortical
components (φ+ and φ−, respectively), and their phase profiles, for (N,Ω) = (5, 0), which represents a typical horizontally
oriented AVS. The second row: the same, but for (N,Ω) = (5, 10), providing an example of a vertical AVS. The third row:
the same for (N,Ω) = (5, 4.23), which represents an AVS in the form of an elliptic ring. It is located precisely at the border
between horizontal and vertical modes. The fourth row: the same for (N,Ω) = (5, 0.0262), which represents a horizontal AVS
with the infinite dynamical mass (see Fig. 5 below).

III. NUMERICAL AND SOME ANALYTICAL RESULTS FOR ANISOTROPIC SEMI-VORTICES

The first and the second rows of Fig. 1 display typical examples of horizontal and vertical AVSs with equal norms,
generated by means of the imaginary-time simulations at different values of the ZS strength, Ω, starting from the
same input (9). The results demonstrate that the horizontal mode is converted into its vertical counterpart, following
the variation of Ω. At Ω → 0, it is the horizontal AVS, similar to those found in Ref. [47], while, at Ω > ΩC, it is
transformed into a vertical one. To identify the respective critical value, ΩC, we define a shape parameter,

△ =
|φmax

− (x, 0)|2 − |φmax
− (0, y)|2

|φmax
− (x, 0)|2 + |φmax

− (0, y)|2
, (10)

where |φmax
− (x, 0)|2 and |φmax

− (0, y)|2 are local density maxima of the vortex component along the x and y axis,
respectively, Obviously, △ > 0 and △ < 0 correspond to the horizontal and vertical shape, respectively, ΩC being
defined by △ ≡ 0. Figure 2(a) displays △ as a function of Ω for different values of the total norm, N , which clearly
shows the transition from the horizontal to vertical shape with the increase of Ω. Figure 2(b) shows the critical value,
ΩC, as a function of N . This dependence may be phenomenologically fitted by

ΩC = 0.95N − 0.5 (11)

for N > 2. When N < 2, ΩC deviates from this linear fit, approaching ΩC = 0.5 at the limit of N = 0. The shape of
the AVS precisely at Ω = ΩC is displayed in the third row of Fig. 1, for N = 5. The density pattern of the vortex



5

FIG. 2: (a) The shape parameter, △, defined as per Eq. (10), vs. the Zeeman-splitting strength, Ω, for the total norm N = 2,
5, and 8 (black solid, red dashed-dotted, and blue dotted curves, respectively). Black circular dots designate critical values for
the horizontal-vertical transition, ΩC(N). (b) ΩC vs. N ; this dependence can be fitted by ΩC = 0.95N − 0.5 for N > 2.

FIG. 3: (a) The chemical potential, µ, and (b) the energy, E [calculated as per Eq. (7)], vs. the total norm, N , for the
numerically found AVS families at different values of the Zeeman-splitting strength, Ω. The two red circle dots on the red
curves, i.e., (N,µ) = (5.78,−17.02) and (N,E) = (5.78,−50.9), designate the location ΩC, i.e., the boundary between the
horizontal and vertical types of the AVS.

component (φ−) of this semi-vortex mode features an elliptical ring with a nearly constant maximum value along it,
hence it indeed may not be identified as a horizontal or vertical mode.
The horizontal-vertical shape transition of the vortex component, and, furthermore, the linear dependence between

ΩC and N for large values of Ω and N may be qualitatively explained. Indeed, in the limit of large Ω (strong ZS),
there is a larger term, −Ω, in the condensate’s chemical potential, hence solutions to Eq. (1) are looked for as

ψ± (x, y, t) = eiΩtΨ± (x, y, t) , (12)

where Ψ± are slowly varying functions, in comparison with exp (iΩt). Then, in the lowest approximation in small
parameter 1/Ω, the substitution of expressions (12) in Eq. (1) leads to (cf. a similar approximation for different
models with the SO-coupling, developed in Ref. [41])

i∂tΨ+ = −

(

1

2
−
λ2

4Ω2

)

