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Recently, it has been proposed that space-based atomic sensors may be used to detect gravita-
tional waves. These proposals describe the sensors either as clocks or as atom interferometers. Here,
we seek to explore the fundamental similarities and differences between the two types of proposals.
We present a framework in which the fundamental mechanism for sensitivity is identical for clock
and atom interferometer proposals, with the key difference being whether or not the atoms are
tightly confined by an external potential. With this interpretation in mind, we propose two major
enhancements to detectors using confined atoms, which allow for an enhanced sensitivity analogous
to large-momentum-transfer (LMT) used in atom interferometry (though with no transfer of mo-
mentum to the atoms), and a way to extend the useful coherence time of the sensor beyond the
atom’s excited state lifetime.

I. INTRODUCTION

The recent observation of gravitational waves (GWs)
[1, 2] has established gravitational wave detection as an
exciting new observational tool for cosmological phenom-
ena. Terrestrial optical interferometers are sensitive to
gravitational radiation at frequencies above roughly 10
Hz [3]. In order to extend these techniques to lower fre-
quencies where there are expected to be an abundance of
signals, space-based optical interferometers such as the
Laser Interferometer Space Antenna (LISA) have been
proposed, and are currently under technological develop-
ment [4, 5].

More recently, space-based gravitational wave detec-
tors based on optical transitions in cold atoms have been
proposed as an alternative architecture [6–14]. These
proposals rely on a combination of optical and atomic
coherence to provide sensitivity to gravitational waves.
While optical interferometers require three satellites to
cancel laser phase noise, these proposals require only
two. We will focus here on two categories of the atom-
based proposals: those described as “atom interferome-
ters” (AI) typified by [12], and those described as “op-
tical lattice clocks” [9]. These two types of proposal are
illustrated in Fig. 1.

AI-type proposals based on two-photon Raman tran-
sitions have also been proposed as a means of detect-
ing gravitational waves, both in space-based and ground-
based applications [15–17]. However, these proposals are
not inherently insensitive to laser phase noise, and thus
require noise cancellation techniques similar to a purely
optical interferometer, such as the use of three interfer-
ometers. AI detectors based on two-photon Raman tran-
sitions may prove to be powerful tools for detecting grav-
itational waves, but here will focus exclusively on propos-
als that leverage long-lived optical atomic coherence on
a single detection baseline with intrinsic insensitivity to
laser phase noise.

In both clock and AI type proposals, two ensembles
of atoms with a long-lived optically excited state are
prepared in two satellites separated by a large distance.
Laser pulses transmitted between the two satellites in-

teract with the atoms in order to imprint the effects of
a passing gravitational wave onto atomic observables. In
both cases, the atoms are in a freely falling reference
frame. In AI proposals, this is accomplished by simply
preparing the atoms in a high vacuum environment. In
clocks, the atoms are tightly trapped in an optical lattice
formed by reflecting a laser off of a freely falling mirror
that serves as an inertial reference, as in the proposed
LISA interferometer [5]. In AI proposals, the interaction
between the atoms and the laser leads to recoil momen-
tum kicks imparted to the atoms, while in clock propos-
als the photon momentum is absorbed by the much more
massive inertial reference.

In the clock community, gravitational wave detec-
tion has been described as a frequency measurement of
Doppler shifts that result from the stretching of space
between the satellites [9, 10]. In the AI community, the
stretching of space has been described as causing a phase
shift between the laser phase and the atomic coherence
[14]. A key element of AI proposals is enhanced sensitiv-
ity to gravity waves through the use of Large Momentum
Transfer (LMT) pulses in which the atoms acquire many
photon recoil momentum kicks. In contrast, the tight
confinement of the atoms relative to the inertial refer-
ence mass in an optical lattice clock causes the photon
recoil to be suppressed. This difference in particular, as
well as the language used to describe the devices, would
seem to indicate that the two sensors are somehow fun-
damentally different.

