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Fully quantum and classical calculations on a helium atom with two excited, radially localized
Rydberg wave packets are performed. The differences between classical and quantum methods are
compared for a wide range of principal quantum numbers to study the validity of the classical
method for low-lying states. The effects of fast terahertz single-cycle pulses on an atomic system
with one or two Rydberg wave packets are also studied using classical equations of motion. These
results suggest that single-cycle pulses can be used as time-resolved probes to detect motion of the
wave packets and to investigate autoionization properties.
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I. INTRODUCTION

The study of correlations between two bound electrons
has remained an interesting topic since the development
of quantum mechanics in the early 20th century. The ba-
sic Coulomb form of the interaction is a prototype of cou-
pled degrees of freedom in atomic physics. Thus, under-
standing the correlations between two electrons can help
us understand more complicated atoms and molecules.
In recent years, numerous experiments have been done
using ultrafast laser pulses to observe, create, and con-
trol different two-electron processes [1–5]. Most of them
have been focused on resonant transitions in low-lying
states.
In contrast to low-lying states, highly excited Rydberg

states have many novel properties. The tiny energy spac-
ing between adjacent Rydberg states makes it easier to
generate spatially localized Rydberg wave packets [6, 7].
Many experimental and theoretical studies on atoms with
a single Rydberg wave packet have been conducted in
the past few decades [8–17]. However, there are only a
few experimental studies of the dynamics of double Ry-
dberg wave packets [18–22]. Recently, experiments done
by Zhang et al in Ref. [21] studied the time evolution of
two highly excited Rydberg wave packets. Their experi-
mental and numerical results were in good agreement and
showed that substantial energy and angular momentum
exchanges between the two electrons can happen in just
a few Rydberg periods. This motivates us to study the
time-dependent dynamics of double Rydberg wave pack-
ets, which has not been systematically studied before. A
numerical method using basis expansion techniques was
introduced in Ref. [23]. Another method [24] based on
the time-dependent close coupling method [25] will be
used in this report to study the dynamics of double Ry-
dberg wave packets.
Most quantum mechanical methods face computa-

tional power issues when dealing with highly excited
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Rydberg electrons, due to the wide spatial range, long
time scale of substantial interactions, and strong mixing
among enormous numbers of basis functions. Early re-
search showed that Rydberg electrons behave more clas-
sically than electrons in low-lying states [26, 27]. This
suggests the use of well-studied classical mechanics to in-
vestigate those two-electron atoms. Classical calculations
with a wide range of principal quantum numbers are per-
formed in this paper, and the results are compared with
quantum calculations to study the validity of the classical
method.
Experimentalists have been using well-controlled fast

THz pulses as a time-resolved probe to study the Ryd-
berg electronic wave function structures at different times
as the system evolves [21, 28, 29]. Durations of fast THz
pulses can be modified to be shorter than, equal to, or
longer than the period of Rydberg electrons, which can
yield totally different field-ionization results. Subpicosec-
ond half-cycle pulses (HCP) have been widely used to
probe wave function structures of a single Rydberg wave
packet since the 1990s [15, 30, 31], but only a few exper-
iments have been done using HCP to study double Ry-
dberg wave packets [21]. The effects of fast THz single-
cycle pulses (SCP) on atoms with one valence electron at
different bound states have been studied in both theoret-
ical [32–34] and experimental [28] ways. However, there
has been no study on the effect of a SCP on an atom
with doubly excited Rydberg wave packets. In this pa-
per, we focus on the use of SCP to obtain wave function
structures from double Rydberg wave packets. We can
also predict motions of the double Rydberg wave packets
from the time-resolved ionization results with SCP.
This paper is organized as follows. In Sec. II, we in-

troduce the two-step launch model for generating double
Rydberg wave packets based on experiments in Ref. [21].
Both fully quantum and classical calculations are per-
formed in order to explore the differences between them
and the validity of classical methods in low-lying states.
In Sec. III, we focus on the effect of a fast SCP on an
atomic system. The evolution and autoionization of the
double Rydberg wave packets are then studied using a
SCP. All physical variables and formulas presented in
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this paper are in atomic units unless specified otherwise.

