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Abstract  

We introduce topological phases in curved space photonic lattices. In such systems, the interplay 

between the curvature of space and the topology of the system, as manifested in the topology of 

the band structure, gives rise to a wealth of new phenomena. We demonstrate the topological 

curved-space concepts in an experimentally realizable setting of a waveguiding layer covering 

the surface of a 3D body, and show that the curvature of space can induce topological edge 

states, topological phase transitions, Thouless pumping and localization effects. We also describe 

the analogy between our system and topological phases in dynamical curved space-time settings 

known from General Relativity. 

 

 

 

 

 

 



Topological insulators constitute a growing field of research in condensed matter [1-4] as well as 

in other fields of science. They are particularly interesting since they support transport that is 

protected against disorder due to the material’s topological nature. Extending the topological 

ideas beyond condensed matter started with the prediction of topological phenomena with 

electromagnetic waves [5,6] and experiments with microwaves in gyro-optic media [7]. Research 

on topological phenomena in photonics has started with the experiments on topological edge 

states in a binary lattice [8] and on Thouless pumping in quasiperiodic lattices [9]. The next stage 

was the search for photonic topological insulators [10-12], that have topologically protected 

unidirectional transport of photons. Photonic topological insulators were demonstrated in 2013 in 

two different systems [13,14]. Since then, topological photonics has been flourishing with many 

new ideas [15-18] and conceptual applications for devices based on topology [10,19,20]. More 

recently, topological phenomena have also been observed with cold atoms [21, 22], acoustic 

waves [23, 24], and mechanical waves [25]. Interestingly, recent pioneering work has 

demonstrated a photonic system emulating a 2D gas on a cone with landau levels [26], which is 

essentially a curved-space setting [27,28]. Clearly, exploring topological phases in curved space 

systems, known from General Relativity (GR), can add new fundamental features to the area of 

topological physics. Moreover, although experiments involving gravitational space-time 

curvature are rarely accessible in the lab [29], it is possible to construct systems realizing curved 

space settings in optics [30-44], Bose-Einstein condensates [45-47] and acoustics [48-50] 

providing platforms for demonstrating GR phenomena [47], triggering new insights.  

 Here, we present topological phases in curved-space photonic lattices. We study lattices in the 

presence of a curved spatial metric, specifically in cases where the topological phases are 

determined by the metric. Our study is carried out in the context of photonics, but the concepts 



involved are universal, having manifestations in many areas of physics. We study the effects in 

an experimentally viable physical setting - a thin 2D waveguiding layer covering the surface of a 

3D body [51-53], where the light effectively propagates in 2D curved-space. We show that, by 

engineering the curvature of the surface (analogous to changing the spatial metric underlying the 

photonic propagation), we induce topological phases, topological phase transitions, Thouless 

pumping and localization effects. 

Consider a laser beam propagating in a thin waveguiding layer covering the surface area of a 

curved 3D body [51,52], as sketched in Fig. 1a. For simplicity, the surface is azimuthally 

symmetric about the Cartesian axis z. This surface of revolution (SOR) is described by the 2x2 

metric ݃ given by: ݀ݏଶ ൌ ଶߠሻଶ݀ݖሺݎ ൅ ଶݖ݀ ൌ ܴሺݖሻଶ݀ݔଶ ൅ ଶݖ݀ ൌ ݃௫௫ሺݖሻ݀ݔଶ ൅ ݃௭௭݀ݖଶ,  where ݎሺݖሻ is the polar radius, ߠ is the azimuthal angle, ݔ is the azimuthal angle scaled to units of 

length, and ݃௭௭, ݃௫௫ are the diagonal components of ݃ that depend only on ݖ. For such 2D SORs, 

the polar radius ݎሺݖሻ is used as a means to control the curvature of space.  

We are interested in photonic topological phenomena that result from curved metric of space. 

Since many topological systems rely on periodic potentials, we introduce a lattice structure to the 

metric: ݃௫௫ሺݖሻ ൌ ∑ ݂ሺݖ െ ௡ሻ௡ݖ , where ݂ሺݖሻ describes a locally confined contraction or 

expansion of space, and ݖ௡ are the locations of these local distortions of space. This means that 

space is contracting in a repeating form (Fig.1a). Lattices based on metric curvature were 

demonstrated experimentally in photonic systems [55]. Here, we construct the metric component ݃௫௫ to have the structure of a lattice with a topologically nontrivial band structure, and show that 

topological edge states can appear and disappear depending on the curvature of space.  