In sections II and III we provide a comparison of these
two sensors to show that the fundamental mechanism for
sensitivity is in fact the same for the clock and AI type de-
tectors. In both types of sensors, laser pulses that couple
a ground and long-lived optically excited state imprint
their local phase onto an internal quantum superposition
state of each atom. The atoms primarily act as a highly
coherent phase memory that keeps track of these phase
imprints and allows them to be read out through atomic
observables.

By viewing clock-like detectors as phase memories,
rather than simply as clocks whose sole capability is
to measure frequency, we show in section IV that they
support the implementation of LMT-like protocols with
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enhanced sensitivity even when negligible momentum
is transferred to the atom. We further show in sec-
tion V that the relevant phase information can actually
be stored in stable ground states that evolve phases at
acoustic rather than optical frequencies. This enables
useful coherent evolution times beyond the lifetime of
the optically excited state.

II. OPTICAL PATH LENGTH CHANGES DUE
TO GRAVITATIONAL WAVES

For both types of proposals, the important effect of a
gravitational wave is its modification of the optical path
length L between the two satellites. We will describe the
effects of a gravitational wave at angular frequency ωg by
replacing the gravitational wave with a phase modulator
that fills the space between the two satellites (e.g. an
electro-optic modulator or EOM) sinusoidally driven at
frequency ωg. The drive applied to the modulator leads
to a phase shift α(t) on laser light that is launched from
one satellite and detected at the other satellite. The light
is launched from the first satellite at time t, but arrives
at the second satellite where it is detected at time t+Td,
where Td is the nominal delay or transit time between
satellites.

The total phase shift α(tj) for a pulse launched at time
tj is calculated by integrating along the optical path.
We can define a net effective path length for the pulse
L+ Lj = L+ α(tj)/k where the small change in optical
path length is

Lj =
hc

2ωg
(sin (ωg(tj + Td))− sin (ωgtj)) . (1)

We have made the approximation that the gravitational
wave’s strain is very small h� 1. In this expression, c is
the speed of light in the undriven modulator, k = 2π/λ
is the wavenumber of the laser light, and λ is the laser
wavelength.

III. DETECTING CHANGES IN OPTICAL
PATH LENGTH

The goal of this section is to understand how AI
and clock-like sensors can be used to precisely estimate
changes in the optical path length Lj . In our model,
shown in Fig. 2, we consider two atoms labeled a and b
that are separated by distance L. The atoms may either
be cooled in free space (atom interferometers) or tightly
confined (clocks). The atoms have a long-lived optical
transition, such as those in alkaline-earth and similar
atoms (for example, Sr and Yb atoms). A laser located
near atom a launches pulses of light that interact with
both atoms with equal intensity.

The laser pulses interact with the atoms by applying
so-called π/2 and π pulses between ground |g〉 and ex-

cited |e〉 states. We will assume that the coupling or Rabi
frequency is much larger than the atomic decay rate from
|e〉 and any relevant Doppler shifts due to atomic motion.
We will also assume for simplicity that the laser frequency
is exactly equal to the atomic transition frequency. These
assumptions rule out some of the capabilities of atom in-
terferometers (such as addressing atoms that have expe-
rienced different recoils independently), but retains the
basic mechanism for sensitivity. The effect of the laser
pulses on the atoms written in a rotating frame at the
atomic transition frequency can then be expressed using
the operators:

R̂π/2(φ) =
1√
2

[
1 −e−i(φ+kx)

ei(φ+kx) 1

]
(2)

R̂π(φ) =

[
0 −e−i(φ+kx)

ei(φ+kx) 0

]
(3)

These operators act on the basis states :

|g〉 ⊗Ψg(x) =

[
1
0

]
⊗Ψg(x) (4)

|e〉 ⊗Ψe(x) =

[
0
1

]
⊗Ψe(x) (5)

that are a product of an internal state label |e〉 or |g〉,
and an external state wavefunction Ψe,g(x). Here x rep-
resents the distance from a fixed plane where the laser’s
phase is defined as φ. The effect of these interactions is
both to transfer amplitude between the internal states of
the atoms and also to imprint the laser’s local phase upon
the transferred portion of the atom’s wave function. The
fact that Ψg(x) may differ from Ψe(x) indicates the possi-
bility of entanglement between the internal and external
degrees of freedom of the atom.