II. COMPARISON BETWEEN FULLY

QUANTUM AND CLASSICAL METHODS

A. The two-step launch model

Our theoretical model is motivated by an experiment in
Ref. [21], where both valence electrons in Ba are individ-
ually excited to Rydberg wave packet type states. The
experiment starts with Ba atoms in the ground state,
6s2. The atom is excited to a coherent superposition
of 5d5/2n1d Rydberg states using two consecutive laser
pulses. The first radially localized wave packet is gener-
ated as a superposition of n1 states. Its Rydberg period
is about TRyd1 = 2πν31 , where ν1 = n1 − µ1 is the ef-
fective principal quantum number. The ν1 corresponds
to the central binding energy E1 = −12/2ν21 , and the
µ1 is the quantum defect. When the first wave packet
reaches its outer turning point, the other electron is then
excited to a Rydberg wave packet giving n2gn1d states.
The ν2 = n2 − µ2 is the effective principal quantum
number that corresponds to the central binding energy
E2 = −22/2ν22 . Central energies and energy widths of
the two Rydberg wave packets are controlled by proper-
ties of laser pulses used to excite the atom. Dynamics of
the double Rydberg wave packets can then be studied.

This experiment can be converted into a theoretical
two-step launch model in a helium atom. We focus on
an easier case where the angular momenta lj of both
electron at launch are zero. Usually, when the total an-
gular momentum L is on the order of 1 and is much
smaller than both principal quantum numbers, the dy-
namics are insensitive to the total angular momentum
L. Calculations with different small L are described
in Sec. II D. Therefore, the first electron is launched
as a spherically symmetric s-wave centered at a neg-
ative total energy E1 = −12/2ν21 and a launch time
width δt1. The δt1 is a time width parameter that de-
scribes a Gaussian shaped electric field amplitude, which
is F1(t) ∝ exp(−2 ln 2 t2/δt21). At t = 0.5 TRyd1, the sec-
ond electron is also launched as a spherically symmetric
s-wave centered at a negative total energy E2 = −22/2ν22
and a launch time width δt2. The δt2 has a similar def-
inition as of δt1. In the quantum calculations, the en-
ergy width is an automatic result of the duration of the
laser pulse that excites each wave packet. In the classi-
cal calculations, the energy width is selected to be the
same as that in the quantum calculations. To satisfy the
uncertainty principle, the FWHM of a Gaussian shaped
energy distribution of the Rydberg wave packet satis-
fies δEj = 4 ln 2/δtj, where j = 1, 2 represent the first
and second electron, respectively. We then study the au-
toionization process of the atom, and angular momenta
distributions of the electrons after the second electron’s
launch.

B. Quantum approach

For a neutral helium atom with two electrons, the
Hamiltonian of this system can be written as

H =
p1

2

2
+

p2
2

2
− 2

r1
− 2

r2
+

1

|r1 − r2|
, (1)

where pj and rj are the momentum and spatial co-
ordinate of the j-th electron, respectively. The main
difference of a helium atom’s Hamiltonian compared
to a hydrogen atom’s is the Coulomb interaction term
1/|r1−r2|, which couples the two electrons. In this paper,
a method based on the time-dependent close coupling
(TDCC) method is used to propagate the wave function
of a helium atom [24, 25].
Expanding the two-electron wave function in a cou-

pled spherical harmonic basis, the wave function can be
written as

ΨLS(r1,r2, t) =
∑

l1,l2

RLS
l1,l2

(r1, r2, t)

r1r2

×
∑

m1,m2

Cl1,l2,L
m1,m2,0

Yl1,m1
(r̂1)Yl2,m2

(r̂2), (2)

where RLS
l1,l2

is the radial wave function, Cl1,l2,L
m1,m2,0

is the
Clebsch-Gordan coefficient, Ylm are spherical harmonics,
r1, r2 represent the spatial coordinates of the two elec-
trons [25]. To reduce the computational requirements,
the calculation can be performed with total angular mo-
mentum L = 0 instead of small non-zero total angu-
lar momentum. Additionally, since both Rydberg wave
packets are highly localized in phase space and far away
from the nucleus, the overlap integral and exchange effect
are expected to be small. Singlet and triplet symmetrized
calculations will give nearly the same result. With total
angular momentum L = 0, the wave function only de-
pends on r1, r2, and the relative angle θ12 between r1

and r2, [35]. The wave function in Eq. (2) with L = 0
can be simplified to

Ψ(r1, r2, t) =

Lmax
∑

l=0

(−1)lRl(r1, r2, t)Yl0(cos θ12), (3)

where the (−1)l term is following the conventions of
Refs. [36, 37]. The Lmax is the number of angular chan-
nels used in the calculation, and it’s slightly larger than
the maximum allowed angular momentum restricted by
the total energy. The goal is to evolve the Rl for all cou-
pled channels with different angular momentum l of one
electron.
For the time propagation of the wave function, the

