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This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation
of adiabatic (i.e., “laser-dressed”) states and their expression in the Autler-Townes (AT) spectra.
We first use the Morris-Shore model (J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983)
[1]) to illustrate how bright and dark states are formed in a simple reference system where closely
spaced energy levels are coupled to a single state with a strong strong laser field with the respective
Rabi frequency ΩS . We then expand the simulations to realistic hyperfine level systems in Na atoms
for a more general case when non-negligible HF interaction can be treated as a perturbation in the
total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling
of the 3p3/2 and 4d5/2 states by the strong laser field and probed by a weak laser field on the 3s1/2
– 3p3/2 transition yielded two important conclusions. First, the perturbation introduced by the
HF interaction leads to observation of what we term “chameleon” states – states that change their
appearance in the AT spectrum, behaving as bright states at small to moderate ΩS , and fading
from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the
3p3/2 state. Secondly, excitation by the probe field from two different HF levels of the ground state
allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of
ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels
in excited electronic states.

PACS numbers: 42.50.Hz, 32.80.Qk, 32.10.Fn, 31.15.-p

I. INTRODUCTION

Since the first study of microwave-radio frequency dou-
ble resonance excitation of OCS molecules by Stanley
Autler and Charles Townes more than half a century ago
that gave raise to the term Autler-Townes (AT) effect
[2], it has made a profound impact on the discovery and
correct theoretical description of a large number of im-
portant quantum optics phenomena throughout the fol-
lowing decades. Yet, after careful examination of the ex-
isting scientific literature, we came to a realization that
a clear understanding of the role and expression of hy-
perfine (HF) interaction in the AT effect is still missing,
in particular in the case when the coupling strength of
atoms or molecules with the laser field becomes compa-
rable or exceeds the HF separations of energy levels.

Intuitively, it may be compelling to presume that a
decoupling analogous to Paschen-Back effect upon inter-
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action of hyperfine level systems with strong magnetic
fields [3, 4] would take place when the Rabi frequency of
light-atom interaction exceeds the HF interaction energy.
However, after a more thorough thinking one can quickly
realize that the dynamics of the adiabatic state formation
complicates the matter and such analogy is at best super-
ficial. The aim of this study is to clarify how exactly the
HF interaction affects the formation of adiabatic states
in the AT effect and how those states are expressed in the
laser excitation spectra. In the weak excitation limit, the
effects of partially resolved hyperfine structure on light-
induced polarization of atoms have been studied in detail
in [5]. Here, we are concerned with the effects of strong
coupling on the formation of dark and bright states upon
interaction of a hyperfine level system with coherent light
fields. As will be shown below, the presence of the HF in-
teraction introduces a third kind of states that, being nei-
ther strictly “dark” nor strictly “bright”, exhibit a blend
of features characteristic of bright and dark states that
changes with the strength of the coupling field. For this
latter property we term them the “chameleon” states.

Dark states play a crucial role in various schemes of
quantum state manipulation by coherent radiation fields.
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The first interference experiment showing cancellation of
absorption was performed by Fano [6] and it subsequently
led to the idea of coherent population trapping (CPT)
and “dark” state formation [7]. When one of the laser
fields is much weaker than the other, the “dark” state
coincides with a stable level in the ground state, where
population is trapped, and the system exhibits electro-
magnetically induced transparency (EIT) [8]. The EIT
and the related to it optical response of the absorbing
medium have found numerous applications in controlling
the group velocity of light [9, 10], quantum information
storage [11, 12], quantum computing [13], magnetometers
[14], and atomic clocks [15]. When two or more strong
laser fields are used to guide the evolution of the dark
state, one can realize the so called stimulated Raman
adiabatic passage (STIRAP) technique [16] that enables
a complete population transfer between quantum states
and is now finding applications well beyond the realm of
gas phase atomic physics, an account of which is given in
the recent review [17].

Even though the usual theoretical approach to treat
the formation of dressed states is based on two-level and
three-level [18] excitation schemes, almost all realistic
systems exhibit either a Zeeman sublevel structure or a
hyperfine (HF) structure, or both. An experiment on AT
effect in Li2 molecules [19] has shown that under certain
conditions Zeeman sublevels may be resolved and appear
in the AT spectra as groups of peak-pairs corresponding
to coupling of different sets of Zeeman sublevels.

The formation of dark states in excitation schemes con-
sisting of more than three levels was first considered by
Morris and Shore [1]. They applied the so-called Morris-
Shore (MS) transformation [1, 20] to show that an ex-
citation scheme with NA degenerate (for instance, Zee-
man) levels in the ground state and NB degenerate levels
in the excited state gives rise to min{NA, NB} pairs of
bright MS states and |NA−NB | dark MS states (see also
Sect. III A).

In this paper we are concerned with the formation
and spectral manifestation of adiabatic states formed via
strong laser coupling of multiple hyperfine levels. One
of the key questions is whether one can upfront disre-
gard the HF interaction when the light-atom interaction
Rabi frequency exceeds HF level separations, or are there
more subtle effects in the formation of bright and dark
states that are notably affected by parameters such as
the HF quantum number F and the respective magnetic
quantum number M ≡ MF . In either case, we expect
to be able to identify the effects of the HF interaction
in the AT spectra. The analysis and interpretation of
the latter are nontrivial due to the complexity added by
introducing the HF structure to the atomic energy lev-
els. We shall therefore proceed successively, starting with
simplified model systems and advancing to analysis of a
real-life example of a three-level ladder excitation scheme
3s1/2 − 3p3/2 − 4d5/2 in Na atoms (see Fig.5(a)) that is
conveniently accessible for excitation and spectroscopic
observation in the visible spectral range. In this scheme,
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FIG. 1. (a) The considered excitation scheme in atomic
sodium. The weak probe laser field P is scanned across the
transition between the ground state g 3s1/2 (F ′′ = 2 or F ′′ =
1) and the intermediate state i 3p3/2, whereas the strong field
S couples the intermediate state i to the final state f 4d5/2.
(b) The same level scheme after Morris-Shore transformation
in the HF basis with semi-broken HF coupling (see in Sect. V).
The set of Bright |f 〉1,2, Chameleon |f0...χ 〉 and Dark |d1...k 〉
states in the f -space Λf depends on the magnetic quantum
number M (see Fig.6(a)-(c)). The index η that is used with
states |g, i, f 〉η is defined in Sect V as a double-index η =

F ′′,M . In the current example it indicates only the quantum
number F ′′. For example, for Zeeman sublevels with M = 1
there is one Chameleon (χ = 0) and one Dark (k = 1) state,
while |g, i, f 〉1 ≡ |g, i, f 〉1,1, |g, i, f 〉2 ≡ |g, i, f 〉2,1.

a strong laser field couples the 3p and 4d states, creating
adiabatic (dressed) states [21] that are then probed by a
weak laser field on the 3s− 3p transition.

In what follows we shall rely on the rotating wave ap-
proximation (RWA) [22], in which the adiabatic states
|α 〉 are obtained as eigenfunctions of the Hamiltonian

Ĥ = Ĥa + Ĥs; Ĥs = Ĥh + V̂ (1)

Here, the atomic Hamiltonian Ĥa (including the fine

structure interaction) and the HF operator Ĥh deter-
mine the energy structure of the diabatic (bare) states of

an isolated atom, while V̂ = −Ed̂ describes the coupling

of the atomic dipole moment d̂ with the laser field E.
For the sake of simplicity we shall restrict this study to
considering only the coupling of atoms with linearly po-
larized laser fields, which allows us to treat each subset
of mutually coupled HF levels with the same M as an
independent multilevel system.

In Sect. II we analyze the formation of bright and dark
states in a simplified system where one of the strongly
coupled states contains nondegenerate HF sublevels, and
we discuss the manifestation of three types of states in
the AT spectrum. In Sect. III, we review the MS trans-
formation to establish a nomenclature that shall be used
in this paper. Strictly speaking, finite HF sublevel sepa-
rations prevent direct application of the MS transforma-
tion for describing the adiabatic state formation. How-
ever, at strong coupling, i.e., when the Rabi frequency
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ΩS of coupling of atoms with the S-laser field exceeds the
HF sublevel energy separations, the MS basis [1], which
consists of bright and dark states, can be utilized as a
zero-order approximation for constructing the MS adia-
batic states (Sect. III A). The HF Hamiltonian Ĥh can
then be treated as a perturbation that can lead to varia-
tions in dark-state energies (Sect. III B and Apendix A);
in addition, when coupling with the S-laser field is not
too strong, a selectively excited MS adiabatic state can
share its population with other states. We will show that
besides the usual dark states there exist also chameleon
states (Sect. III C) that combine the traits of both dark
and bright states. The details of expression of those
states in the AT spectra and some interesting features
related to excitation of complementary sets of adiabatic
states from different HF sublevels of the ground state by
a weak probe field are discussed in Sect. IV, followed by
the discussion and conclusions in Sects. V and VI, re-
spectively. Some mathematical details related to the de-
scribed results are provided in Appendices A-C. Atomic
units are used through this paper unless stated otherwise.