For simplicity, we account for laser frequency noise by
allowing the laser phases to vary between pulses, but tak-
ing the actual laser frequency to be fixed at the atomic
transition frequency such that k is constant [18].

First, we consider the effect of these rotations for a
clock-like sensor in which the atoms are confined to much
less than the laser wavelength (known as the Lamb Dicke
regime.) In this limit, we can think of the ei(φ+kx) term
as imprinting a spatially constant phase onto the atom,
whose value is determined by the location of the atom
along the laser’s path. For example, a π pulse applied to
an atom tightly confined in a trap centered at position
x = A and in the ground state |Ψ0〉 = |g〉 ⊗Ψ0(x) trans-
fers the atom to the state |Ψ〉 ≈ |e〉 e−i(φ+kA) ⊗ Ψ0(x).
The external state wave-function is to very good approx-
imation unmodified by the pulse, but its internal wave-
function has acquired a net phase φ+ kA.

In contrast, in AI sensors the atoms are not confined
and a change in the internal state is accompanied by a
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FIG. 1. Optical lattice clock and atom interferometer detectors for gravitational waves. Each type of proposal relies on two
ensembles of atoms, one in each satellite. Lasers transmitted between the satellites encode phase shifts due to changing optical
path lengths caused by a gravitational wave. The key difference between clock and atom interferometer proposals is that in
clocks, atomic recoils due to the momentum of absorbed/emitted photons are supressed by tightly confining the atoms, while
in atom interferometers the atoms are free to recoil.

change in the external state. In particular, one cannot
neglect the variation of the optical phase factor over the
spatial extent of the atomic wavefunction. For concrete-
ness, a π pulse applied to an unconfined atom centered at
x = A and in the ground state |Ψ0〉 = |g〉 ⊗Ψ0(x) trans-
fers the atom to the state |Ψ〉 = |e〉 e−iφ ⊗ e−ikxΨ0(x).
As written, the internal portion of the wavefunction ap-
pears identical to that of the confined case, but now the
external wavefunction has a spatially varying phase cor-
responding to one photon’s worth of momentum recoil.

A change in the optical path length Lj between the
atom and the laser producing the π-pulse manifests in the
confined case as |Ψ〉 = e−i(φ+k(Lj+A)) |e〉 ⊗Ψ0(x) and in
the unconfined case as |Ψ〉 = e−i(φ+kLj) |e〉⊗Ψ0(x)e−ikx.
The sensitivity to changes in path lengths from gravita-
tional waves is due to the imprinting of an additional
phase kLj , which is the same whether the atoms are
confined or not. In the case of AI sensors one must add
additional pulses to become insensitive to the terms as-
sociated with the photon recoil.

A. Clock-like Detectors

A clock-like gravitational wave detector with confined
atoms could be used to detect the gravitational wave
phase shift using a basic Ramsey sequence [9], pictured
in Fig. 2b. A change in the optical path length Lj leads
to a modification of the laser phase experienced by atom
b of kLj . The phase experienced by atom a is unmodified
by the change in optical path length. In this sequence,

the role of atom a is then simply to record any variation
of the phase of the laser itself due to technical sources of
noise so that this laser phase noise can be subtracted out
from the final measurement.