Consider surfaces with small intrinsic and extrinsic curvature (with ݎሺݖሻ large compared to 

the optical wavelength, such as the hollow cylinder sketched in Fig 1a, of radius  ݎሺݖሻ and 

thickness h, with a periodic lattice fabricated on it. Here, the azimuthal symmetry of the surface 

allows decoupling Maxwell’s equations [51-53] according to ߰ሺݔ, ,ݖ ݄ሻ ൌ ߶ሺݔ,  ߰ ሻΞሺ݄ሻ whereݖ

is a linearly polarized electric field. Under these assumptions (see Supplement A) a coherent 

beam propagating paraxially in the ݔ direction (normal to the axis of revolution z; Fig. 1b), obeys  

                                              2݅݇௫ ,ݔሺݑ߲ ݔሻ߲ݖ ൌ െ ݃௫௫ሺݖሻ݃௭௭ ߲ଶݑሺݔ, ଶݖሻ߲ݖ െ ௘ܸ௙௙ݑሺݔ,   ሻ                            ሺ1ሻݖ
Where ߶ሺݔ, ሻݖ ൌ ݃௭௭ଵ/ସ݃௫௫ିଵ/ସݑሺݔ, ሻݖ expሾ݅݇௫ݔሿ, ௘ܸ௙௙ ൌ െ ଷଵ଺௚೥೥ ൫௚ᇲೣೣ൯మ௚ೣೣమ ൅ ଵସ௚೥೥ ௚ᇲᇲೣೣ௚ೣೣ , and ݇௫ is the 

(approximate) propagation constant (x component of the wavenumber). Equation (1) is 

analogous to the 1D Schrödinger equation, where ݔ plays the role of time. The space metric ݃ሺݖሻ 

introduces two important effects: First, it creates an effective potential that depends on the 

derivatives of the curvature. Second, and more importantly, it makes the “mass” term (first term 

in the right-hand side of Eq. (1) dependent on the local curvature. Since Eq. (1) is effectively a 

linear 1D Schrödinger equation, its eigenvectors and eigenvalues can be calculated numerically. 

   Next, we describe how light can propagate in topological edge states that form strictly due to 

the space curvature. We examine the Su-Schrieffer-Heeger (SSH) binary lattice model [56-57], 

which is the simplest model exhibiting topologically protected edge states [58]. The SSH has two 

coupling constants ݑ and ݒ, and two phases: topological, when the lattice ends on a site with the 

smaller coupling constant and an edge state exists, and trivial, when the lattice ends on a site 

with the larger coupling constant and no edge state exists. The topological invariant 

characterizing each phase is found by integrating the Zak phase of the infinite bulk over the 



Brillouin zone  [59-60]. Although the SSH model is relatively simple, it has a topological phase 

that is related directly to the edge states of 2D systems such as graphene ribbons [61]. To 

construct an analogue to the SSH model in curved space, we use the scheme depicted in Fig. 1a, 

with ݃௫௫ሺݖሻ ൌ ଴ܩ ൅ ∑ ݖሺܩ െ ௡ሻ௡ݖ  where ݊ is the site index, ݖ௡ െ ௡ିଵݖ ൌ ቄݑௗ ௗݒ݊݁ݒ݁ ݊ ݀݀݋ ݊  ௗݑ   ,

and ݒௗ are distances between neighboring sites, ܩ଴ is a constant basic curvature of the surface 

and ܩሺݖሻ ൌ ቊA ቂ1 ൅ cos ቀ ୸௪ቁቃ െߨ ൏ ௭௪ ൏ 0 ߨ ݁ݏ݈݁  where A and ݓ are fixed amplitude and width 

[62]. The structure has small enough derivatives ሺ| ௭߲݃௫௫|  ௫௫|ሻ such that ௘ܸ௙௙ is negligible݃ݍ| ا

[63]. We compute the eigen-energies of Eq.(1), and find that this curved space setting indeed 

supports topological edge states and a continuum of bulk states (Fig. 1b,c). Specifically in Fig. 

1b, the x axis (along which a topological phase transition occurs) is completely determined by 

the curvature. This shows how the curvature of space, alone, can support a topological phase in a 

real physical system. 