II. TWO TYPES OF SUPPRESSED PEAKS IN
THE AUTLER-TOWNES SPECTRA

Before turning to analysis of realistic excitation
schemes, it is instructive to consider two simple reference
model systems. Insights obtained form such analysis will
be helpful for interpretation of the AT spectra in the fol-
lowing sections.

A. Fading peaks of dark states

Consider a final state f consisting of six closely spaced
equidistant HF sublevels |γ 〉 that are separated by ∆ =
1.0 MHz due to the HF interaction (Fig. 2(a)). Both
ground and intermediate levels consist of a single quan-
tum state |g 〉 and |i 〉, respectively. A strong laser field S
of amplitude ES is coupled with the transition |i 〉 → |f 〉,
and its detuning from the transition resonance is chosen
such that in RWA the diabatic level |i 〉 is located exactly
in the middle of the state f sublevels (see Fig.2(b)). The
RWA energy of state |i 〉 is chosen to be zero. The RWA
energy of state |g 〉 is equal to the detuning ∆P = ωP−ωig
of the weak P (probe) laser field from the |g 〉 → |i 〉 tran-
sition frequency ωig.

Initially, only the ground state is populated, such that
Cg(t = 0) = 1 and Cα 6=g(t = 0) = 0 for the probability
amplitudes Cα (α = g, i, γ, γ = 1, 2, . . . , 6). Scanning
the P -laser frequency across the |g〉 → |i〉 resonance re-
sults in excitation of the adiabatic states. To damp Rabi
oscillations in the system we introduce weak decay rates
Γα=2π ·0.2 MHz for all excited levels α 6= g. The value of
the P -laser Rabi frequency ΩP = 10kHz is chosen small
such that optical pumping is negligible within the char-
acteristic observation time τ ∼ 1/Γα [23], which implies
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FIG. 2. (a) A model system where the ground |g 〉 and in-
termediate |i 〉 levels are coupled by a weak probe field P of
frequency ωP , while the intermediate level |i 〉 is coupled by
a strong laser field S to the final state f which consists of
six closely spaced sublevels |γ 〉. (b) Linkage diagram of the
diabatic states in RWA. The energy of state |i 〉 is chosen to
be zero (dashed line). (c)-(f) Population nf (for convenience
of presentation of y-axis, units of 6 · 10−7 are used) of the
state f as a function of P -field detuning ∆P at four values
of the strong field Rabi frequency ΩS . (g) Variation of adia-
batic state energies with ΩS . The upper (1+) and lower (1−)
curves result from coupling between the intermediate state
|i 〉 and the bright state |Br 〉 (see Fig. 5). The remaining five
curves A-E correspond to dark states. The dashed vertical
lines indicate the ΩS values corresponding to the AT spectra
presented in frames (c)-(f).

Cg(t) ' 1. The Rabi frequencies Ωγ = 〈 i|ES d̂|fγ 〉 of
all transitions between the intermediate |i 〉 and the fi-
nal states |fγ 〉 due to coupling with the S-laser field are
assumed to be equal to ΩS .

We solve the Schrödinger equation in RWA for an open
level system and P -laser field that is too weak to cause
any notable population loss due to optical pumping to
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other states:

d

dt
Cα = −i(∆α − iΓα/2)Cα − i

∑
β

VαβCβ , (2)

which determines the dynamics of the probability am-
plitudes Cα. Given the above assumptions, the only
nonzero elements of the Hermitian coupling matrix V
are Vgi = V ∗ig = ΩP /2, Viγ = V ∗γi = ΩS/2. The intensity
If of the fluorescence emitted from the state f is propor-
tional to its total population, which in turn is expressed
via the probability amplitudes nf =

∑
γ |Cγ |

2
. For the

sake of convenience of calculations, we assume the fol-
lowing form of switching of the P -field Rabi frequency:

ΩP (t) = Ω0(1− exp(−t/τs)), (3)

where Ω0 = 10 kHz and the switching time τs = 1/Γα.
The solutions Cα(t) of (2) reach their quasi-stationary
values at time t ∼ τs.

The values of nf at t = 10τs as a function of the
probe field detuning ∆P , which are proportional to the
AT spectrum If (∆P ), are plotted in Fig.2(c-f) for four
different values of the S-field Rabi frequency ΩS . Increas-
ing ΩS to values larger than the HF separation between
the adjacent states |γ 〉 leads to a gradual decrease of in-
tensity (Fig.2(c-e)) and eventually elimination (Fig.2(f))
of all the AT peaks except two outermost components.
The latter two are associated with the excitation of adi-
abatic states 1± (see Fig.2(g)), while the frequencies of
the fading peaks are determined by the energies of curves
A−E. An important feature of the suppressed (“dark”)
AT components is their almost unchanged frequencies
(equivalent to almost constant energies of curves A−E),
this is the typical signature of the formation of dark states
that become inaccessible for excitation by the P -laser
field at ΩS exceeding ∆. In contrast, the surviving pair
of (“bright”) peaks 1± increases its frequency separation
with increasing ΩS , and it is always available for excita-
tion by the P -laser field (see details in Sec. III B).

B. Peaks associated with the chameleon states

The second reference atomic configuration consists of
five levels presented in Fig.3(a) which mimics a realis-
tic situation akin to the ladder scheme of Fig.1(b) with
M = 1 (see Sect. V for detail). The upper sublevels
|f 〉2, |f0 〉 (equivalent to the |f 〉2 and |fχ=0 〉 sublevels
of state f in Fig.1(b)) have only negligible HF interac-
tion which is disregarded. The intermediate sublevels
|i 〉2, |i0 〉 (equivalent to |i 〉2 and |iχ=0 〉 states in Fig.1(b))
have the energy splitting ∆ε20 of 30 MHz and are mixed
by the HF interaction with frequency $I = 50 MHz (see
App. C). The strong S-laser field couples the states i
and f as shown in Fig.3(b) with slightly different Rabi

frequencies ΩS2
= ΩS and ΩS0

= ΩS/
√

1.5 (see App. B
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FIG. 3. (a) Ladder-like excitation scheme where the ground
state |g 〉 and component |i 〉2 of the intermediate state i are
coupled by a weak probe field P , while state i is in turn
coupled by a strong laser field S to the final two-component
degenerate state f . (b) Linkage diagram for RWA states.
The energies of levels |f 〉2, |f0 〉 are chosen to be zero (dashed
line). (c)-(f) Population nf (for convenience of presentation of
y-axis, units of 5 ·10−9 are used) of state f as a function of P -
field detuning ∆P at four different values of ΩS . (g) Energies
of adiabatic states as a function of ΩS . The diverging pairs
of states 2±, 0± result from coupling of levels |f 〉2, |i 〉2 and
|f0 〉, |i0 〉 by the S-laser field as depicted in frame (b). The
dashed vertical lines correspond to the values of ΩS used to
obtain frames (c)-(f).

after Eq.(B3)). The RWA energies of sublevels |f 〉2, |f0 〉
are chosen to be zero. The detuning of the S-field fre-
quency is such that the RWA energies of the intermedi-
ate sublevels are ∆i2 = 50 MHz and ∆i0 = 20 MHz. The
RWA energy of state |g 〉 is given by the P -field detuning
∆P from the two-photon resonance (see Fig. 3(a)).

The weak P -field probes the resulting adiabatic states
from the ground state |g 〉 via a single allowed optical
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transition |g 〉→|i 〉2. The observed fluorescence signal is
proportional to the total steady-state population nf of
state f . This population can be found via asymptotic
solution of the Schrödinger equation (2) upon adiabatic
switching (3) of the P -field Rabi frequency. At t = 0
the entire population is in state g. The chosen amplitude
Ω0 = 0.1 MHz is too small to cause any notable depletion
of state g due to optical pumping [23–25]. The relaxation
rates Γα = 1/τα for the upper and intermediate levels are
calculated using the values τf = 52.4ns and τi = 16.3ns
that correspond to the radiative lifetimes of the 4d5/2

and 3p3/2 states of Na, respectively [26, 27].
The dependence of the population nf (t = 10τs) on

the probe field detuning ∆P is shown in Fig.3(c-f). The
usual “dark” AT peaks are no longer seen; instead, one
observes two pairs of diverging peaks. Two of them, 2±,
evidently form a “bright” pair with more or less similar
amplitudes for all considered values of ΩS . The other
pair, 0±, reveals a disguising behavior: on one hand the
separation between the two components increases with
increasing ΩS , which is a trait typical of bright states;
on the other hand, the two peaks lose their intensity and
eventually vanish at very large ΩS similarly to the dark
states in the example of Sect. II A. For this disguising na-
ture we term the corresponding states the “chameleon”
states, meaning states that combine the properties of
both bright and dark states and change the way those
properties are exhibited in the excitation spectrum de-
pending on the coupling field strength. The occurrence
of dark and chameleon states will be analyzed in more
detail in the following sections.