∇2Ψ+ +Ψ+

∫

dr′R(r− r
′)(|Ψ+(r

′)|2 + |Ψ−(r
′)|2), (13)

Ψ− ≈ (λ/2Ω) D̂[−]Ψ+ . (14)

These results also imply that, at large Ω, the share of the norm in the vortex component, defined in Eq. (5), obeys
scaling F− ∼ Ω−2, which is confirmed by the numerically found dependences F− (Ω) displayed below in Fig. 8(a).
Thus, in the limit of large Ω, Eq. (13) is tantamount to the GPE for the single component (Ψ+) in the dipolar

condensate, which gave rise to stable anisotropic zero-vorticity solitons in Ref. [28], while the wave function of Ψ− is
essentially determined by Eq. (14). In particular, the shape of the soliton is, naturally, stretched along the horizontal
direction, to minimize the DDI energy (making it negative for dipoles placed along a straight line, parallel to their
orientation). Further, looking at the stretched shape of the ψ+ component, in the second row of Fig. 1, it is obvious
that it has the largest gradient, and, consequently, maxima of the field induced according to Eqs. (14) and (2),
precisely at the vertical positions at which the density maxima of the ψ− component are observed in the figure. On
the other hand, if Ω is not too large, the ψ− component keeps its nonlinearity (as its norm is not very small), and
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FIG. 4: Typical examples of motion of horizontal AVSs with negative (Ω = 0) (a1,a2), positive (Ω = 0.06) (b1,b2), and infinite
(Ω = 0.0262) effective mass (c1,c2) initiated by a horizontal kick, η = 0.2. The first row: trajectories of motion of the c.m. of
the fundamental component, φ+. The second row: isosurfaces of |φ+|

2. The total norm of the solitons in these panels is N = 5.

FIG. 5: (a) The effective mass of the AVSs vs. Ω for norm N = 5 and fixed initial kick η = 0.2. The mass diverges at
Ω = ΩM=∞ = 0.0262. Dependence M(Ω) is virtually exactly fitted by 3/(Ω − ΩM=∞) (the red dash curve). (b) ΩM=∞ vs. η
for two values of norm N of the AVS. When Ω = 0, the effective mass of the soliton is M = −106.6.

the minimization of the energy of the dipole-dipole interaction between the moments concentrated at density maxima
of ψ− obviously favors the horizontal shape, which is observed in the first row of Fig. 1. Finally, to estimate the
critical value of Ω at the horizontal-vertical shape-transition point, we note that the transition is determined by the
competition of the DDI and ZS energies. Looking at the respective terms in Eq. (7), it is easy to see that, in the
limit of large Ω and large N , these energy scale as N2 and ΩN , respectively, which explains that the transition must
take place at ΩC = const ·N , in agreement with Eq. (11).
Finally, overall characteristics of the families of AVSs, produced by the numerical calculations, are provided by

dependences of their chemical potential (µ) and total energy (E) on the total norm (N), which are displayed, for
different fixed values of the ZS strength (Ω), in Figs. 3(a) and (b), respectively. In particular, it is worthy to note that
the µ(N) curves always satisfy the the Vakhitov-Kolokolov criterion, dµ/dN < 0, which is a well-known necessary
stability condition for any soliton family supported by attractive interactions [1, 3, 52]. Because the dominant
component, φ+, occupies the lower energy level split by the Zeeman effect, and its share in the total norm grows with
Ω, as shown by Eq. (14), it is easy to understand why both µ and E monotonously decrease with the increase of Ω.
Finally, we stress that all the solitons are found to be stable for Ω > 0.
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IV. MOBILITY OF THE ANISOTROPIC SEMI-VORTICES

Mobility of the solitons in the system under the consideration is a nontrivial issue, as the presence of the SO-
coupling terms in Eq. (1) breaks its Galilean invariance [40], although it conserve the total linear momentum (unlike
the nonexisting angular momentum, as mentioned above):