Stepping through the Ramsey measurement, atoms in
both locations are initially prepared in |g〉. At time t1,
the laser drives the first π/2 pulse with phase φ = φ1. we
keep track of this phase only to demonstrate insensitivity
to its value. The rotation applied to atom a is Ra =
Rπ/2(φ1). When the same pulse arrives at atom b it
creates a rotation Rb = Rπ/2(φ1 + kL1). At a later time
t2, a second π/2 pulse is applied to atom a with a laser
phase φ = φ2: Ra = Rπ/2(φ2). The same pulse of light
travels to atom b to drive a π/2 pulse Rb = Rπ/2(φ2 +
kL2).

The final signal that is detected is the difference in the
probability for finding the atom in its excited and ground
states. For atom a this observable can be parameterized
as Sa = Pea − Pga = cos Φas and for atom b as Sb =
Peb − Pgb = cos Φbs. For the above Ramsey sequence,
the signal phases are given Φas = (φ2 − φ1) and Φbs =
kL2 − kL1 + (φ2 − φ1), The gravitational wave signal is
given by extracting the difference of the phase of these
two signals [19]

Φs = Φbs − Φas = k(L2 − L1) (6)

The key result is that the technical laser phase noise is
canceled by having been recorded on both atoms and only
the gravitational wave’s signal remains.
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FIG. 2. A toy model for gravitational wave detection. (a) Two atoms (a and b) are addressed by a single laser resonant
with a transition between the ground state |g〉 and a long-lived excited state |e〉. A phase modulator mimics the effect of a
gravitational wave by modifying the optical path length between the two atoms. (b) For tightly confined atoms (clocks), a
simple Ramsey sequence can be used to detect changes in optical path length. A first π/2 pulse imprints the laser phase on
the two atoms when the path length is shifted by L1, and a second π/2 pulse acts when the path length is shifted by L2.
Random variations in the laser phase (φ1 and φ2) are common to the two atoms, while phase shifts resulting from changes in
path length are not. The signal from the phase modulator manifests as phase shift Φs = k(L2 − L1) between the excited state
probability oscillations of the two atoms. (c) For unconfined atoms (atom interferometers), transitions between |g〉 and |e〉 are
accompanied by momentum kicks, which necessitate an additional laser π pulse in the middle of the sequence. The phase shift
between excited state oscillations of the two atoms is now Φs = k(L3 − 2L2 + L1).

B. Atom Interferometer Detectors

In an atom interferometer, the atoms are unconfined
and a slightly more complicated sequence is needed. The
initial π/2 pulse entangles internal and external degrees
of freedom of the atom by imparting a momentum kick
to the portion of the atomic wavefunction transferred to
|e〉. If this momentum kick is not reversed, the portions of
the atomic wavefunction will not be spatially overlapped
to interfere at the time of the second π/2 pulse. The
simplest solution is to add a π pulse in the middle of
the sequence (Fig. 2c). More complex sequences, with
enhanced performance in different regimes are presented
in [12, 14], though the core mechanism for sensitivity is
the same as this simple version.

Stepping through the simplest AI sequence, the first
π/2 pulse, π pulse and second π/2 pulse are launched
from the laser at times t1, t2, and t3, respectively. When
the three pulses arrive at atom b they will have experi-
enced optical path length differences L1, L2, and L3.

The signal that is extracted is the same as above, and
depends only on the optical path lengths as

Φs = k(L3 − 2L2 + L1) (7)

where the random fluctuations in laser phase φ3, φ2, and
φ1 are again cancelled because they are common to both

atoms. A similar analysis for the atom interferometer is
presented in [8].

IV. ENHANCED SENSITIVITY ANALOGOUS
TO LARGE-MOMENTUM-TRANSFER

We now propose a mechanism by which the signal
recorded by the clock-like sensor can be enhanced. In
atom interferometry in general, and AI based GW detec-
tors in particular [12], large momentum transfer (LMT)
is a crucial tool used to enhance the size of measured
signals. Our enhancement mechanism is very similar to
LMT, but is applied to confined atoms, so no momentum
is actually transferred to the atoms. Instead, by allowing
for multiple interactions between the lasers and atoms, a
phase is repeatedly written in to the atomic coherence in
a constructive manner to enhance the signal size Φs.