III. ADIABATIC STATES’ APPROACH

Manipulation of quantum states by coherent laser
fields is usually associated with large interaction Rabi
frequencies. Under such conditions it is often possible to
treat the HF interaction operator Ĥh (1) as a perturba-

tion of the laser-atom interaction V̂ , such that in first
approximation the adiabatic states can be represented
by eigenvectors of the simplistic operator Ĥa + V̂ . The
operator V̂ couples two states, A and B, each consist-
ing of NA and NB degenerate sublevels, respectively (see
Fig.4(a)). In RWA, the energy separation ∆S between
states A and B is given by the detuning of the strong
coupling field. We assume that NA ≥ NB . In the case of
the excitation scheme shown in Fig.2(a) NA = 6 (state
f) and NB = 1 (state i), while in the scheme of Fig.3(a)
NA = 2 (state f) and NB = 2 (state i).

A. Morris-Shore (MS) transformation

The problem of diagonalizing the operator Ĥa + V̂ for
a degenerate two-level systems was first solved by J.R.
Morris and B.W. Shore [1]. We shall briefly reproduce
their results here in order to introduce the notations used

in the following sections. It is convenient to operate with
subspaces ΛA and ΛB of diabatic (bare) state vectors
|aγ 〉 and |bχ 〉 of states A and B (see Fig.4(a)). The

operator for coupling with the S-laser field, V̂ , projects
the subspace ΛB onto the subspace ΛA and vice versa:

V̂ ΛB → ΛA; V̂ †ΛA → ΛB . (4)

The idea of the MS transformation lies in the reduc-
tion of the general excitation linkage pattern in the basis
{|bχ 〉, |aγ 〉} (Fig.4(a)) to a new scheme in MS basis con-
sisting of coupled pairs of states (|βχ 〉 in ΛB and |αχ 〉 in
ΛA) and uncoupled single states, as shown in Fig.4(b).

(b)

(a)
γγ

γ

χ

χ
χ

χ

χ

χ

χ

dd

FIG. 4. (a) RWA linkage pattern for laser coupling of degen-
erate systems ΛA and ΛB (general case); (b) the same after
performing the Morris-Shore transformation [1].

An important feature of the MS basis is the conserva-
tion of orthogonality (see also Fig.4(b)): images of any
pair of mutually orthogonal states |β 〉, |β′ 〉 from ΛB in

ΛA, |α 〉 = V̂ |β 〉 and |α′ 〉 = V̂ |β′ 〉, preserve the mutual
orthogonality:

〈α′|α〉 = 〈β′|V̂ †V̂ |β 〉 = 0. (5)

This is only possible if all states |βχ 〉 are eigenvectors

of the positive Hermitian operator V̂ †V̂ acting in the
subspace ΛB [1]:

V̂ †V̂ |βχ 〉 =
1

4

∣∣Ωef
χ

∣∣2 |βχ 〉; |αχ 〉 = 2/|Ωef
χ | · V̂ |βχ 〉. (6)

The normalized states |αχ 〉 that are coupled with states
|βχ 〉 with MS effective Rabi frequencies Ωef

χ (χ =
1, 2...NB) are found as their images according to Eq. (6)
and represent a set ofNB bright states [1]. The remaining
κ = NA −NB state vectors |d1 〉, ..., |dκ 〉 in the subspace
ΛA, which are chosen to be orthogonal to all the bright
states |αχ 〉, are dark states because they are decoupled
from the interaction with the laser field.

Among the NA+NB possible spectral lines in the AT
spectrum one can therefore identify NA−NB peaks corre-
sponding to dark states, provided that the relatively weak
HF interaction that enables their excitation by the probe
laser field has been taken into account (see Sec. III B).
Note, that some values of Ωef

χ in Eq. (6) may happen to
be zero, in which case the number of states appearing as
“dark” peaks exceeds the expected value of NA−NB .
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B. Properties of the dark states and the effect of
HF interaction.

The MS formalism enables finding the full set of adia-
batic states for the linkage diagram depicted in Fig. 2(b)
in the limit of large Rabi frequencies Ωγ > ∆γ . To clarify
the properties of dark states, we shall consider the gen-
eral case of Fig. 5(a) where state i has a single level |i 〉
that is coupled to NA HF levels |γ 〉 of state f . The cou-
pling strengths between level |i 〉 from subspace ΛB and
levels |γ 〉 from subspace ΛA are given by the respective
Rabi frequencies Ωγ ,

Ωγ = 2〈 i|V̂ |γ 〉; V̂ =
1

2

∑
γ

Ωγ |γ 〉〈 i|+ h.c. (7)

In what follows we shall consider the space Λ = ΛA⊕ΛB
that contains a complete set of NA + 1 diabatic vectors
{|ξ 〉} (ξ = i, 1, . . . , NA). In the basis of |ξ 〉 the HF opera-

tor Ĥh (1) is a NA + 1-dimensional diagonal matrix that
contains the RWA energies ∆ξ of states |ξ 〉. With the
RWA energy of level |i 〉 chosen as zero reference (dashed
line in Fig. 5), one can write

Ĥh =
∑
γ

∆γ |γ 〉〈γ|; ∆γ = ωγi − ωS . (8)

Here, ωγi are frequencies of the atomic transitions |i 〉 →
|γ 〉 and ωS is the S-laser frequency.

FIG. 5. (a) Diabatic state coupling diagram in RWA cor-
responding to the excitation scheme of Fig.2. The single
level |i 〉 (state i in ΛB) is coupled to a set of levels |γ 〉
(γ = 1, 2, . . . , NA) (state f in ΛA) by the S-laser field. The
energy of level |i 〉 is chosen as zero energy reference. (b)
Coupling diagram for dark and bright states in the MS basis
=MS disregarding the HF splitting. The energy shift ∆Br

of the bright state is determined by Eq.(11). (c) Energies of
the adiabatic states. The coupling (10) between level |i 〉 and
the bright state |Br 〉 leads to the formation of the adiabatic
states |+ 〉, |−〉, the energies of which diverge with increasing
coupling strength according to Eq. (13). The energy shifts εr
of the κ=(NA−1) dark states and their mixing with the bright
states |+ 〉, |−〉 occur because of the HF interaction operator
Hh.

At strong coupling with the S-laser field, such that
V̂ becomes the dominant part of Ĥs in Eq. (1), the

adiabatic states are obtained in the zero-order approxi-
mation as eigenstates of V̂ , whereby Ĥh is disregarded
and the HF splitting is assumed to be ∆γ = 0 (see
Fig.5(b)). The MS transformation then yields a simple

structure of bright and dark states. The operator V̂ †V̂
(6) is one-dimensional (χ = 1) and has a single eigenstate
|βχ=1 〉= |i 〉. The single bright state is an image (6) of
level |i 〉:

|Br 〉 ≡ |αχ=1 〉 = 2V̂ |i 〉/|ΩBr|=
1

|ΩBr|
∑
γ

Ωγ |γ 〉, (9)

where we have used the representation (7) for the cou-

pling operator V̂ . The normalization factor ΩBr is equal

to the effective MS Rabi frequency Ωef
χ=1 (7):

Ω2
Br = 4〈 i|V̂ †V̂ |i 〉 =

∑
γ

|Ωγ |2. (10)

The κ = NA− 1 mutually orthogonal dark states |dr 〉
of the subspace ΛA can be arbitrarily assigned to the
“dark” subspace ΛD that is orthogonal to the bright state
|Br 〉. Together, these states define the MS basis =MS =
{|i 〉, |Br 〉, |dr 〉} (r=1, ..., NA−1) with linkage pattern as
depicted in Fig.5(b). It is convenient to choose the two
coupled orthogonal states {|i 〉, |Br 〉} as basis vectors of
the 2-dimensional subspace Λ±.

A quantitative study of the effect of HF interaction on
the dark states is given in Appendix A. Here, we sum-
marize results obtained in the case of strong coupling
(ΩBr � ∆γ). Treatment of the HF operator Ĥh (8) as a
perturbation has a twofold effect: (i) in addition to the
energy shift of the bright state,

∆Br = 〈Br|Ĥh|Br 〉 =
1

Ω2
Br

∑
γ

|Ωγ |2 ∆γ , (11)

a splitting of energies of the dark states |dr 〉 is also ob-
served (see Fig.5(b)-(c)); (ii) the action of the HF opera-

tor Ĥh leads to population sharing within the system of
all zero-order adiabatic states, which is caused by the off-
diagonal matrix elements of Ĥh between the bright and
dark states [16, 28]. This twofold effect is formally cap-
tured by the representation (A4) of the aggregate Hamil-

tonian Ĥs=ĤMS+Ĥ±D+ĤD±.