split-operator technique is used. The Hamiltonian in
Eq. (1) can be split into 3 parts, Hj = p2j/2− 2/rj with
j = 1, 2 for each electron, and H3 = 1/r12 for the interac-
tion between the two electrons. The unitary propagators
of U1, U2, and U3 can be taken in various forms at each
time step, e.g. Crank-Nicolson, Chebyshev, or leapfrog,
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etc. The propagators U1 and U2 don’t couple amplitudes
Rl with different angular momentum, and are tridiago-
nal in r1 and r2, respectively. For the propagator U3, the
idea from discrete variable representation is used in the
calculation [38]. The method is described in Ref. [24] in
detail, and we give a brief description here. First, the
matrix elements of cos θ12 in the coupled angular mo-
mentum basis |j〉 = |(lj , lj)L = 0〉 are calculated [36].
Then, the matrix of cos θ12 is diagonalized, and we can
use its eigenstates, eigenvalues and the geometric relation
r12 = (r21 + r22 − 2r1r2 cos θ12)

1/2 to calculate the matrix
element of U3 in the coupled angular basis |j〉. Finally,
the U3 propagator couples all the angular states |j〉, and
the radial amplitudes Rj are propagated to the next time
step.
At the final time of the calculation, we can project

the calculated wave function onto energy eigenstates of
a helium atom to get the energy distribution. Since the
total angular momentum of the system is zero, angular
momenta of the two electrons have the same magnitude
but in the opposite directions. The angular momentum
distribution of one electron is calculated using [37]

pqm(l) =

∫∫

dr1dr2

∣

∣

∣
Rl(r1, r2, t)

∣

∣

∣

2

. (4)

C. Classical approach

The three-dimensional classical trajectoryMonte Carlo
(CTMC) method [15, 24, 39, 40] is used in the calcula-
tions as a comparison with the quantum calculation, as
a way of interpreting the results, and as a way to obtain
results difficult or impossible to converge using quantum
calculations. Initial conditions of the electrons are set
to obey the quantum uncertainty principle with random
Gaussian distributed energies and launch times. Since
both electrons are launched as spherically symmetric s-
waves, their launch directions are uniformly distributed
in all 4π solid angle.
After the initial launches, the system is propagated

under Hamilton’s equations using a fourth order Runge-
Kutta method with adaptive step size [41]. To avoid
divergence near the nucleus, a soft core potential V (r) =

−Z/
√
r2 + a2 is used instead of V (r) = −Z/r for the

Coulomb interactions, where a is a soft core parameter.
Calculations performed with a ranged from 1.0×10−3 to
1.0× 10−5 give converged results.
At the final time of the calculations, the statistics of

energies, angular momenta, and other physical quantities
of each electron from all Monte Carlo (MC) runs with
different initial conditions give continuous distribution
functions. The continuous distribution functions can be
discretized and compared to the quantum calculations.
For example, the classical analogy of the probability of
the angular momentum at lc can be calculated as follows

pcl(lc) =
Number of MC runs with lc 6 l < lc + 1

Total number of MC runs
, (5)
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FIG. 1. Comparison between the quantum and classical meth-
ods for the angular momentum distribution. The effective
principal quantum numbers are ν1 = 23, ν2 = 38, which cor-
respond to central energies E1 = −12/2ν2

1 = −9.45 × 10−4,
E2 = −22/2ν2

2 = −1.39 × 10−3 at launch. Rydberg period
of the first electron is TRyd1 = 2πν3

1 = 7.64 × 104. The
2nd electron is launched at half of the Rydberg period of
the 1st electron after the 1st electron’s launch. Launch time
widths for the two electrons are δt1 = 2.17×104 = 0.28 TRyd1,
δt2 = 4.28 × 103 = 0.056 TRyd1, which are shorter than a full
Rydberg period. The results in the figure are at t = 8.27×104

a.u. after the 2nd launch, which is about 2 picosecond.

where l is the angular momentum from the classical cal-
culations. The lc is a non-negative integer, which corre-
sponds to the azimuthal quantum number in the quan-
tum calculations. The pcl(lc) is compared to the quan-
tum angular momentum distributions pqm(lc), to study
the differences between the classical and quantum meth-
ods.