The key to this enhancement sequence is to apply the
laser pulses from alternating sides (as is proposed for
LMT protocols for single-photon transitions with uncon-
fined atoms [12–14]) using one laser near atom a and one
laser near atom b, as illustrated in Fig. 3. Because the
sign of the laser phase shift imprinted on the atoms is
opposite in sign when the atoms are driven from |e〉 to
|g〉 versus |g〉 to |e〉, if the same laser were used to try to
imprint its phase multiple times, it would simply unwrite
the phase that it had just written in. By interleaving π
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FIG. 3. LMT-like enhancement with confined atoms. (a)
Atoms are addressed by counter-propagating lasers, both of
which pass through the phase modulator that sits between the
atoms. (b) Two blocks of M pairs of π pulses (blue boxes)
are inserted between the π/2 pulses of the standard Ramsey
sequence. Each pair of π pulses contains a pulse originating
from each direction. The duration of each block is assumed
here to be short relative to the GW period, while a long evo-
lution time (grey box) between the two blocks may be com-
parable to the GW period. (c) The additional pulses lead
to a factor of 4M + 1 enhancement in the signal phase Φs

compared to simple Ramsey sequence.

pulses from a second laser, which does not encode the
same gravitational wave phase shift as the first, we can
ensure that the phase shift corresponding to the GW is
always written in with the same sign. The phases of the
laser pulses are always referenced to a plane near the
laser from which they originate so that there is negligible
GW contribution to this phase.

For simplicity, we treat the case where a set of pulses
is applied in quick succession at the beginning of the
measurement sequence, with launch times roughly equal
to t1 and with optical path length changes all equal
to L1. During a subsequent free evolution period Te,
much longer than the time over which the rotations were
applied, the optical path length may change. At time
t2 = t1 + Te, a second set of rotations is quickly applied
with launch times all roughly equal to t2 such that all
pulses experience an optical path length change equal to
L2 (a discussion of the effects of time delays is included
in the appendix).

Consider the first group of pulses. From the perspec-

tive of one of the two atoms, the laser pulse that ar-
rives from the distant laser encodes in its phase kL1 the
change in path length. This phase is then imprinted on
the atomic superposition with a different sign between
the portion that was transferred from |e〉 to |g〉 versus
|g〉 to |e〉 such that the difference phase is 2kL1. The
next laser pulse that is launched from the locally situ-
ated laser resets the two portions of the atomic superpo-
sition to their original internal states. It imprints a phase
shift of its own, but this phase does not encode informa-
tion about the change in optical path length L1, and the
laser’s phase noise cancels in the final differential signal
phase Φs. Because the two portions of the atomic super-
position have been reset to their original internal states,
a subsequent rotation from the distant laser will imprint
a phase encoding the same path length difference kL1

that adds constructively with the previously imprinted
phase so that the total imprinted phase on the atom is
now 2× 2kL1.

If we apply M pairs of π rotations after the first π/2
pulse and M pairs of π rotations before the last π/2 pulse
(i.e. 4M total launched π pulses), with each pair contain-
ing a rotation originating from both the left and right
sides, the differential phase shift between the two output
channels is enhanced by a factor of (4M + 1) relative to
the simple Ramsey sequence presented above so that now

Φs = (4M + 1)k(L2 − L1) (8)

In the regime we consider here, even a single pair of LMT
pulses (i.e. 4 total π-pulses), improves the estimate of
(L2 − L1) by a factor of 25 in variance. As a result, the
same precision can be achieved with a reduction in re-
quired resources such as atom number or averaging time
by a factor of 25. Alternatively, one could achieve the
same sensitivity to gravitational waves with a 5 times
shorter satellite separation or evolution time Te for re-
duced technical complexity or enhanced bandwidth for
detecting gravitational waves, respectively.