The operator ĤMS (A5) acts independently in the sub-
spaces of coupled Λ± and dark ΛD states without mixing
their vectors. In the strong interaction limit ΩBr � ∆γ

the diagonalization of ĤMS results in the construction
of two zero-order sets of adiabatic states (see Fig.5(c)).
The first set consists of two bright adiabatic states

|+ 〉 = cos θ|i 〉+ sin θ|Br 〉;
|−〉 = − sin θ|i 〉+ cos θ|Br 〉,

(12)
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which are linear combinations [16] of the coupled vectors
|i 〉, |Br 〉. The respective adiabatic state energies ε± are

ĤMS |±〉=ε±|±〉; ε±=
1

2

[
∆Br ±

√
∆2
Br + Ω2

Br

]
,

(13)

while the mixing angle θ = arctan(−ΩBr/∆Br) provides
a measure of amplitudes sharing between the bright di-
abatic vectors |i 〉, |Br 〉. The other set includes NA−1
adiabatic “dark” states |Dr 〉 that are eigenstates of the

operator ĤMS in subspace ΛD. Their energies εr exhibit
a small offset [6] from the initial energies ∆γ of the dia-
batic (bare) states:

∆r < εr < ∆r+1, r = 1, 2, . . . , NA − 1. (14)

The operators Ĥ±D, ĤD± (A6) act between the sub-
spaces Λ± and ΛD, leading to mixing between the bright
and dark states. Strong coupling (ΩBr � |∆γ |) is equiva-
lent to a large energy separation (∼ ΩBr) of the adiabatic
states |+ 〉, |−〉 from all dark states. For this reason, the
probability P± to find the MS bright vectors |i 〉, |Br 〉 in
the perturbed dark adiabatic basis |Dr 〉, which is asso-
ciated with the energy curves A-E in Fig.2(g), does not
exceed the ratio R ([29], Chapter VI)

P± 6 R = max (|∆γ |)2
/Ω2

Br. (15)

This is reflected in the AT spectra shown in Fig.2((c)-
(f)): when a weak probe laser field excites the adiabatic
states, the ratio between the intensities of “dark” and
“bright” peaks (proportional to P±) decreases as Ω−2

Br
with increasing ΩBr. We emphasize here the role played
by the HF interaction: despite the dark states being en-
tirely decoupled from interaction with the S-laser field,
they can nevertheless be excited due to mixing induced
by the HF interaction with the bright states. For this
reason, at moderate S-laser intensities (ΩBr ' |∆γ |) the
dark states should rather be considered as kind of “grey”
states that appear in the AT spectrum as almost station-
ary peaks (i.e. peaks that do not change energy upon
variation of ΩBr, see Fig.2(c),(d)) and disappear from
the spectrum (see Fig.2(e),(f)) at large Rabi frequencies
(ΩBr � |∆γ |).

C. Properties of “chameleon” states and the effect
of HF interaction

Quantitative analysis of the spectra shown in Fig.3,
and in particular the behavior of peaks 0± associated
with excitation of the chameleon states, can be performed
similarly to that presented above for the dark states. It
makes use of either the projection operators’ technique

discussed in Appendix A or the analytical methods de-
veloped in [30]. Here, we shall only provide a brief semi-
quantitative description.

In the limit of strong coupling (ΩS � $I ,∆i0,2), the
interaction associated with the HF operator (see Fig.3(b)
for notations)

Ĥh=($I |i 〉2〈 i0|+ hc)+∆i0 |i0 〉〈 i0|+∆i2 |i 〉2〈 i|2 (16)

can be disregarded. The two pairs of coupled vectors
|i 〉2, |f 〉2 and |i0 〉, |f0 〉 are independent. A strong in-
teraction with the S-laser field (mixing angle θ ' π/4)
gives rise to two pairs of adiabatic states (12): |2± 〉 =

(|f 〉2±|i 〉2)/
√

2 and |0± 〉= (|f0 〉±|i0 〉)/
√

2. The ener-
gies of those states vary with ΩS as ε2± =±ΩS2

/2 and
ε0± = ±ΩS0

/2, respectively (see Eq. (13)). The en-
ergy separations ∆20+

= ε2+
−ε0+

and ∆02− = ε0−−ε2−

between the adjacent states from different pairs grow
as ∆S ' (ΩS2 −ΩS0)/2 = ΩS/(6 + 2

√
6) with increas-

ing ΩS . At the same time, the mixing frequencies
$± = 〈0±|Ĥh|2± 〉 = $I/2 introduced by the operator
(16) remain constant, and in accordance with Eq. (15)
one should expect the intensities of the 0± peaks to de-
crease with ΩS as $2

±/∆
2
S .

We note two circumstances: (i) the off-diagonal ele-

ments 〈0+|Ĥh|2− 〉 = $I/2 that lead to state mixing
can be dropped because of the large energy separation
(' ΩS) between states |0+ 〉, |2− 〉; (ii) the diagonal ele-

ments of the operator Ĥh give rise to energy shifts δε
of the adiabatic states: δε2± = ∆i2/2, δε0± = ∆i0/2.
Hence, the energies of the adiabatic states shift linearly
upon variation of ΩS ,

ε2±=∆i2/2± ΩS/2; ε0±=∆i0/2± ΩS/
√

6, (17)

and the separations ∆20+
,∆02− between the adjacent

states also increase linearly with ΩS (see Fig.3(g)). The
role of the HF interaction here is that of mixing |2+〉
into |0+〉, and |2−〉 into |0−〉. The fraction P± of this
admixture is given by ([29])

P+ = $2
I/∆

2
20+

; P− = $2
I/∆

2
02− . (18)

Without the HF interaction, the excitation of both adi-
abatic states |0± 〉 by the P -laser field is forbidden due to
absence of their optical coupling with the ground state
|g 〉 (see Fig.3(a,b)). The HF mixing introduces a no-
table admixture of |i2 〉 in the composition of |0± 〉, con-
sequently leading to observation of the 0± components in
the AT spectrum. As ΩS is further increased, the mixing
coefficients P± decrease as Ω−2

S and the chameleon states
gradually disappear from the AT spectrum.

IV. REAL ATOMIC SYSTEMS

Having explained the effect of HF interaction on the
formation of adiabatic states and on their populations
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in the case of simplified model systems shown in Figs. 2
and 3, we shall now analyze an example of a real HF level
system in Na atoms. We consider the three-level ladder
excitation scheme depicted in Fig. 1(a). The detunings
∆S = ωS −ω4d,3p(F ′=2) and ∆P = ωp−ω3p(F ′=2),3s(F ′′)

of the coupling (S) and probe (P ) laser fields are defined
relative to the resonance frequencies of the respective HF
transitions.

A. Numerical calculations

To simulate the AT spectra, we solve numerically the
optical Bloch equations (OBEs) for the density matrix
[31]:

dρ

dt
= −i

[
Ĥρ
]

+ R̂ρ. (19)

Here, the total Hamiltonian Ĥ of the atom-laser system
includes the atomic-structure Hamiltonian Ĥa+Ĥh and
the dipole operators V̂P,S =−d̂EP,S defining the interac-

tion of atoms with the P - and S-laser fields. The term R̂
accounts for the relaxation and population transfer pro-
cesses due to the spontaneous emission and for the finite
laser linewidths. Equation (19) can be decomposed into a
system of OBEs for the diagonal density matrix elements
ραkαj (α = g, i, f), also called Zeeman coherences, and
for the off-diagonal elements ραkβj (α 6= β), also termed
optical coherences. The indices gk, ik and fk run over
all the HF and Zeeman sublevels of the ground, interme-
diate and final states, respectively. The solution of this
system of equations can be readily obtained numerically
by applying the Split Operator Technique [32–34].

Each laser (of amplitude EP,S and both linearly polar-
ized along the quantization axis z) stimulates a variety
of transitions among the HF and Zeeman sublevels. It is
convenient to describe the laser induced couplings using
the characteristic Rabi frequencies ΩP,S that drive the
transitions 3s−3p and 3p−4d [23]:

ΩP= EP |〈3s ‖ D ‖ 3p〉|; ΩS=ES |〈4d ‖ D ‖ 3p〉| (20)

Here, the transitions are considered unresolved with re-
spect to fine and hyperfine structure, and 〈nL||D||n′L′ 〉
is the corresponding reduced matrix element [35]. The
principal quantum numbers and the orbital, electronic
and total angular momenta are denoted by n, L, J ,
and F , respectively. Rabi frequencies of individual fine
{LJ → L′J ′} and HF {LJF → L′J ′F ′} transitions
are then defined by the tabulated line strength values
[35]. The Rabi frequencies for individual transitions
{LJFM → L′J ′F ′M} between Zeeman sublevels M in
the case of linearly polarized excitation are obtained us-
ing the formulae provided in [35, 36], and the respective
values can be found in [23, 24].