D. Comparisons between quantum and classical

methods

To study the validity of the classical methods, we start
this subsection with a calculation for ν1 = 23, ν2 = 38.
The principal quantum numbers are chosen to be neither
too large, where the quantum calculations would be hard
to converge, nor too small, where the quantum effects can
cause huge differences between the quantum and classical
calculations. Comparison of angular momentum distri-
butions between quantum and classical methods can be
found in Fig. 1, with all the corresponding parameters
given in the caption. In this calculation, the total an-
gular momentum is set to zero. The results presented
here are for the non-ionized part of the wave function,
which is only about 30% at the final time of 2 ps. The
numerical difference for ionization probabilities between
the classical and quantum methods is about 1% at the
final time. The final time of this calculation is about
one Rydberg period of the first electron. In this time
scale, significant interactions between the two electrons
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FIG. 2. Comparison of the angular momentum distributions
between classical calculations with total angular momentum
L = 0, 1, 2, 3. All the parameters are the same as those given
in the caption of Fig. 1 except for the total angular momen-
tum. Since the total angular momentum is non-zero, the an-
gular momenta of the two electrons have a small difference.
The separate angular momentum distributions of the two elec-
trons have no visible differences, thus their distributions are
plotted on a single curve as shown in the figure.

can happen. This leads to a large probability of autoion-
ization, and can excite most of the two-electron wave
function to high angular momentum states. In the fig-
ure, a sharp decrease in angular momentum distribution
can be found near l = 36, which is the maximum clas-
sically allowed angular momentum when both electrons
are bound [42].
Additionally, classical calculations that the second

electron starts at a non-zero angular momentum are per-
formed. The results also match well with the L = 0
results, and can be found in Fig. 2. The calculations
with non-zero total angular momentum strengthen our
assumption that the dynamics of Rydberg electrons is
insensitive to small non-zero angular momentum.
With the comparison between quantum and classical

calculations for highly excited states, the principal quan-
tum number is then lowered, to study the validity of the
classical methods at low-lying states. We define a dif-

ference function to quantitatively study the differences
between the two methods for different principal quantum
numbers. The difference function fd is defined as

fd =

Lmax
∑

l=0

∣

∣

∣
pcl(l)− pqm(l)

∣

∣

∣
, (6)

where Lmax is the number of coupled angular channels
used in the quantum calculations. The pqm(l) is the prob-
ability that the electron has an angular momentum l as
defined in Eq. (4) in quantum calculations. The pcl(l) is
an analogous probability that the electron has an inte-
ger angular momentum l in classical calculations, which
is defined in Eq. (5). The difference function gives an
estimation on the relative error between the two meth-

ods at different l. The higher fd is, the larger differences
between the quantum and classical methods are.
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FIG. 3. The difference function fd as defined in Eq. (6) ver-
sus the first electron’s principal quantum number ν1. In these
calculations, the principal quantum numbers of the two elec-
trons satisfy ν1/ν2 = 23/38. The red dots are the numerical
results for the fd, while the blue line is a fit for the numerical
results versus ν1.

Fully scaled calculations with ν1 = 23ζ, ν2 = 38ζ have
been performed, where 0 < ζ 6 1 is a dimensionless num-
ber. The laser time widths are scaled as ζ3, since the
Rydberg period of an electron and the interval between
the two electrons’ launches are proportional to cube of
their principal quantum numbers. To satisfy the quan-
tum uncertainty principle, the energy widths are scaled
as ζ−3 in both classical and quantum calculations. Final
time of the calculations are also scaled as ζ3. Similar
to the calculation for ν1, ν2 = 23, 38, the angular mo-
mentum distributions used in Eq. (6) are only from the
non-ionized part of the wave function.
The results of the difference function versus the first

electron’s principal quantum number ν1 can be found in
Fig. 3. In the figure, as the principal quantum num-
ber decreases, the difference between the two methods
increases. Due to the interference and tunneling effects
that only exist in quantum mechanics, the difference be-
tween the two methods fluctuates as the energy of the
system changes. Also, finite energy spacings in the quan-
tum calculations and finite final time of the calculations
may cause additional disagreements between the quan-
tum and classical methods [43, 44]. We use n to de-
note the principal quantum number of the atomic sys-
tem. Since the energy spacings between adjacent Ryd-
berg states are also scaled as n−3 as energy uncertain-
ties, approximately same number of quantum states are
included in a Rydberg wave packet regardless of n. How-
ever, as n gets smaller, the discretized energy levels in
quantum mechanics may cause totally different behaviors
from continuous energies in classical mechanics, which
could result in a difference function that scales as power
of n. A rough fit of the fd is also given in the figure,
and that indicates the differences between classical and
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quantum calculations scale as n−1/2. There are not many
studies on the differences between classical and quantum
calculations for different principal quantum numbers in
an atomic system. Related studies on the differences in
other systems can be found in Refs. [44–46].