P = i

∫

dr
[

(∇ψ∗

+)ψ+ + (∇ψ∗

−)ψ−

]

. (15)

The mobility was tested in direct simulations by applying kick η to a stable quiescent AVS, φ±(x, y), in the x or y
direction. This correspond to simulating Eq. (1) with input

ψ±(r, t = 0) = φ±(r){e
iηx, eiηy}, (16)

the respective components of momentum (15) being Px,y = Nη. The mobility is characterized by the effective masses
for the motion of the soliton in the x and y, directions, defined as Mx,y = Px,y/Vx,y, where Vx,y are velocities of the
AVSs in the x and y directions, respectively, produced in the simulations by the initial kick.
To define the trajectory of the kicked soliton, we introduce time-dependent coordinates of the c.m. (center-of-mass)

of its fundamental component:

{Xmc(t), Ymc(t)} =

∫ ∫

{x, y}|ψ+(x, y, t)|
2dxdy

∫ ∫

|ψ+(x, y, t)|2dxdy
. (17)

Indeed, the location of the c.m. of the entire two-component soliton is dominated by the fundamental component,
as the vortical one carries a small share of the total norm, see Refs. [47, 48] and Fig. 8(a). The actual mobility of
the kicked solitons was studied through the shape of the c.m. trajectories, at different values of Ω, as produced by
real-time simulations of Eq. (1).
In this work, we consider only the motion induced by the kick applied in the horizontal (x) direction to the horizontal

AVSs. Figures 4(a,b) illustrate the mobility of AVSs with Ω = 0 and 0.06, initiated by the kick value η = +0.2. It
is seen that the resulting spiral motion may be considered as a permanent drift of a circular trajectory of a small
radius in either negative or positive direction of x. The circular component of the motion may be explained by the
action of an effective Lorentz-like force, which is a manifestation of macroscopic SO coupling of the AVS’s intrinsic
vorticity to its progressive motion [53], although accurate consideration of this feature makes an additional detailed
analysis necessary. Lastly, it is relevant to stress the two components of the AVS stay rigidly bound in the course of
the motion.
The effective mass corresponding to the application of the kick along the x direction, M(Ω), is plotted as a function

of Ω in Fig. 5(a). The figure reveals a surprising feature: with the increase of Ω, the effective mass changes its sign
from negative to positive via divergence at a particular value of the ZS strength, Ω = ΩM=∞. The red fitting curve in
Fig. 5(a) demonstrates that the effective mass diverges ∼ (Ω−ΩM=∞)−1 at Ω close to ΩM=∞. Figure 4(c) showing a
typical example of real-time evolution of AVSs with Ω = ΩM=∞ kicked by η = 0.2. In this case, the direct simulations
demonstrate, in Figs. 4(c1,c2), that the kicked vortex performs circular motion without any progressive drift, which
may be construed as the effective immobility of the AVS.
The value of ΩM=∞ depends on the total norm, as well as of the size η of the initial kick. This dependence is

illustrated in Fig. 5(b) by means of curves of ΩM=∞(η) for two fixed values of N , which show that ΩM=∞ increases
with the growth of η. It is worthy to note that the essential dependence of the effective mass on the ZS strength
occurs at quite small values of Ω, therefore all the relevant AVSs are of the horizontal type [the transition to the
vertical shape happens at much higher values of Ω, see Fig. 2(b)]. It follows from here that all the AVSs of the vertical
type have the positive effective mass. This conclusion explains why the horizontal AVSs in Ref. [47], and vertical
ones in Ref. [48] feature opposite signs of their dynamical mass, as mentioned above. Finally, the numerical results
demonstrate that the effective mass approaches the norm of the soliton, i.e., M → N in the limit of Ω → ∞. This
conclusion is easily explained by the fact that, in the limit of Ω → ∞, the AVS turns into a usual single-component
soliton [see Eq. (14)], whose dynamical mass is always identical to N .