The calculations are performed for the conditions of
the experiment described in [37]: a supersonic beam of

FIG. 6. Coupling patterns in RWA for the 3s1/2(F ′′ =
1, 2;M) → 3p3/2(F ′;M) → 4d5/2(F ;M) excitation at the
pump laser detuning ∆S = −30 MHz for Zeeman sequences
with (a) M=2; (b) M=1; (c) M=0. The horizontal dashed
line shows the zero-energy reference that is set equal to the
energy of 3p3/2(F ′ = 2). Energies of the 4d5/2 HF levels are
indistinguishable; they are drawn resolved only to show their
linkages with the 3p3/2 state HF levels. (d) Energies εa of
the adiabatic states vs pump field Rabi frequency ΩS . The
dashed vertical lines correspond to the ΩS values presented
in Fig. 7, frames (a)-(e). The square brackets indicate states
which evolve into dark states.

sodium atoms with the mean flow velocity of 1160 m/s is
crossed by two counterpropagating laser beams at right
angles. Both laser beams are linearly polarized in the
same direction that is perpendicular to the atomic beam
axis, which implies the selection rule ∆M = 0 for the
magnetic quantum numbers. The intensity distribution
in the laser beams corresponds to Gaussian switching
of Rabi frequencies ΩP,S(t) = ΩP,S exp(−2t2/τ2

P,S). The
calculation yields the total number Nf of photons emit-
ted by a single atom in the 4d5/2 state upon crossing the
laser-atom interaction zone. Laser beam waists are cho-
sen such that the transit times of atoms through the P -
and S-laser beams are τP =350ns and τS =1050ns. The
laser linewidths are assumed to be 1 MHz.
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B. Results for the excitation scheme of Fig.1(a)

Figure 6(a) – (c) shows the possible couplings between
the HF sublevels upon excitation of the 3p3/2 → 4d5/2

transition by linearly polarized light. Since only the tran-
sitions with ∆M = 0 are allowed, and the P -laser field
is weak such that it does not induce any notable opti-
cal pumping, we consider the manifolds with M = 0, 1
and 2 separately. Figure 7 shows the AT spectra, cal-
culated as the total flux of photons Nf emitted by the
4d5/2 state for five different values of the S-field Rabi
frequency ΩS . Simulations are performed using the pa-
rameters ΩP = 1 MHz and ∆S = −30 MHz. Figure 6(d)
also shows the calculated adiabatic state energies as a
function of ΩS ; those energies are used in Figs. 7,8 to
indicate the expected positions (dashed lines) of the AT
peaks. Individual adiabatic states are labeled accord-
ing to the quantum numbers F,M of the diabatic (bare)
states in the limit of ΩS = 0 (see Fig.6(d)). The num-
bers denote the HF quantum numbers in the 4d5/2 state,
while the numbers with a prime correspond to the HF
quantum numbers in the 3p3/2 state. Zeeman quantum
numbers M in Figs. 6 and 7 are indicated by colour:
|M | = 0 in black, |M | = 1 in gray and |M | = 2 in light
gray. Because of the mirror symmetry σz of the system
relative to any plane containing the quantization axis z,
the adiabatic state energies do not depend on the sign of
M [29, 35].

At very low ΩS (Fig.7(a)), the excitation spectrum ex-
hibits a strong peak at ∆P = 30 MHz that corresponds
to two-photon excitation of the 4d5/2 state, and three
much weaker peaks of ∆P = 59, 0, −34 MHz that occur
because of the one-photon excitation of levels F ′ = 1, 2
and 3 of the 3p3/2 state by the P -laser field. As ΩS is
increased (Fig.7(b)-(e)), the creation of adiabatic states
and their gradual conversion into pairs of states with di-
verging energies and into dark states with unchanging
energies is observed in Fig.6(d). An adiabatic state can
be considered a dark state (see the corresponding discus-
sion in Sec III B) when its energy no longer changes with
increasing ΩS (curves [2],[3] in Fig.6(d)). In contrast,
the bright pairs |αχ 〉, |βχ 〉 of Morris-Shore states (see
Fig.4(b)) would typically form adiabatic pairs |±〉 (12),
the energy separation between which steadily increases
with increasing ΩS (see, e.g., the peaks 1± in Fig. 2(g),
or 0± and 2± in Fig. 3(g)).

At large ΩS the dependence of adiabatic state energies
εa on ΩS is linear (see also Eq. (17)):

εa=ΠaΩS + ea, (21)

where the slope coefficient Πa= Ωefχ=a/ΩS is determined
by the effective MS Rabi frequency of a given adiabatic
state on Fig.6 and ea is the respective energy determined
by the HF operator V̂ h. For a dark state, the coeffi-
cient ΠD = 0, while for any pair of |+〉 and |−〉 states
the relation Πa+ =−Πa− is valid. The adiabatic states
from different diverging pairs, that have identical slope
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FIG. 7. The total number of photons Nf (in units of 2 ·10−3)
emitted by 4d5/2 state vs P -field detuning for the 3s1/2(F ′′)→
3p3/2→4d5/2 excitation sequences with F ′′=2. We assume a
uniform population distribution over the Zeeman components
M of the 3s1/2 state HF level F ′′ = 2. The Λ-type dashed
lines show the expected positions of the AT peaks: the black
squares label energies of the adiabatic states with M=0, the
gray circles – with |M |=1 and the light gray triangles – with
|M | = 2. If several expected lines partially merge and form
a complex multiplet at ΩS = 1500 MHz, the respective label
numbers are boxed in the same rectangle. Numbers in the
boxes refer to the same indices as those used for labeling the
adiabatic states in Fig.6(d).

coefficients Πa± , may partially merge at large ΩS , form-
ing complex “bright” multiplets in the AT spectrum (see
Fig.7(d)). It is convenient to label the components of
those multiplets by the corresponding indexes a±. In
the case of Figs. 6(d) and 7, two different values Π2+,0+

are seen with the ratio Π2+/Π0+ =
√

1.5 (see text after
Eq.(B3) in App. B).

Note that the energies of the two dark states in Fig.6
(d) do not depend on ΩS (curves [2], [3]). This is un-
derstandable because the negligibly small HF interac-
tion in the 4d5/2 state implies fulfillment of the classi-
cal dark state situation as described in [1], whereby the
dark states are always decoupled from interaction with
the S-laser field and, hence, are not observed in the AT
spectra. This circumstance is also supported by the data
presented in Fig.7.

An important feature of the AT spectra in Fig.7 is
the gradual fading of the initially “bright” components
0+ and 0− that happens alongside with the expected in-
crease of separation between those components as ΩS is
increased. The other pair of “bright” components 2+,
2− shows increasing frequency shifts of both components
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FIG. 8. Same as in Fig.7 but for M = 1 Zeeman sequence
upon excitation by the P -laser field from (a) F ′′ = 1 (dashed
lines) and (b) F ′′ = 2 (solid lines). The spectra correspond to
the linkage scheme of the Fig.6(b). Each frame shows spectra
for two different S-field coupling strengths: ΩS = 600 MHz
(gray) and ΩS = 1500 MHz (black). The vertical dashed lines
indicate the respective adiabatic state energies.

that do not vanish with increasing ΩS , which is a clas-
sical trait of an AT doublet. This clearly demonstrates
the differences in spectral behaviour of the bright (2+,
2−) and chameleon (0+, 0−) states, whereby the exis-
tence of the latter is solely due to the presence of the HF
interaction.

The final interesting and, perhaps, the most practically
useful feature is shown in Fig. 8. If ΩS is sufficiently large,
and the adiabatic states are probed from either F ′′ = 2
(solid lines in frame (b)) or F ′′ = 1 (dashed curves in
frame (a)) of the ground state, the AT spectra exhibit two
sets of peaks, 2± and 1±, that are complementary to each
other and are associated with different adiabatic states.
This means that at high ΩS the excitation by the probe
field from different ground state hyperfine components
leads to population of orthogonal sets of adiabatic states
that correlate with different HF levels in states i and f .

V. DISCUSSION

The numerical results presented in Sect. IV can be ex-
plained by the properties of adiabatic states. As is nat-
ural to expect, the HF level linkage diagram presented
in Fig.1(a) transforms into a set of independent sim-
ple 3-level blocks as shown in Fig.1(b) when hyperfine
coupling is broken down by interaction with very strong
laser fields (ΩS � 110MHz, ΩP � 1.8GHz) that exceed
the largest HF level separations (see App. B for expla-
nation of the basis of broken-down HF coupling). Inter-
estingly, such architecture of quasi-independent blocks is
preserved even in the HF basis when the HF coupling
is only partly broken, i.e., when one can disregard the
HF coupling in the intermediate state i (3p3/2) (strong
S-laser) but not in the ground state g (3s1/2) (weak
P -laser). One can show by direct calculations that all

sequences of mapping of state vectors |F ′′M〉 from the
ground to intermediate to final state by the operators
V̂P and V̂S give raise to mutually orthogonal excitation
ladders (see Appendix C)