III. PROBING DOUBLE RYDBERG WAVE

PACKETS

Properties of double Rydberg wave packets in an
atomic system are well described by classical calcula-
tions. To avoid the huge computational effort on mixing
of large number of angular momentum states in quan-
tum calculations, all of the following calculations related
to single-cycle pulses (SCP) are classical calculations.

A. The effect of SCP on a one electron atom

We start this subsection with a study of the effect of
short SCP on an atomic system with one Rydberg elec-
tron. A Rydberg electron is prepared in a classical, el-
liptical Rydberg orbit with a small angular momentum.
The electron has a significant time to be far away from
the nucleus, and a relatively short time to be close to the
nucleus in its one Rydberg period. The electric field of a
SCP in our calculation has the following form

F (t) = C0Fm

(

t

tw

)

exp

[

−
(

t

tw

)2
]

, (7)

where C0 =
√
2e ≈ 2.332 is a constant to make the maxi-

mum field strength be Fm, note that e here is the base of
natural logarithms. The tw is a parameter to character-
ize the duration of the pulse. In our calculations, a SCP
starts at t = −3.5 tw, and ends at t = +3.5 tw. A SCP
has a duration Tpulse = 7.0 tw. Durations of the short
pulses in the calculations below are much shorter than
or equal to one Rydberg period of the electron. Effects
of a SCP in these two scenarios can be totally different.
Single-cycle pulses are applied to a one-electron atom at
different times, and the energy distributions of the elec-
tron after the SCP are observed.
We first describe the effect of a SCP with duration

much shorter than one Rydberg period. Within the du-
ration of a short SCP, the nucleus-electron interaction
can be neglected if the electron is far away from the nu-
cleus. Since the integral of the electric field over time is
zero, a short SCP only shifts the position of the electron,
and has almost no effect on its kinetic energy. The esti-
mated energy change of the electron originates from the
Coulomb potential energy change. If the electron was
close to the nucleus before the SCP, the potential energy
change is much higher than that for an electron which
was far away from the nucleus. This is equivalent to say-
ing that a short SCP transfers more energy to an atom

when an electron is closer to the nucleus at the time of
the SCP.
We also study the effect of a SCP with duration equal

to one Rydberg period. The electric field of a SCP has
maximum amplitude at t = ± tw/

√
2 ≈ ± 0.707 tw, which

is about half of its duration. If a SCP starts at the time
that the electron is close to the nucleus, the electron feels
maximum accelerations when it moves to the Rydberg
outer turning point. Acceleration from the SCP quickly
flips the sign at almost the same time that the electron
passes the outer turning point, and reverses its moving
direction. This means the SCP can perfectly accelerate
the electron during the whole pulse. This is also true
if a SCP starts at the time that the electron is close
to the outer turning point. However, there is a main
difference between these two scenarios. The work done to
the electron is the integral of force times displacements.
The electron moves much faster when it is close to the
nucleus than far away from the nucleus. Using pulses
with same strengths, the absolute value of the work done
by a SCP is much larger when it starts at the time that
the electron is at its outer turning point.
To summarize, a short SCP transfers more energy

when the electron is close to the nucleus, while a medium
duration SCP transfers more energy when it starts at the
time that the electron is far away from the nucleus. An
atom can be ionized if the final energy after a SCP is
above the ionization threshold. In experiments, a SCP
can be used to probe the periodic motion of the Rydberg
wave packet in a one electron atom.

B. Probing double Rydberg wave packets

Within our two-step launch model described in
Sec. II A, dynamics of the double Rydberg wave pack-
ets can be divided into two regions based on their initial
energies. (i) One wave packet has a much larger Rydberg
orbit than the other. This means the two wave packets
are usually spatially distinguishable, with an inner wave
packet and an outer wave packet. (ii) Two wave packets
have similar sized Rydberg orbits. We apply a fast SCP
at different times after the electron launches. The SCP
can transfer energy to the atomic system. At a long final
time, the atom will be singly or doubly ionized. In our
following calculations, the double ionization probabilities
are very small and can be neglected. We can measure
the energy distributions of those singly ionized atoms to
study the electronic wave function structures at the start
time of the SCP.
A classical calculation with ν1 = 45, ν2 = 38 has