V. INVERTED ANISOTROPIC SEMI-VORTICES, WITH Ω < 0

As stressed above, we considered the soliton modes of semi-vortex type, with their fundamental and vortex con-
stituents sitting, respectively, in lower- and higher-energy components, in terms of the ZS with Ω > 0. Here, we aim
to consider the reverse setting, with Ω < 0, when the fundamental and vortex parts find themselves in the higher-
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FIG. 6: The same as in Fig. 1, but for the inverted AVSs, with Ω < 0. The first row represents a stable AVS with
(N,Ω) = (6,−1.82), with equal norms in the fundamental and vortex components. The second row shows the soliton with
(N,Ω) = (10,−10.8), which is a dipole mode for φ− and located at the stability boundary [see Fig. 8(a) below].

FIG. 7: The chemical potentials (a) and energy (b) for the mode under the consideration, with vorticities in the ψ+ and ψ−

components (S+, S−) = (0,+1), and its flipped counterpart, with (S+, S−) = (−1, 0), with a fixed norm, N = 8, vs. the
Zeeman-splitting strength, Ω.

and lower-energy components, respectively. Because the fundamental constituents tends to carry a much larger share
of the total norm than its vortical counterpart, one may expect that the inverted state will be an excited one, while
the stable states considered above were ground states in the system. For this reason, it is quite interesting to explore
the shape and, especially, stability of these excited states. Surprisingly, it is found below that they are stable in a
considerable part of their parameter space.
Generic examples of the density and phase structure of the inverted AVSs are displayed in Fig. 6. As well as these

examples, all the inverted AVSs feature the horizontal structure, as it is defined above (with two density maxima
separated along the x axis, i.e., along the direction of the polarization of dipoles in the underlying condensate). Unlike
the case of large positive Ω considered above, vertical inverted AVSs have not been found.
The dependence of the AVS’s chemical potential and energy on Ω at fixed norm N is displayed in Fig. 7, both for

the mode under the consideration, and its flipped counterpart, with vorticities −1 and 0 in components ψ+ and ψ−,
respectively. In the absence of the ZS, Ω = 0, both semi-vortex modes are fully equivalent to each other [40]. Further,
the present mode at given Ω and the flipped one at the ZS strength −Ω remain equivalent too. Thus, Fig. 7(b) makes
it obvious that the present mode is an excited state at Ω < 0, as its energy is higher than the energy of the ground
state, which is realized, at Ω < 0, by the flipped AVS mode.
Further, Fig. 8(a) represents families of the AVS modes by displaying the share of the norm in the vortex component,

F−, defined according to Eq. (5), vs. Ω at several fixed values of N . Naturally, F− increases with the growth of −Ω.
A nontrivial finding is that, although the inverted AVS is an excited state, as shown above, it has a vast stability
region, Ω > Ωs(N), with the dependence of the stability boundary on N , i.e., Ωs(N), shown in Fig. 8(c). In particular,
Fig. 8(a) demonstrates that, at N > 2, the AVS stabilizes itself by shifting more than half of the total norm to the
lower-energy vortex component, making it a dominant one in the semi-vortex soliton. In previously studied models,
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FIG. 8: (a) The share of the total norm in the vortex component [see Eq. (5)], F−(Ω), as a function of the Zeeman-splitting
strength, Ω, at fixed values of the total norm, N . (b) The angular momentum of the vortex component, defined as per Eq.
(8), vs. Ω, at fixed values of N . In both panels (a) and (b), stable branches are shown by blue solid curves. Red circles at the
end of the blue curves designate the stability boundary, Ω = Ωs(N). The inverted modes (corresponding to Ω < 0) exist too at
Ω < Ωs(N), but are unstable in that region. (c) The stability boundary, Ωs, as a function of N .