This enhanced protocol is insensitive to laser phase
noise for the same reason that the simple protocols pre-
sented in section III are: each laser pulse interacts with
both interferometers, so any phase noise on the laser can-
cels in the differential signal.

Previous proposals for detectors using confined [9] and
unconfined [14] atoms include so-called dynamical decou-
pling (DD) sequences. A DD sequence would amount to
applying a π pulse from the same laser every time tj at
which the magnitude of the optical path length change
|Lj | is maximal. Because the sign of Lj alternates be-
tween pulses, the resulting imprinted phase shifts add
constructively. This is conceptually similar to our LMT-
like enhancement mechanism, except that we can switch
the sign of the phase shift by alternating which laser ap-
plies the pulse instead of waiting for the sign of the GW
to switch.

Dynamical decoupling is useful when the evolution
time Te greatly exceeds the GW period Tg. In this
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regime, the enhancement in signal scales as Te/Tg � 1.
This reflects the fact that the phase shifts from Te/Tg
cycles of the gravitational wave may be added construc-
tively. There is no constraint on delay time Td.

LMT-type sequences are useful when the period of the
GW Tg and total evolution time Te are long compared
to the pulse transit time Td. This is necessary in order
to send multiple pulses back and forth between the two
satellites before the path length changes caused by the
gravitational wave switches sign. The full signal response
versus gravitational wave frequency is considered in the
appendix. The main result is that one can build a long
baseline experiment and set Te = Td using a straight-
forward Ramsey sequence, or one can use LMT-type se-
quences to dramatically shorten the baseline such that Te
is the same but now Te � Td. In either case, the sensitiv-
ities are comparable. LMT-like enhancement allows one
to address technical constraints that might be relaxed by
operating with shorter baselines, at the expense of po-
tentially introducing technical errors associated with the
additional laser pulses.

Finally, as analyzed in [14], LMT can be combined with
DD when both Te � Tg and Tg � Td. Doing so amounts
to varying from which satellite the π pulses are sent.

V. EVOLUTION TIMES LONGER THAN THE
EXCITED STATE LIFETIME

We now present a further enhancement that can be re-
alized by treating the atoms as a phase memory, rather
than a clock. In a typical clock, the atoms are consid-
ered to be a two-state system. Because external degrees
of freedom ideally remain unchanged, clocks lack addi-
tional quantum labels to specify other states. Any pulse
that interacts with one ‘arm’ of the clock interferome-
ter (|g〉) also interacts with the other (|e〉): the quantum
mechanical amplitudes may be swapped between ground
and excited states, but the portion of the wave-function
in the ground state cannot be manipulated without also
modifying the portion of the wave function in the excited
state. In an AI, the external degrees of freedom of the
atom provide additional labels that allow the two arms
to be manipulated independently.

While in clock type proposals, a fraction of the atomic
wave-function must always be in the excited state to
achieve sensitivity, AI type detection sequences may in-
clude useful periods where both arms of the interferom-
eter are in the ground state [12], allowing for evolution
times greater than the excited state lifetime. This tech-
nique is particularly useful for enhancing the signal in the
regime where the period of the GW exceeds the lifetime
of the excited state.

In a recoil-free GW detector, additional internal states
of the atoms can provide additional quantum labels
that allow for the independent manipulation of only
one arm of the interferometer. Here, we consider an
atomic species like 171Yb with nuclear spin I = 1/2.

There are two ground states with nuclear spin projec-
tions mI = ±1/2 that we we will label as |g1〉 and |g2〉.
For our purposes, we care about a single excited state |e〉,
as shown in Fig. 4a. A small magnetic field is applied to
define a quantization axis. Transitions may be driven be-
tween either |g1〉 and |e〉 or |g2〉 and |e〉 by applying laser
light with different polarizations or frequencies.