Next, we examine the effects of a temporally-varying space curvature on lattices with 

topological phases. Some of the most interesting GR phenomena arise when the space curvature 

is time-dependent. As with many GR effects, it is very challenging to measure these effects, but 

one can find analogous systems for which a coordinate plays the role of time and the curvature 

depends on that coordinate. Indeed, having dynamics in time plays a major role in topological 

systems, because systems that are driven by some external time-dependent force can exhibit a 

topological phase transition [64]. Here, we find that if a lattice has a space-curvature that varies 

in time, it is possible to observe topological phase transitions driven solely by changing the 

metric in time. We will now show a scheme where the light is propagating in the z direction on a 

SOR, with the curvature changing as a function of the “time coordinate” z. By tailoring these 



curvature variations we can cause dramatic effects on a lattice with topological phases. We now 

describe a SSH lattice in which the uniform contraction or expansion of space can cause 

topological phase transition, and explain how this is different from the flat space SSH lattice. 

Consider paraxial propagation in the z direction on a SOR, similar to [39], and add a small 

perturbative potential Δ݊ሺݔ, ,ݔሻ ( |2݇଴ଶ݊଴Δ݊ሺݖ |ሻݖ ا ݇଴ଶ݊଴ଶ ) in the form of a lattice potential 

(array of waveguides, Fig.(2.a-b)). Then, using the paraxial approximation and the ansatz: 

߶ሺݖ, ሻݔ ൌ ଵ௚ೣೣభ/ర ,ݖሺݑ ሻ݁௜௤௭݁ି௜ݔ ଶ௤ൗ ׬ ௏೐೑೑ሺ௭ᇱሻௗ௭ᇱ೥ᇲబ  where ௘ܸ௙௙ሺݖሻ ൌ ଵଵ଺ ቂ ଷ௚మ ݃௫௫Ԣଶ െ ଵସ௚ೣೣ ݃௫௫ԢԢቃ, we 

obtain  the Schrödinger-like equation for light propagating in curved space setting with a lattice 

potential: 

                                ݅ ݖ߲߲ ,ݖሺݑ ሻݔ ൌ െ ሻݖ௫௫ሺ݃ݍ12 ߲ଶ߲ݔଶ ,ݖሺݑ ሻݔ െ ݇଴ଶΔ݊ሺݖ, ݍሻ݊଴ݔ ,ݖሺݑ  ሻ,                         ሺ2ሻݔ

this equation is analogous to the 1D Schrödinger equation, where ݖ plays the role of time, and 

the space metric ݃ሺݖሻ is causing the expansion or compression of the x axis (scaled by the 

azimuthal angle). The two terms in the right hand side of Eq.(2) represent the kinetic energy and 

the lattice potential. Note that Eq.(1) and Eq.(2), although seemingly similar, represent two very 

different cases: Eq. (1) represents propagation perpendicular to the symmetry axis of the SOR, 

while Eq.(2) describes evolution in the direction parallel to the symmetry axis of the SOR.  

 Let us first explain the basic difference between a curved-space lattice and a similar 

lattice in flat space. The propagation of light in a curved-space lattice can be treated, to first 

order in curvature, as a system in flat space subjected to artificial gauge fields. For example, for 

the SOR system, by transforming the x coordinate in Eq.(2) to the “flat” coordinate ݔԢ ൌ ඥ݃௫௫ݔ , 
neglecting high orders of ݃௫௫Ԣሺݖሻ (paraxial approximation) and using 



Ԣݑ ൌ ,ݔሺݑ ሻ݁ିభమݖ ൫ඥ೒ೣೣሺ೥ሻ൯೥ඥ೒ೣೣሺ೥ሻ׬ ௗ௭
 (changes only the amplitude as a function of z, but since z plays the 

role of time it can be renormalized for every z), gives: 

           ݅ ݖ߲߲ ,ݖԢሺݑ ᇱሻݔ ൌ െ ݍ12 ൭ ᇱݔ߲߲ ൅ ݍ݅ ൫ඥ݃௫௫ሺݖሻ൯௭ඥ݃௫௫ሺݖሻ Ԣ൱ଶݔ ,ݖԢሺݑ ᇱሻݔ െ ݇଴ଶΔ݊ሺݖ, ݍԢሻ݊଴ݔ ,ݖԢሺݑ  Ԣሻ        ሺ3ሻݔ

when neglecting high orders of ݃௫௫Ԣሺݖሻ, Eq.(3) is equivalent to Eq.(2). However, the effect of the 

curvature appears in Eq.(3) as a gauge field instead of as a mass term (Eq.(2)). This mapping 