V̂P |F ′′M〉 → |i〉F ′′M ; V̂S |i〉F ′′M → |f〉F ′′M , (22)

where |F ′′M〉 is the initial diabatic state vector in state g,
while |i〉F ′′M and |f〉F ′′M are its images in the subspaces
of states i and f following the action of the laser-atom in-
teraction operators V̂P and V̂S , respectively. Hence, each
ladder (22) constitutes a unique and independent excita-
tion path predefined by the choice of F ′′M . It is conve-
nient to associate a double-index η = F ′′,M with each of
those paths, with excitation steps denoted as |g 〉η, |i 〉η,

and |f 〉η (see Fig.1(b) and Table I in Appendix C ).
One can now interpret how the HF coupling leads to

the raise of what we call the “chameleon” states and un-
derstand their distinction from the usual dark and bright
states. The dark states can be easily identified via per-
forming the MS transformation of the HF state vectors
|FM 〉 in the space Λf (see Fig.1(b) and Fig.4(b)); we
denote the subspace of Λf formed by the set of “dark”
basis vectors |d1 〉, ..., |dκ 〉 as ΛDSf . The subspace of bright

states ΛBSf includes all those states that can be directly
excited from the ground state by the P -laser field and
that are coupled with their pre-image vectors |i 〉F ′′M by

the MS effective Rabi frequency ΩefMJ
with MJ = 1/2

(see Eq. (B3) in App. B).
The chameleon states are those state vectors in the

f -space Λf with the basis set |f0 〉, ..., |fχ 〉 that simulta-
neously satisfy two conditions: (1) they belong to a sub-
space ΛCSf that is orthogonal to both ΛDSf and ΛBSf , and

(2) their pre-images |i0 〉, ..., |iχ 〉, which constitute sub-
space ΛCSi , are orthogonal to all vectors |i 〉F ′′M . This
means that even if coupling between the vectors |ir 〉 and
|fr 〉 (r = 0, ..., χ) by the S-laser field does lead to the for-
mation of a pair of diverging adiabatic states |r 〉± with

energy separation that increases with Ωef3/2 ∼ ΩS , those

states would normally not be excited by the P -laser field
from state g if not for the hyperfine interaction in state
i. Importantly, the HF interaction mixes the chameleon
adiabatic states |r 〉± with the bright states |i 〉F ′′M , en-
abling their excitation from state g by the P -laser field.
For each set of states with a given M depicted in Fig.6(a)-
(c), the number of chameleon states is obtained as differ-
ence between the number of components in the subspace
Λi(M) and the number of components in state g (see
Table I in Appendix C).

The expression of chameleon states in the AT excita-
tion spectra (see peaks 0±, in Fig.3, Fig.7, Fig.8) has
the following distinct signature. Firstly, the peaks as-
sociated with the chameleon states behave essentially
as those associated with bright states in terms of in-
creasing separation between the peaks with increasing
ΩS . At the same time, as discussed in Sect. III C,
the population sharing between bright and chameleon
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states induced by the HF interaction decreases propor-
tionally to Ω−2

S , hence the peaks associated with the
chameleon states will fade out with increasing ΩS . A sim-
ple calculation presented in Appendix C for the case of
M = 1 (see Fig.1(b)) gauges the involved HF interaction
strengths. In particular, for the interaction between the
bright state |i 〉2 and the chameleon state |i0 〉 one finds

$I = 〈 i0|Ĥh|i 〉2 = 28.5MHz; this is the interaction that
leads to visualization of the otherwise forbidden transi-
tions to chameleon states that give rise to peaks 0± in
Figs. 3,7,8.

The above presented systematization of adiabatic
states allows one also to explain the complementarity
of peaks 1±, 2± in the AT spectra for the M = 1 se-
quence shown in Fig.8 upon excitation from the F ′′ = 1
and F ′′ = 2 HF components of the ground state, respec-
tively. Coupling with the S-laser field leads to formation
of two bright states, |f 〉1 and |f 〉2, in the subspace ΛBSf .
Because of the specific features of the excitation scheme
of Fig.1(b), the state |f 〉1 is populated upon excitation of
the 3s1/2, F

′′=1→3p3/2 transition by the P -laser field,
giving raise to peaks 1± in Fig.8(a), while excitation of
the 3s1/2, F

′′= 2→ 3p3/2 transition leads to population
of |f 〉2 that gives raise to peaks 1± in Fig.8(b). Note,
that for this selectivity to be valid it is not required for
the spectral lines associated with the BS |f 〉1 and |f 〉2
to be resolved. Hence, by a proper choice of the initial
HF state in level g it is possible to selectively address dif-
ferent unresolved HF components in state f if a strong
laser field is coupled between levels i and f .

Care must be taken when extending the above analy-
sis to other excitation schemes involving different level
systems and/or laser polarizations, because those will
usually produce different sets of adiabatic states. For
example, the AT spectra presented in Fig.7 and Fig.8
may create the impression that only the outermost pair
of peaks with the largest energy separation survives at
very large ΩS . However, if the 4d5/2 state in Fig.1 was
replaced by 4d3/2, only the two innermost peaks would
survive the increase of ΩS . The choice of laser field po-
larizations significantly affects the AT spectra, too. In
our study, we considered the case of linearly polarized P -
and S-laser fields, which results in a twofold degeneracy
of adiabatic states for |M | > 0 since in this case Rabi
frequencies do not depend on the sign of M . Application
of circularly polarized laser light lifts this degeneracy and
leads to richer AT spectra.

VI. CONCLUSIONS

We have studied the formation of adiabatic states in
multi-level systems that exhibit non-negligible HF inter-
action. We have shown that at strong laser coupling asso-
ciated with large Rabi frequencies ΩS the HF interaction
operator Ĥh can be treated as a perturbation in the basis
of adiabatic states formed by the light-atom coupling op-
erator V̂ due to the interaction of atoms with the strong

laser field. By analyzing the AT spectra in Na atoms
obtained by scanning a weak probe laser field across the
3s1/2(F ′′=1, 2)→3p3/2 transition that excites the adia-
batic states formed upon coupling a strong S-laser field
between the 3p3/2 and 4d5/2 states, we reach the follow-
ing conclusions:

(i) a strong laser coupling produces the usual bright
(coupled) and dark (uncoupled) states, and a third
kind of states - the chameleon states that belong to
the subspace ΛCSf of space Λf that is orthogonal to

both the subspace of dark states ΛDSf and the sub-

space of bright states ΛBSf (see Fig.1(b)). In terms
of energy dependence, pairs of coupled chameleon
states behave as pairs of bright states, with the en-
ergy separations between the respective |+ 〉 and |−〉
components of the chameleon pair increasing pro-
portional to ΩS . While they are nominally “dark”
with respect to excitation by the probe field, the
perturbation introduced by the HF interaction can
lift this restriction. At moderate ΩS , when V̂ is
comparable to Ĥh, the chameleon states are well ob-
served in the AT spectrum and they exhibit features
typical of bright states. As ΩS becomes much larger
than the energy of the HF interaction, the effect of
the latter dwindles and the chameleon states grad-
ually vanish from the excitation spectrum similarly
to dark states in the example of Fig.2, albeit with
energy separation between the components of the
chameleon pair keeping to increase with ΩS . This
is reflected by the behavior of peaks 0+, 0− in the
AT spectra presented in Fig.7;

(ii) when the adiabatic states are probed from either
the F ′′ = 1 or F ′′ = 2 HF level of the ground state,
one is in fact addressing independent (orthogonal)
sets of adiabatic states representing separate three-
level ladder-like sequences (see Eq.(22)) — one set
is selectively excited from F ′′ = 1, and a different
set from F ′′ = 2. As we demonstrate in Fig.8 on
the example of the ladders of HF levels with |M | =
1 probed from either F ′′ = 1 or F ′′ = 2, those
orthogonal sets can be composed of different excited
HF sublevels. For this selectivity to be valid, it is
not required that the respective spectral lines are
resolved.

The latter conclusion is not only of purely academic in-
terest. Provided a suitable energy level system, it can be
used to achieve a selective excitation of unresolved ex-
cited states, such as HF levels of Rydberg atoms. One
can extend this way of thinking to develop more gen-
eral schemes for laser-induced adiabatic state engineering
that utilizes manipulation of two-photon selection rules
to achieve control of quantum state populations with high
fidelity. The discussion of such schemes goes beyond the
scope of this paper and it shall be a subject of another
forthcoming publication.
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Appendix A: Treatment of perturbation by HF
interaction using the projection operators’ technique

Consider the MS states shown in Fig.5(b). One can
introduce in space Λ = ΛB⊕ΛA the projection operators
P̂± and P̂D that act in a two-dimensional subspace of two
coupled states Λ± = {|i 〉, |Br 〉} and in a κ = (NB − 1)-
dimensional subspace of dark states ΛD = {|dr 〉} (r =
1, ..., κ), respectively:

P̂± = |Br 〉〈Br|+ |i 〉〈 i|, (A1)

P̂D = Î − P̂± =
∑
r

|dr 〉〈dr|. (A2)

The Hamiltonian of the HF interaction can then be writ-
ten as

Ĥh=
(
P̂±+P̂D

)
Ĥh

(
P̂±+P̂D

)
. (A3)

The aggregate Hamiltonian Ĥs (1) in the =MS basis can
now be reduced to the following form:

Ĥs = ĤMS + Ĥ±D + ĤD±; (A4)

ĤMS =

 0 ΩBr/2 0

ΩBr/2 〈Br|Ĥh|Br 〉 0

0 0 P̂DĤ
hP̂D

 ; (A5)

Ĥ±D = P̂±Ĥ
hP̂D; ĤD± = P̂DĤ

hP̂±. (A6)

The eigenfucntions of the operator ĤMS correspond to
adiabatic states in space Λ in the limit of strong coupling
ΩBr � ∆γ . From the above representation of Ĥs one can
infer the following.