been performed. This leads to the initial energies E1i =
−2.47 × 10−4, E2i = −1.39 × 10−3, and Rydberg peri-
ods TRyd1 = 13.8 ps, TRyd2 = 2.08 ps. Before the first
wave packet returns to the nucleus (0.5TRyd1 = 6.9 ps),
the second electron is expected to be in its own periodic
motion around the nucleus. In this calculation, the first
electron is considered as the outer wave packet, while
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the second electron is the inner wave packet. A short
SCP with duration Tpulse = 0.208 ps ≈ 0.1 TRyd2, and
maximum strength Fm = 100 kV/cm is applied at differ-
ent times (tstart) after the second launch. Distributions
of the positive ion’s final energy, E+, can be found in
Fig. 4. In the figure, most of the energy distributions are
lower than Ec, center of the initial total energy shifted by
energy widths, which is indicated as the vertical dashed
line. For these electrons with E+ > Ec, the atom must
have gained energy from the SCP. As our analyses in
Sec. III A, a short SCP transfers more energy to an atom
through the inner electron when the electron is close to
the nucleus. If the energy transferred to the inner elec-
tron is large enough, the inner electron can be directly
ripped off from the atom. In this scenario, there will be
no further chaotic three-body interactions after the outer
electron returns. The energy of the outer electron after
the inner electron being ionized should be approximately
2E1i, which originates from the changing of ionic core
charge from 1 to 2. In Fig. 4, when E+ > Ec, the peak
of the positive ion’s energy is located at 2E1i.
To further study our claim that a short SCP transfers

energy to an atom when the electron is close to the nu-
cleus, we plot the probability of E+ > Ec versus tstart in
Fig. 5. The probability indicates direct ionization of the
inner electron due to the short SCP. Additionally, we cal-
culate the probability that at least one electron is within
a sphere of Rc = 260 au centered at the nucleus, when
neither electron is autoionized before the pulse. The lat-
ter probability, Pc, versus tstart is plotted in Fig. 5. The
Rc is calculated to satisfy

−2

Rc +∆r
− −2

Rc
+ Ec > 0, (8)

where ∆r is the displacement of a free electron due to a
SCP. The probabilities of E+ > Ec and Pc have sim-
ilar trends and magnitudes on the locations of peaks
and troughs. To study the origin of Pc, we calculated
the probabilities that each electron is within Rc, indi-
cated with Pc1 and Pc2 for the first and second elec-
tron, respectively. The plots can be found in Fig. 5.
Note that, the probability that both electrons are within
Rc is less than 0.1% and can be neglected here, which
means Pc ≈ Pc1 + Pc2. The peaks of Pc2 are located
at tstart ≈ 2.0, 4.0, 6.0 ps, which are multiples of TRyd2

and indicate the inner electron’s return to the nucleus.
Similarly, the outer electron returns to the nucleus at
tstart ≈ 6.9 ps. Instead of a peak in Pc1 at 6.9 ps, we can
find a small dip on it. This is because at tstart ≈ 7.0 ps,
the inner electron is at its outer turning point. Thus, the
repulsion between the inner electron and the returning
outer electron shifts the radial positions of the two elec-
trons. Therefore, Pc1 is slightly lower and Pc2 is slightly
higher at tstart ≈ 7.0 ps. On the Pc2 curve at 7.0 ps, the
depth of the dip is not as large as that at 5.0 and 8.0 ps.
As a result, we have flatter distributions near 7.0 ps on
both Pc and E+ > Ec curves. After 8.0 ps, both curves
are mostly flat, indicating a SCP applied after the colli-
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FIG. 4. Energy distributions of the electron in a singly ionized
ion at a long final time, after the effect of a short SCP applied
at different time. The principal quantum numbers for the two
electrons are ν1 = 45, ν2 = 38. The SCP has a maximum
strength Fm = 100 kV/cm, and a duration Tpulse = 0.208 ps.
Numbers in the legends indicate the start time of SCP (tstart)
after the launch of the second electron. The vertical dashed
line is plotted at Ec = −1.46 × 10−3. The figure has a cutoff
at −0.0025 on the left, but the full energy distributions have
long tails to larger binding energies.
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FIG. 5. Probability results for calculations with ν1 = 45,
ν2 = 38, Fm = 100 kV/cm, Tpulse = 0.208 ps. The red thin
solid line describes the probability of E+ > Ec, which is the
positive ion’s final energy higher than −1.46 × 10−3, with a
short SCP applied at different time tstart. The blue thick
solid line describes the probability that at least one electron
is within Rc = 260, at different time tstart after the second
electron’s launch, just before the application of a SCP. The
green dashed line describes the probability that the first elec-
tron is within Rc at different time, while the magenta dotted
line describes the probability for the second electron.