means that, to first order of the curvature derivative, a lattice in curved space is equivalent to the 

same lattice in flat space (Fig.2(b-c)) but subjected to an additional metric-dependent gauge field 

that is linear in ݔᇱ. The consequence of this gauge field is that phase accumulation in ݖ for all the 

waveguides is the same, under a uniform compression or expansion of space. For example, 

contracting the transverse coordinate x as the coordinate z is increasing means shortening the 

separation between waveguides. This, in a 2D flat space, results in that the light in different 

waveguides accumulates different phases as it evolves in z. In contrast, in a SOR all accumulated 

phases are the same for all the waveguides, when shortening the separation between waveguides. 

Thus, waveguiding on a SOR is different than in flat space, in a fundamental way (beyond just 

affecting the distance between waveguides), and this is reflected in this gauge field - which acts 

as an effective electric field in Eq.(3). Also, if we compare Fig.2(b) to Fig.2(c) in the first order 

analysis, the outer waveguides of the lattice depicted in Fig.2(c) radiate much more (at a rate 

increasing with the size of the lattice) than the outer waveguides of the lattice in Fig.2(b), due to 

the structure of the SOR. 

    Next, we show how to induce a topological phase transition by uniformly shrinking the space 

that underlies the SSH lattice. The SSH lattice on a SOR is plotted in Fig.3(a). Changing the 



radius of the surface, which is equivalent to uniform expansion of space in the x direction, does 

not change the topological phase of the SSH lattice, since the ratio  ݒ/ݑ remains constant. 

However, it is possible to design a SSH lattice that does not preserve the ratio of the coupling 

coefficients even under uniaxial expansion, as illustrated in Fig.3(b-c). Such a lattice enables 

relating the uniform expansion of space in the x direction to the topological phase of the lattice. 

This can be realized by a cylindrical dielectric shell whose thickness is small compared to its 

radius ݄ ا ܴ. For such SSH lattices, the ratio  ݒ/ݑ changes upon changing the radius of the shell 

(Fig.3(c)). If ݑ sin ݒ > ߠ for the angle ߠ plotted in Fig.3(b), then a topological phase transition 

can occur upon expansion or contraction of the SOR. This condition (ݑ sin ݒ > ߠ) divides these 

lattices into two classes. One class, for which ݑ sin ݒ < ߠ, has non-trivial topology that preserves 

the topological phase for any expansion or contraction (and any ߠ). The other class, for which ݑ 

sin ݒ > ߠ, has trivial topology that does not conserve the topological phase upon expansion or 

contraction. 

    The propagation of light in an SSH lattice in curved space that expands (e.g., an expanding 

cone) exhibits a topological phase transition (Fig.3(d)). In all waveguides the light is 

accumulating phase at the same rate (Eq.(3)), such that the light remains in the initial state during 

a contraction that preserves small ݃௫௫Ԣሺݖሻ. The geometry of the SOR preserves translational 

symmetry under contraction, unlike contraction in a flat plane for which the lattice experience an 

effective gauge (electric) field that destroys the translational symmetry. Since translational 

symmetry is preserved in a SOR, along with all other symmetries of the SSH, the curved-space 

SSH experiences a topological phase transition. In such phase transition, the localized edge state 

transforms adiabatically into a bulk state, which is an extended state [65]. Of course, the 

evolution of the curvature of space does not have to be monotonic: it can be periodic or even 



random, as long as it evolves adiabatically in Eq.(2), so as to ensure that the states transform 

adiabatically with negligible couplings between the different modes of the system . For example, 

Fig.3(e) shows the adiabatic propagation in the lattice of Fig.2(b) on a periodic curved SOR with ݃௫௫ሺݖሻ ൌ ൫1 ൅ ሻ൯ଶݖሺΩఊ݊݅ݏ
. As shown in Fig.3(e), the light bounces between the bulk and the 

edges periodically, due to topological phase transition that occurs periodically and adiabatically. 

This relation between metric variations and topological invariants enables also to control at 

which edge the light will be, i.e., trigger Thouless pumping of power from one edge to the other. 

The pumping (Fig. 4) is done by making the on-site energy of the waveguides dependent on the 

metric, according to the Rice-Mele scheme (Fig. 4(a)) [66]. The rate in at which the pumping 

occurs is the metric's period of oscillations. The pumping results in the transfer of power from 

one edge to the other at exactly the same periodicity as the metric (Fig. 4(b)). 