(i) The operator P̂±Ĥ
hP̂± entering ĤMS as a “diag-

onal element“ in the first two lines/rows is responsible
for the energy shift ∆Br of the bright state |Br 〉 that is
illustrated in Fig.5(b) (see also Eq.(11)). The diagonal-
ization of such two-dimensional matrix is a well known
problem, the solution of which yields in subspace Λ± two
adiabatic states |+ 〉, |−〉 with energies ε±, whereby the
former are linear combinations of states |Br 〉 and |i 〉 (see
Eq. (12)) [16].

(ii) The operator P̂DĤ
hP̂D of ĤMS is a (NA − 1)-

dimensional matrix acting in the subspace of dark states
ΛD. Its diagonalization results in new dark states |Dr 〉
with energy splittings εr between the adjacent states (see
Fig.5(c)). Following the methodology developed in [6],
one can show that the regular sequence of dark state ener-
gies {εr} (ε1 < ε2 < · · · < εNA−1) is slightly shifted with
respect to the diabatic state energies {∆γ} (see Eq.(14)).

(iii) The operators Ĥ±D, ĤD± introduce mixing be-
tween the subspaces Λ± and ΛD. At ΩBr � |∆γ |
the energy separation between the states belonging to
different subspaces Λ± and ΛD is accordingly large:
|ε± − εr| ∼ ΩBr/2. This has two consequences. First,
the perturbations δε± and δεr of the zero-order adiabatic
energies ε± (Eq.(13)) and εr (Eq.(14)) are determined

by the “two-photon” matrices Π̂± ' 2Ĥ±DĤD±/ΩBr
and Π̂D ' 2ĤD±Ĥ±D/ΩBr acting within the sub-
spaces Λ± and ΛD, respectively [22]. The magnitude
of these perturbations can be estimated as |δε±| <
2 max (|∆γ |)2

/ΩBr, |δεr| < 2 |εr| · max (|∆γ |) /ΩBr, i.e.
they are very small in the limit of large ΩBr. Second,
the mixing introduced by Ĥ±D, ĤD± leads to popula-
tion sharing between the bright and dark states. Since∣∣∣〈±|Ĥ±D|Dr 〉

∣∣∣ < max (|∆γ |), the relative population P±

of bright states in the dark subspace ΛD does not exceed
the value given by Eq.(15) (see [29], Chapt. VI).

Appendix B: The basis of broken-down HF coupling

When the HF coupling is broken down due to inter-
action with the S- (or P -) laser field, the HF basis is
no longer valid. Under such conditions we rely on the
fine structure basis that uses the product |LJMJMI〉=
|LJMJ〉|MI〉 of basis vectors of electron |LJMJ〉 and nu-
clear spin |MI〉. This basis is useful for the construction
of adiabatic states at large ΩS � 110MHz, when cou-
pling with the S-laser field breaks down the HF interac-
tion in the 3p3/2 state, and it also provides some useful
insights into the properties of adiabatic states formed in
the excitation scheme presented in Fig.1(a).

The Rabi frequencies of the transitions {LJMJMI →
L̃J̃M̃JM̃I}, whereby linear laser polarizations imply that

M̃J = MJ , M̃I = MI , are given by [36]

Ω
(LJ)

L̃J̃
(MJ)=〈L̃J̃MJMI |Eκd̂z|LJMJMI〉=(−1)ΦΩκ×{

L J s

J̃ L̃ 1

}√
(2J̃ + 1)(2J + 1)

(
J 1 J̃
−MJ 0 MJ

)
, (B1)

where phase Φ= L̃+s+1+J̃+J−MJ (s=1/2 is the electron
spin), the index κ stands for the P - or S-laser excitation,
MJ =−J,−J + 1, . . . , J , and MI =−I,−I + 1, . . . , I.

The equation (B1) has an important implication that
both laser fields couple only the levels with the same
quantum numbers MJ ,MI . This means that the linkage
diagram shown in Fig.1(a) can be simplified to a set of
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TABLE I. Coefficients CF ′ for representations of bright-states
|i 〉η and chameleon-states |iχ 〉 in the HF basis for manifolds
with different M .

M = 0
States C0 C1 C2 C3

|i 〉2 0 -0.31623 0 0.94868
|i 〉1 -0.70711 0 0.70711 0
|i0 〉 0 0.94868 0 0.31623
|i1 〉 0.70711 0 0.70711 0

M = ±1
States C1 C2 C3

|i 〉2 -0.27386 -0.35355 0.89443
|i 〉1 -0.79057 0.61237 0
|i0 〉 0.54772 0.70711 0.44721

M = ±2
States C2 C3

|i 〉2 -0.70711 0.70711
|i0 〉 0.70711 0.70711

separate noninteracting three-level ladders∣∣3s1/2MJ 〉→
∣∣3p3/2MJ 〉→

∣∣4d5/2MJ 〉, (B2)

similar to those depicted in Fig.1(b). Importantly, equa-
tion (B1) determines the effective MS frequencies Ωef

χ of

the operator V̂S = −ES d̂z. Since the value of Ωef
χ does

not depend on the sign of MJ [35], it can take only two
possible values depending on whether |MJ | = 1/2 or 3/2:

Ωef
1/2,3/2 ≡ Ω

(lJ)

l̃J̃
(MJ = 1/2, 3/2), (B3)

where the ratio Ωef
1/2/Ω

ef
3/2 =

√
1.5 [35]. The value Ωef

1/2

is associated with the excitation ladder scheme (B2)
for Mj = 1/2 and, consequently, relates to the effec-
tive MS Rabi frequencies of bright states in Fig.1(b).
On the other hand, the coupled levels

∣∣3p3/2Mj=3/2 〉,∣∣4d5/2Mj=3/2 〉 are impossible to excite by the P -laser

from
∣∣3s1/2Mj=1/2 〉 state, i.e., Ωef

3/2 relates to the

chameleon states in Fig.1(b).

Appendix C: Hyperfine operator in the
Morris-Shore basis

Consider the MS basis for states presented in Fig.1(b)
for a given fixed value of M . Explicit representation of
the bright states |i 〉η in the HF basis |F ′M 〉 of the 3p3/2

state subspace Λi(M),

|i 〉η =
∑

CF ′ |F ′M 〉, (C1)

can be found by rewriting Eq. (22) in the form

|i 〉F ′′M =
∑
F ′

|F ′M 〉〈F ′M |V̂P |F ′′M 〉, (C2)

TABLE II. Matrix elements of the HF operator in the MS
basis for M = 1, in units of MHz.

States |i 〉2 |i 〉1 |i0 〉
|i 〉2 44.650 -7.3612 28.700
|i 〉1 -7.3612 -21.250 14.722
|i0 〉 28.700 14.722 1.6000

whereby matrix elements of the operator V̂P of the in-
teraction of atoms with the P -laser field are well known
[36]:

〈3p3/2F
′M |EP d̂z|3s1/2F

′′M〉=
√

(2F ′′+1)(2F ′+1)×

Ξ(−1)F
′′+F ′−M

{
1/2 F ′′ 3/2
F ′ 3/2 1

}(
F ′′ 1 F ′

−M 0 M

)
, (C3)

where Ξ is a constant the exact value of which is of no
further significance to the discussion in this section.

Table I lists the values of the coefficients CF ′ entering
Eq. (C1) for normalized bright and Chameleon states.
The number of bright states varies for different M man-
ifolds:

(i) for M = 0 and F ′ = 0, 1, 2, 3 (see Fig.6(b)) there are
two bright states (η = 2, 1) in the four-dimensional
HF subspace Λi(M);

(ii) for M = ±1 and F ′ = 1, 2, 3 there are two bright
states (η = 2, 1) in each of the three-dimensional
subspaces Λi(M) with M = +1 and M = −1;

(iii) for M = ±2 and F ′ = 2, 3 there is a single bright
state (η = 2) in each of the two-dimensional sub-
spaces Λi(M) with M = +2 and M = −2.

The normalized chameleon states |iχ 〉 are found as those
state vectors that are orthogonal to all bright states |i 〉η
in the subspace Λi(M).

In the HF basis |F ′ 〉≡|F ′M 〉 of Fig.6(b), the operator

Ĥh (measured in MHz) has the following diagonal repre-
sentation that is determined by the HF splittings of the
3p3/2 state (see Fig.1(a)):

Ĥh=58.3|F ′=3 〉〈F ′=3|−34.3|F ′=1 〉〈F ′=1|. (C4)

The values of matrix elements of the HF operator Ĥh

in the MS basis {|i 〉2, |i 〉1, |i0 〉} (M = 1) are listed in
Table II. The diagonal elements of the table give the
shifts of the MS state energies, while the off-diagonal
elements are frequencies $ of mixing between the MS
states induced by the HF interaction. The strongest mix-
ing ($ = 28.7 MHz) occurs between the bright state |i 〉2
and the chameleon |i0 〉, which has motivated our choice
of the simplified model excitation scheme shown in Fig.3.
In order to more clearly demonstrate the effect of elimi-
nation of chameleon peaks 0± from the AT spectra upon
increasing ΩS , the spectra presented in Fig.3 have been
obtained using the following, somewhat modified, model
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parameter values: $I = 50MHz for the HF induced mix-
ing frequency (instead of 28.7MHz from Table II) and

∆ε20 = 30MHz for the energy splitting between the |i 〉2
and |i0 〉 states (instead of 43.1MHz from Table II).