sions between the two electrons. The probability to find
electrons in a small radial range barely changes after col-
lision.
To study the effect of a medium duration SCP, calcula-

tions with ν1 = 45, ν2 = 40, Tpulse = 2.43 ps ≈ 1.0 TRyd2

and Fm = 5 kV/cm, have been performed. For this case,
the Tpulse is smaller than the outer electron’s Rydberg
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FIG. 6. Study of the effect of a medium duration SCP with
ν1 = 45, ν2 = 40, Fm = 5 kV/cm, and Tpulse = 2.43 ps.
Figure (a) describes the same physical quantities as given in
the caption of Fig. 4. Figure (b) describes the probability of
positive ion’s energy higher than Ec = −1.17× 10−3, and the
direct ionization probability of a He+ ion due to a medium
duration SCP with same properties. The tstart is the start
time of a medium duration SCP (see Eq. (7) for definition of
the start time).

period TRyd1. When the outer electron is far away from
the nucleus, the SCP only slightly shifts its position, and
has negligible effect on it. We may only consider the ef-
fect of the SCP on the inner electron, before the outer
electron returns. Energy distributions of the positive ion
at a long final time can be found in Fig. 6(a), which has
the same meaning as described in Fig. 4. The probability
of E+ > Ec can be found in Fig. 6(b). To have a detailed
understanding of the effect of a medium duration SCP,
we have performed calculations of a He+ ion with only
one Rydberg wave packet at ν2 = 40 under the effect
of a same medium duration SCP, with Tpulse = 2.43 ps
and Fm = 5 kV/cm, applied at different times. The field
induced ionization probability (Pion) of the He+ is also
plotted in Fig. 6. At tstart = 2.4 ps ≈ 1.0 TRyd2, the
electron in He+ model and the inner electron in the two-
electron atom return to the nucleus, and gain the lowest

energy transferred from a short SCP. Thus the probabil-
ities of E+ > Ec and Pion reach their minimum. Simi-
larly, at tstart = 1.3 ps ≈ 0.5 TRyd2 and tstart = 3.5 ps
≈ 1.5 TRyd2, the electron in He+ model and the inner
electron in the two-electron atom are at their outer turn-
ing points, and E+ > Ec, Pion reach their maximum.
These two lines have very similar trends, which strength-
ens our assumption that a medium duration SCP trans-
fers more energy to an atom when it starts at the time
that the electron is far away from the nucleus.
These calculations show that single-cycle pulses with a

short duration and a medium duration behave oppositely
on the energy transfer to a Rydberg electron. Experi-
mentally, a SCP can be used to probe the wave function
structures of the inner wave packet, by transferring en-
ergy to the atom through the inner electron while the
inner electron is located at different positions.

C. Atoms with similar sized double Rydberg wave

packets

In the previous subsection, we studied the effect of a
SCP on a two-electron atom with the size of one Rydberg
wave packet much larger than the other’s. Here we focus
on those scenarios that the two Rydberg wave packets
have similar sizes. A classical calculation with ν1 = 34,
ν2 = 40 has been performed. The single-cycle pulses have
durations Tpulse = 0.1 TRyd2 = 0.243 ps, and maximum
strengths Fm = 100 kV/cm. The Ec = −1.42 × 10−3 is
center of the initial total energy shifted by energy widths.
The probability of E+ > Ec, versus different start time
of the SCP is plotted in Fig. 7. The probabilities to find
electrons within Rc = 300 au, Pc, Pc1, Pc2, as introduced
in the previous subsection can also be found in Fig. 7. In
the figure, similar trends between E+ > Ec and Pc can
be found, which is because a short SCP transfers more
energy to an electron when it’s close to the nucleus. The
peak of Pc1 is located at tR1 = 2.4 ps, which indicates
the first electron’s return to the nucleus. Similarly, the
second electron returns to the nucleus at tR2 = 3.4 ps.
These return times are neither a full nor a half Rydberg
period related to their initial energies. Due to the corre-
lations between the two electrons, their energies, angular
momenta, and Rydberg periods are changed.
After the two electrons return to the nucleus, respec-