    Finally, we demonstrate how the dynamics of the metric can change drastically the behavior of 

light in a system exhibiting a band structure with nontrivial topology. In what we show next, 

varying the curvature of space nonadiabatically in a quasidisordered lattice with a topological 

band structure breaks the localization of light in the system [65]. For this purpose, we use the 

Andre-Aubry-Harper (AAH) model [67], which is a quasi-periodic lattice described by: 

௡߰ܪ                                          ൌ ሺ߰௡ାଵݐ ൅ ߰௡ିଵሻ ൅ ݌2 cosሺ2ܾ݊ߨ ൅ ߶ሻ ߰௡                                  ሺ4ሻ 
where ߰௡ is the amplitude at site ݊, ݐ is the hopping coefficient and ݌ is the on-site energy 

coefficient. Setting ܾ to be irrational makes the lattice quasi-periodic. This model has edge states 

(when truncated), displays a topological band structure, and a duality point at ݐ ൌ  The .[67]  ݌

duality results from the fact that Fourier transforming Eq.(4) with ߶ ൌ 0 does not change its 

functional form, only causing ݐ and ݌ to switch places. Thus, since the differences in on-site 



energies localizes all the states when ݐ ൏ ݐ the duality implies that when ,݌ ൐  all the states are ݌

localized in Fourier space hence they are extended states in real space. 

   Consider a truncated lattice with waveguides that are equally spaced on a cone (except the 

edges) and have on-site energies (tuned by controlling the width of the waveguides) according to 

the AAH model (Eq.(4)). The curvature changes the ratio between ݐ and ݌. Starting with Eq.(2) 

and some algebra, it is possible to show that the AAH model maintains its functional form 

(Eq.(4)) for small changes in ݃, by using a tight binding approach. This setting enables exploring 

the dynamics of the system around the duality point. When the SOR is wide (ݐ ൏  ሻ all states are݌

localized. In contrast, when the SOR is narrow (ݐ ൐  ሻ all the states are extended states. The݌

transition during propagation (Fig.5(a-c)) occurs at ݐ ൌ  and it is adiabatic if the contraction and ݌

expansion are slow enough [65]. To quantify how localized or extended the propagating wave is, 

we use the inverse participation ratio, defined by ∑ |߰|௜ ଶ / ∑ |߰|௜ ସ [68] where ݅ goes over the 

lattice sites and ߰ is the propagating field (Fig.5(c)).   

    Placing the AAH lattice on the sinusoidal curved SOR of Fig.2(b) allows studying the effects 

of curved space dynamics on the propagation, and its connection to the topological band 

structure. The oscillations of space (at frequency Ωఊ) couple two states if Ωఊ matches their ݇௭ 

difference (݇௭,஺ െ ݇௭,஻ ൎ Ωఊ ) and if they have a non-zero spatial overlap integral. This gives 

rise to unique delocalization effects within the AAH model due to the curvature of space. When 

the radius of the SOR does not cross the duality point (ݐ ൌ  ,ሻ during the oscillations (Fig.6(a))݌

the states behave as if the oscillations are “adiabatic”, and do not couple to any other state, 

staying localized. However, when the SOR begins to cross the duality point (Fig.6(b)) while 

keeping the frequency of oscillations constant, the system behaves in a “non-adiabatic” way and 

an initially localized state delocalizes more and more in every cycle, until light spreads over the 



entire lattice, thus exhibiting a “non-adiabatic” behavior. This behavior can be explained in the 

following way; the evolving state can only couple within a certain band (in the topological band 

structure) since in our case Ωఊ is smaller than the gap in ݇௭ (Fig.6(c)).  But when ݐ ൏  the states ݌

in that band are not close to each other spatially, so their overlap integral is negligible. On the 

other hand, when the oscillations go through ݐ ൌ  the overlap integral grows rapidly and all the ,݌

states in the band couple to each other, so the states delocalize and stay delocalized even when 

the radius widens again corresponding to ݐ ൏ ݐ The only way the states can delocalize, when .݌ ൏  during the entire propagation, is through resonances between different bands (Fig.6(d)) ݌

   To conclude this letter about topological phases in curved-space lattices, we note that these 

ideas can be implemented in experiments, with light propagating in lattices imprinted on a thin 

waveguiding layer covering a 3D body, as the structures fabricated by the NanoScribe in [69]. 