An experimental sequence for such a protocol is shown
in Fig. 4b. A superposition is prepared by driving a π/2
pulse originating from the left between |g1〉 and |e〉. A π
pulse originating from the right then transfers the popu-
lation of |e〉 to |g2〉. The atoms remain in this configura-
tion while the path length is allowed to change during an
evolution time Te, which we take to be much larger than
the delay time Td. The pulse sequence is then reversed
and the change in path length is read out via a population
measurement. The resulting signal is Φs = 2k(L2 − L1),
again with no contribution from laser phase noise. Mem-
ory storage in ground states could be combined with
LMT-type enhancement by inserting π pulses on the |g1〉
to |e〉 transition in between the π pulses on the |g2〉 to |e〉
transition and the initial and final π/2 pulses to realize
further enhancement.

Because the atoms are in superpositions of ground
states, there is no spontaneous emission during Te. In-
stead, the relative phase that would normally exist be-
tween |g1〉 and |e〉 is now stored between |g1〉 and |g2〉
during the evolution period Te. In addition to extending
the evolution time beyond the spontaneous-decay limited
coherence time of the atoms, this technique of shelving
the atoms in ground states provides insensitivity to col-
lisional effects that may limit the atomic density or co-
herence time achievable in practice. Inelastic collisions
between excited state atoms, which contribute to atom
loss in dense systems, would be eliminated by storing the
atoms in the ground states [20, 21]. Because elastic colli-
sional properties of alkaline-earth-like atoms are indepen-
dent of nuclear spin state [22, 23], mean-field shifts due
to elastic collisions are common to the two ground states
and will not lead to noise or dephasing. Other bias errors
in clocks such as black-body, electrostatic, and lattice po-
larizability and hyperpolarizability shifts would also be
suppressed. As in the AI case, this technique is applicable
when the evolution time Te would otherwise be limited
to much less than the gravitational wave period Tg.

The key result is that it is not necessary for the phase
memory to exist in a frame accumulating phase at an op-
tical frequency. It is only necessary that the interactions
with the laser pulses happen between optical transitions,
but these interactions can in principle represent a small
fraction of the total evolution time.

This protocol may appear similar to those that use
two-photon Raman transitions in that the atoms occupy
two ground states during a long evolution time. How-
ever, Raman transitions require a laser pulse from each
satellite to interact with an atomic ensemble at the same
time in order to perform a rotation without populating
the short-lived excited state. As with single-photon tran-
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FIG. 4. Use of three-state system to allow atoms to stay in ground state for much of evolution time. (a) Our procedure utilizes
two ground states, |g1〉 and |g2〉 and a single long-lived optically excited state |e〉. |g1〉 and |g2〉 can independently be coupled
to |e〉 using laser pulses with different frequency and/or polarization (red and blue arrows). (b) After preparing an atomic
superposition of |g1〉 and |e〉 using a π/2 pulse from the left (atoms begin in |g1〉), the portion of the atoms in |e〉 is transferred
to |g2〉 using a π pulse from the right. The atoms are then in a superposition of |g1〉 and |g2〉 with phase dictated by the lasers
and the path length L1. The sequence of pulses is reversed after a long evolution time, during which time the atoms are not
susceptible to excited state decay. The phase shift in the excited state probabilities of the two atoms Φs = 2k(L2 − L1) now
encodes changes in the optical path length that occurred while the atoms were in the ground states.

sitions, each laser pulse must also interact with both in-
terferometers in order to obtain a signal that is insensitive
to laser phase noise. These two requirements lead to a
conflict for detectors that use Raman transitions: to our
knowledge, there is no protocol based on a two-satellite
configuration in which each rotation is performed by si-
multaneously incident pulses from both satellites, and in
which each pulse leads to the desired rotation in both
interferometers. Because the use of single-photon transi-
tions as discussed here allows population to be stored in
the excited state for a time of order Td or longer, the laser
pulses from the two satellites need not be simultaneously
incident on the atoms, enabling phase-noise insensitive
protocols that do not appear to be possible with Raman
transitions.