FIG. 9: Plots of |φ+(x, y, t)|
2 depict evolution of typical examples of stable (a) and unstable (b) inverted AVSs, for (N,Ω) =

(5,−1.5) and (5,−2.4), respectively. For this value of the total norm, N = 5, the stability boundary is Ωs = −2.2, see Fig.
8(c).

stable SVs with a dominant vortex component were never found [40, 41, 45, 47, 48]. In fact, previous studies have
never produced stable excited states of SVs either (unstable excited states were found in some cases [40, 45]).
As the vortex mode becomes dominant with the increase of −Ω (still remaining stable), its shape actually becomes

“less vortical”, as may be quantified by the dependence of its angular momentum, which is calculated pursuant to Eq.
(8) and displayed, as a function of Ω, in Fig. 8(b). The plots displayed in the second row of Fig. 6 suggest that the
trend to the loss of the angular momentum with the growth of −Ω (at fixed N) may be explained by gradual evolution
of the dominant component toward a dipole mode [See in the second row of Fig. 6], while keeping the vorticity.
Typical examples of a stable and unstable inverted AVSs, which are selected, respectively, from intervals Ω > Ωs

and Ω < Ωs for the same N , are displayed in Fig. 9. The unstable mode suffers spontaneous fragmentation after
stably propagating for a while.

VI. CONCLUSION

The objective of this work is to study anisotropic vortex solitons (AVSs) in dipolar SO (spin-orbit)-coupling BECs,
controlled by the strength of the ZS (Zeeman splitting). The dipolar condensate was considered in the strongly
anisotropic form, with the in-plane polarization of the atomic dipoles. This setting, although being relatively complex,
makes it possible to construct stable anisotropic vortices [in fact, semi-vortices (SVs), i.e., bound states of zero-vorticity
and vorticity-1 components], which was not possible in previously studied systems.
Here, we have demonstrated that the shape and stability of the AVSs are efficiently controlled by the ZS strength,

Ω. In the case of Ω > 0, which corresponds to the AVS’s fundamental and vortex constituents placed, respectively,
in the lower- and higher-energy components, as defined by the ZS, the increase of Ω leads to the transition from
the horizontal to vertical shape of the AVS, the horizontal direction being the one aligned with the atomic dipole
moments. The value of Ω at the horizontal-vertical transition, ΩC, was found in the numerical form, and its nearly
linear dependence on the total norm, N , was explained. Exactly at Ω = ΩC , the AVS assumes an elliptic-ring shape.
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Mobility of the AVSs was studied too, by means of direct simulations of initially kicked solitons. As a result, they
exhibit circular motion with a small radius, with a systematic drift in the direction of the kick or against it. It was
found that the AVS’s effective mass is negative in an interval of 0 < Ω < ΩM=∞, and positive at Ω > ΩM=∞. The
effective mass changes its sign at Ω = ΩM=∞ via the divergence, as Meff ∼ (Ω− ΩM=∞)−1.
Unexpected results have been reported for the inverted AVSs, i.e., ones at Ω < 0, with the fundamental and vortex

constituents placed by the ZS in the higher- and lower-energy components, respectively. The inverted AVS is always
an excited state (with a horizontal structure), which coexists with a lower-energy ground state (horizontal or vertical
one). A surprising result is that these excited states are stable in a large parameter region. In previously studied
SO-coupled nonlinear systems, excited were always unstable.
The present analysis can be extended in some directions. First, a natural possibility is to simulate collisions between

mobile AVSs. Next, one can consider the limit case of strong SO coupling and strong ZS, when the kinetic-energy
terms may be neglected in Eq. (1), which gives rise to the bandgap spectrum [48]. It may be interesting to construct
AVSs of the gap-soliton type, that may populated the bandgap. On the other hand, it may be interesting too to
consider the ZS with a time-dependent strength and the respective “management” regimes for AVSs. Finally, a
challenging option is to seek extension of current setting to the 3D geometry.

Acknowledgments

This work was supported, in part, by NNSFC (China) through Grant No. 11575063, 61471123, 61575041, by the
joint program in physics between NSF and Binational (US-Israel) Science Foundation through project No. 2015616,
and by the Natural Science Foundation of Guangdong Province, through Grant No. 2015A030313639. B.A.M.
appreciates a foreign-expert grant of the Guangdong province (China).
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