The analysis can be extended to nonlinear effects where the intensity affects the topological 

phenomena directly.  

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) A cylindrical waveguiding layer with an imprinted curved SSH lattice. The yellow 

arrow indicates the direction of light propagation. (b) Energy spectrum of the curved-space SSH 

as a function of the ratio of coupling  , both  and  depend only on the metric. (c) 

Eigenmodes of the curved space SSH lattice. The color map represents the light intensity: light 

propagating in a topological edge mode (upper) and in a non-topological mode when the system 

is topologically-trivial (lower).   
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Figure 2. Lattices in dynamical curved space. (a,b) lattices of evanescently

coupled waveguides (blue) on a light guiding cone (a) and on a periodic

sinusoidal surface of revolution (b). (c) The flat space potential obtained

from (b) after mapping it to a flat plane keeping the relative distances

between waveguides the same (the outer waveguides in the lattice go

through a longer optical path and stronger oscillations in amplitude than the

waveguides in the middle of the lattice) 
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Figure 3: Topological phase transition induced by curved space. (a) SSH lattice with a topological 

phase which is invariant to the expansion of space in x. The blue lines are waveguides embedded

in the guiding SOR. (b) SSH lattice with a topological phase that depends on the expansion of 

space in x. The waveguides are placed in the inner and the outer side. If ݒ > ߠ ݊݅ݏ ݑ, the uniaxial 

expansion induces topological phase transition. (c) Realization of a SSH lattice on a SOR that is 

effectively the lattice of (b) on a small segment (in z) near the phase transformation. When Δݖ is 

small, the separation between waveguides changes approximately linearly with z. The yellow

lines are the potential wells and the blue surface is the SOR. (d) Adiabatic propagation of light in

the potential of (c) during a phase transition. (e) Adiabatic propagation in an oscillatory SOR. The

light alternates between bulk states and edge states as the topological phase changes due to

periodic changes in the metric.  
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Figure 4. Thouless pumping induced by curved space. (a) The coupling 

coefficients ratio ݒ/ݑ (red line) and the staggered potential ݓ (black line) in 

the lossy Rice Mele pump as a function of z. (b) Propagation in an 

oscillating sinusoidal SOR with staggered potential obtained from changing

the width of the waveguides as a function of curvature according to the

black line in (a). Most of the power is pumped from one side to the other

periodically, with the same period as the curvature variation.  

 

(a) (b)
k୸ሾ 1mሿ 

ሿ࢓ሾࢠ ࢠ



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
  
  
 
  

k୸ሾ 1mሿ IPR

ܴ ሾ݉݉ሿ 
Figure 5: (a) delocalization in a contracting Andre-Aubry-Harper lattice (AAH). Propagation in an

AAH lattice on a cone, going from the region  ݐ ൏ ݐ where all the modes are localized to the ݌ ൐ ݌
region where all the modes are extended. Light injected into a single waveguide remains localized

until the duality point at ݐ ൌ after which the beam expands. (b) Energy spectrum of the AAH ,݌

lattice as a function of the radius of the SOR. The arrow signifies that the cone crosses the duality

point marked by the dashed line). (c) Inverse participation ratio of the model in (a) as a function of

the radius.  
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Figure 6. Dynamic curvature-induced delocalization in an AAH lattice. (a)

Propagation of an eigenstate in the AAH lattice under oscillating curvature in 

the ݐ ൏  regime. The light remains localized and behaves as if the system is ݌

adiabatic. (b) The same frequency and amplitude of the metric as in (a) but

with average radius around the ݐ ൌ -point. The light delocalizes in a non  ݌

adiabatic way. (c) Part of energy spectrum as a function of the SOR radius;

the arrows signify the oscillations of the models (a) and (b), the dashed line

is the duality point and only the green band’s states couple in the settings of

(a) and (b). (d) Projection of the beam at ݖ௙௜௡௔௟ on the eigenstates of the 

system (vertical axis) for each eigenstate (horizontal axis), after propagation 

in an oscillating SOR in the localized regime  ሺݐ ൏  for various ,(݌

frequencies Ωఊ (2nd horizontal axis). There is a resonance at the metric

frequency Ωఊ ൌ 20ሾ ଵ௠ሿ.  

(a) 
(b) 

݇௭ሾ 1݉ ሿ 
(a) 

 

(c) 

ܴଶሾ݉݉ଶሿ 

(b)

State 

(d)

Frequency [1/m] 
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