[1] J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906
(1983).

[2] S. H. Autler and C. H. Townes, Phys. Rev. 100, 703
(1955).

[3] F. Paschen and E. Back, Physica 1, 261 (1921).
[4] G. W. Drake, Springer Handbook of Atomic, Molecu-

lar, and Optical Physics, Springer Handbook of Atomic,
Molecular, and Optical Physics (Springer, 2006).

[5] M. Auzinsh, D. Budker, and S. M. Rochester, Phys. Rev.
A 80, 053406 (2009).

[6] U. Fano, Phys. Rev. 124, 1866 (1961).
[7] G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Il Nuovo

Cimento B Series 11 36, 5 (1976).
[8] S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev.

Lett. 64, 1107 (1990).
[9] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi,

Nature 397, 594 (1999).
[10] M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg,

G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and
M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999).

[11] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature
409, 490 (2001).

[12] D. F. Phillips, A. Fleischhauer, A. Mair, R. L.
Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783
(2001).

[13] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller,
Nature 414, 413 (2001).

[14] H. Lee, M. Fleischhauer, and M. O. Scully, Phys. Rev.
A 58, 2587 (1998).

[15] J. Kitching, S. Knappe, and L. Hollberg, Appl. Phys.
Lett. 81, 553 (2002).

[16] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod.
Phys. 70, 1003 (1998).

[17] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and
K. Bergmann, Rev. Mod. Phys. 89, 015006 (2017).

[18] S. Stenholm, Foundations of Laser Spectroscopy , ISBN:
0486444988 (Courier Dover Publications, 2005).

[19] J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M.
Lyyra, and F. C. Spano, Phys. Rev. Lett. 83, 288 (1999).

[20] A. A. Rangelov, N. V. Vitanov, and B. W. Shore, Phys.
Rev. A 74, 053402 (2006).

[21] S. Reynaud and C. Cohen-Tannoudji, J. Phys. France 43,

1021 (1982).
[22] B. W. Shore, Manipulating quantum structures using

laser pulses (Cambridge University Press, 2011).
[23] I. Sydoryk, N. N. Bezuglov, I. I. Beterov, K. Miculis,

E. Saks, A. Janovs, P. Spels, and A. Ekers, Phys. Rev.
A 77, 042511 (2008).

[24] N. Porfido, N. N. Bezuglov, M. Bruvelis, G. Shayegan-
rad, S. Birindelli, F. Tantussi, I. Guerri, M. Viteau,
A. Fioretti, D. Ciampini, et al., Physical Review A 92,
043408 (2015).

[25] M. Bruvelis, A. Cinins, A. Leitis, D. Efimov, N. Bezu-
glov, A. Chirtsov, F. Fuso, and A. Ekers, Optics and
Spectroscopy 119, 1038 (2015).

[26] S. A. Kandela, Appl. Opt. 23, 2152 (1984).
[27] U. Volz, M. Majerus, H. Liebel, A. Schmitt, and

H. Schmoranzer, Phys. Rev. Lett. 76, 2862 (1996).
[28] M. Auzinsh, N. N. Bezuglov, and K. Miculis, Phys. Rev.

A 78, 053415 (2008).
[29] L. D. Landau and E. M. Lifshitz, Quantum Me-

chanics: Non-Relativistic Theory, ISBN: 0750635398
(Butterworth-Heinemann, 1981).

[30] G. Vasilev and N. Vitanov, arXiv preprint
arXiv:1402.5673 (2014).

[31] F. Bloch, Phys. Rev. 70, 460 (1946).
[32] A. K. Kazansky, N. N. Bezuglov, A. F. Molisch, F. Fuso,

and M. Allegrini, Phys. Rev. A 64, 022719 (2001).
[33] N. N. Bezuglov, R. Garcia-Fernandez, A. Ekers, K. Mi-

culis, L. P. Yatsenko, and K. Bergmann, Phys. Rev. A
78, 053804 (2008).

[34] D. K. Efimov, N. N. Bezuglov, A. N. Klyucharev, Y. N.
Gnedin, K. Miculis, and A. Ekers, Optics and Spec-
troscopy 117, 8 (2014).

[35] I. I. Sobelman, Atomic Spectra and Radiative Transi-
tions, ISBN: 978-3-642-76907-8 (Springer, 1992).

[36] M. Auzinsh, D. Budker, and S. Rochester, Optically Po-
larized Atoms (Understanding light-atom interactions),
ISBN: 0199565120 (Oxford University Press, 2010).

[37] M. Bruvelis, J. Ulmanis, N. N. Bezuglov, K. Miculis,
C. Andreeva, B. Mahrov, D. Tretyakov, and A. Ekers,
Phys. Rev. A 86, 012501 (2012).

http://dx.doi.org/10.1103/PhysRevA.27.906
http://dx.doi.org/10.1103/PhysRevA.27.906
http://dx.doi.org/10.1103/PhysRev.100.703
http://dx.doi.org/10.1103/PhysRev.100.703
http://www.springer.com/us/book/9780387208022
http://www.springer.com/us/book/9780387208022
http://dx.doi.org/10.1103/PhysRevA.80.053406
http://dx.doi.org/10.1103/PhysRevA.80.053406
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/ 10.1007/BF02749417
http://dx.doi.org/ 10.1007/BF02749417
http://dx.doi.org/10.1103/PhysRevLett.64.1107
http://dx.doi.org/10.1103/PhysRevLett.64.1107
http://dx.doi.org/ 10.1038/17561
http://dx.doi.org/ 10.1103/PhysRevLett.82.5229
http://dx.doi.org/10.1038/35054017
http://dx.doi.org/10.1038/35054017
http://dx.doi.org/10.1103/PhysRevLett.86.783
http://dx.doi.org/10.1103/PhysRevLett.86.783
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1103/PhysRevA.58.2587
http://dx.doi.org/10.1103/PhysRevA.58.2587
http://dx.doi.org/10.1063/1.1494115
http://dx.doi.org/10.1063/1.1494115
http://dx.doi.org/10.1103/RevModPhys.70.1003
http://dx.doi.org/10.1103/RevModPhys.70.1003
http://dx.doi.org/10.1103/RevModPhys.89.015006
http://store.doverpublications.com/0486444988.html
http://dx.doi.org/10.1103/PhysRevLett.83.288
http://dx.doi.org/10.1103/PhysRevA.74.053402
http://dx.doi.org/10.1103/PhysRevA.74.053402
http://dx.doi.org/10.1051/jphys:019820043070102100
http://dx.doi.org/10.1051/jphys:019820043070102100
http://dx.doi.org/10.1103/PhysRevA.77.042511
http://dx.doi.org/10.1103/PhysRevA.77.042511
http://dx.doi.org/10.1364/AO.23.002152
http://dx.doi.org/ 10.1103/PhysRevLett.76.2862
http://dx.doi.org/10.1103/PhysRevA.78.053415
http://dx.doi.org/10.1103/PhysRevA.78.053415
http://dx.doi.org/10.1103/PhysRev.70.460
http://dx.doi.org/10.1103/PhysRevA.64.022719
http://dx.doi.org/10.1103/PhysRevA.78.053804
http://dx.doi.org/10.1103/PhysRevA.78.053804
http://dx.doi.org/10.1134/S0030400X1407008X
http://dx.doi.org/10.1134/S0030400X1407008X
http://www.springer.com/physics/atomic,+molecular,+optical+%26+plasma+physics/book/978-3-540-54518-7
http://www.springer.com/physics/atomic,+molecular,+optical+%26+plasma+physics/book/978-3-540-54518-7
http://ukcatalogue.oup.com/product/9780199565122.do#.Ud_SQRftnb4
http://ukcatalogue.oup.com/product/9780199565122.do#.Ud_SQRftnb4
http://dx.doi.org/10.1103/PhysRevA.86.012501

	Hyperfine interaction in the Autler-Townes effect: the formation of bright, dark, and chameleon states
	Abstract
	Introduction
	Two types of suppressed peaks in the Autler-Townes spectra
	Fading peaks of dark states
	Peaks associated with the chameleon states

	Adiabatic states' approach 
	Morris-Shore (MS) transformation
	Properties of the dark states and the effect of HF interaction.
	Properties of ``chameleon'' states and the effect of HF interaction 

	Real atomic systems
	Numerical calculations
	Results for the excitation scheme of Fig.??(a)

	Discussion
	Conclusions
	Acknowledgments
	 Treatment of perturbation by HF interaction using the projection operators' technique
	 The basis of broken-down HF coupling
	 Hyperfine operator in the Morris-Shore basis
	References