tively, they will be in Rydberg orbits with new periods.
The new periods are approximately 2 tR1 and tR2 for the
two electrons, which can be deduced from the peaks and
troughs on the Pc1 and Pc2 curves in Fig. 7. The first
electron arrives at its new outer turning point at about
2 tR1 = 4.8 ps, while the second electron arrives at its
new outer turning point at about 1.5 tR2 = 5.1 ps. As
can be seen in Fig. 7, at tstart ≈ 4.8 ps, the probabilities
to find either electron inside Rc are at minimum. The
energy transferred from a short SCP and the probability
of E+ > Ec are also at local minimum.
Experimentally, a short SCP can be used to probe an
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FIG. 7. The curves have the same meaning as introduced
in the caption of Fig. 5. Parameters used in the plot are
ν1 = 34, ν2 = 40, Fm = 100 kV/cm, Tpulse = 0.243 ps,
Ec = −1.42× 10−3, and Rc = 300.

atom with two similar sized Rydberg wave packets. Usu-
ally, the first two peaks of the probability of E+ > Ec

indicate the return times of the two electrons. After that,
the two electrons will be in new Rydberg periods which
are related to their first return times to the nucleus.

IV. CONCLUSIONS

Inspired by a previous experiment in Ref. [21], and var-
ious numerical methods for solving two-electron atoms
developed in the past few years, we studied dynamics
of two Rydberg wave packets in a helium atom. We
first briefly introduced the helium model with two-step
launches, where the first electron was excited to a ra-
dially localized Rydberg wave packet using laser pulses
with tunable parameters. When the first electron reached
its outer turning point, the other electron was then ex-
cited to a Rydberg wave packet using laser pulses with
different properties. As studied in Ref. [21], energy and
angular momentum exchanges between the two electrons
can happen quickly, leading to rapid autoionization.
We then performed both quantum and classical cal-

culations to show the validity of the classical methods
when dealing with Rydberg wave packets, comparing to
an accurate quantum method. The classical and quan-
tum methods were in good agreement at high principal
quantum numbers. The numerical differences between
the two methods at lower principal quantum numbers

were also quantitatively studied.

Furthermore, we introduced the effects of a fast single-
cycle pulse on an atom with one Rydberg electron. De-
tailed analyses showed that, a short duration single-cycle
pulse transfers more energy to an atom when the electron
is closer to the nucleus, while a medium duration single-
cycle pulse transfers more energy when it starts at the
time that the electron is further away from the nucleus.
With these results, we studied the effects of a single-cycle
pulse on an atom with double Rydberg wave packets. A
short single-cycle pulse is applied to an atomic system
with distinguishable wave packets at different time, and
the energy distribution of the positive ion at a long final
time is measured. The probability that significant energy
is transferred to the atom has a very similar trend as the
probability that at least one electron is located in a small
region very close to the nucleus. We also compared the
results of a single-cycle pulse acting on an atom with dou-
ble wave packets of significantly different sizes, and on a
positive ion with only the inner wave packet. The results
have very similar trends which verify our assumptions
that a fast single-cycle pulse only has small affects on the
outer electron. Moreover, we studied the case that the
two Rydberg wave packets have similar sizes. From the
time-dependent probabilities that each electron is close
to the nucleus, we found out the return times of the two
electrons. Due to the correlations between the two elec-
trons, return times of the two electrons are different from
their initial Rydberg periods. The new Rydberg periods
after both electrons return to the nucleus are related to
their return times. Experimentally, a fast single-cycle
pulse can be applied at these times that an electron is
close to the nucleus, and a large amount of energy will
be transferred to the atom. Further novel autoionization
behaviors after the effects of single-cycle pulses remain
open questions to be studied in both theoretical and ex-
perimental ways.
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[16] D. G. Arbó, C. O. Reinhold, J. Burgdörfer, A. K. Pat-
tanayak, C. L. Stokely, W. Zhao, J. C. Lancaster, and
F. B. Dunning, Phys. Rev. A 67, 063401 (2003).

[17] R. Jones and L. Noordam, Advances In Atomic, Molec-
ular, and Optical Physics 38, 1 (1998).

[18] S. N. Pisharody and R. R. Jones, Science 303, 813 (2004).
[19] S. N. Pisharody and R. R. Jones, Phys. Rev. Lett. 91,

203002 (2003).
[20] A. L. Landers, F. Robicheaux, T. Jahnke, M. Schöffler,
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