VI. CONCLUSION

Gravitational waves create phase shifts on optical
pulses, which we would like to detect as sensitively as pos-
sible. At the most basic level, one would like to store an
optical pulse of light sent at time t1 with phase shift kL1

until a second pulse of light arrives with a different phase
shift kL2 at time t2, then compare the phases of the two
pulses. Note that this is a related mechanism to that em-
ployed by purely optical GW detectors, which compare
the phase shifts experienced by light travelling on two dif-
ferent paths that experience opposite GW-induced phase
shifts, rather than light that that travelled along the same
path at two different times. By providing a highly coher-
ent phase memory with which the two pulses may inter-
act, the atoms allow one to make time-separated phase
comparisons of the two pulses in a manner that is in-

sensitive to laser phase noise. This capability eliminates
the need in atomic detectors for a third satellite that is
required in purely optical interferometers.

Further, multiple pulses can be made to constructively
imprint their phases onto the atoms by properly alter-
nating their launch direction (LMT) or by synchronizing
their launch times with the frequency of the gravitational
wave one wishes to detect (DD). From a fundamental
perspective, the ability to achieve LMT-type signal en-
hancement does not appear to require the transfer of mo-
mentum to the atoms or that the two lasers originate
from different directions (although the latter is required
for cancellation of technical sources of noise). In certain
regimes, LMT allows the signal size to be increased such
that the uncertainty in the estimate of the optical phase
of interest k(L2 −L1) can be greatly reduced to well be-

low the atomic standard quantum limit 1/
√
N rad on

atomic phase resolution.

For gravitational wave detection, we do not need to
measure the absolute frequency of a laser relative to an
atomic transition frequency, as one would do in a clock.
As we have shown, this allows for the construction of a
ground state shelving protocol with reduced sensitivities
to perturbations and evolution times Te greater than the
optical transition lifetime.

Ultimately, the decision to use confined or unconfined
atoms will depend on a myriad of technical considerations
that we have no business weighing in on. From a funda-
mental perspective, both methods have the same mech-
anism for sensitivity: atom interferometers and clocks
both sense changes in phase that result from changes in
optical path length between the two satellites. This inter-
pretation should help distinguish to what degree differing
expected sensitivities for future proposals are due to the
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choice of sensor architecture versus the specific parame-
ters considered.
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VIII. APPENDIX: ACCOUNTING FOR TIME
DELAYS

In the main text, we considered an LMT pulse sequence
in which the time delay Td is much shorter than both
the evolution time Te and gravitational wave period Tg.
Rather than launching a series of LMT pulses at the be-
ginning and at the end, one could in principle launch a
continuous series of alternating π-pulses during the en-
tire period of time between the π/2 pulses. For continu-
ous LMT, we find that the signal size averaged over all
phases of the gravitational wave is (to good approxima-
tion) given by:

Φ̄s = 4
√

2h
ωl |sin(ωgTd/2)|

ω2
gTd

sin2(ωgTe/4) (9)

where ωl is the laser angular frequency. When Td � Tg,
the sensitivity falls of rapidly as 1/ω2

g . However, in the
limit Td � Tg the scaling changes to

Φ̄s ≈ 2
√

2h
ωl
ωg

sin2(ωgTe/4) (10)

For comparison, if the spacing of the satellites is increased
until Td = Te, then one cannot use LMT and the Ramsey
sequence yields an averaged signal:

Φ̄s =
√

2h
ωl
ωg

sin2(ωgTe/2) (11)

The oscillations in the signal versus ωg differ by a fac-
tor of 2 and the envelope of the signal size is larger by
a factor of 2 for LMT. Most importantly, approximately
the same signal can be obtained using continuous LMT
with of order Te/Td π pulses and an approximately Te/Td
times shorter satellite satellite spacing. It is likely that
decreasing the spacing of the satellites will be advanta-
geous for technical reasons, for instance, it allows for re-
duced requirements on laser power and pointing stability.
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