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We theoretically explore the crossover from three dimensions (3D) to two (2D) in a strongly in-
teracting atomic Fermi superfluid through confining the transverse spatial dimension. Using the
gaussian pair fluctuation theory, we determine the zero-temperature equation of state and Lan-
dau critical velocity as functions of the spatial extent of the transverse dimension and interaction
strength. In the presence of strong interactions, we map out a dimensional crossover diagram from
the location of maximum critical velocity, which exhibits distinct dependence on the transverse di-
mension from 2D to quasi-2D, and to 3D. We calculate the dynamic structure factor to characterize
the low-energy excitations of the system and propose that the intermediate quasi-2D regime can be
experimentally probed using Bragg spectroscopy.

PACS numbers: 03.75.Ss, 03.70.+k, 05.70.Fh, 03.65.Yz

Recent breakthroughs in understanding strongly inter-
acting ultracold atomic Fermi gases at the crossover from
Bose-Einstein condensates (BEC) to Bardeen-Cooper-
Schrieffer (BCS) superfluids [1–4] have attracted enor-
mous attention from diverse fields of physics [5–7]. Due
to the unprecedented accuracy in controlling the dimen-
sionality and interatomic interaction [8, 9], significant
progress has been made to realize systems in the 2D
limit [10–26]. It thus provides a new paradigm to explore
a number of intriguing low-dimensional phenomena, in-
cluding the absence of a true long-range order at nonzero
temperature [27, 28], the existence of quasi-condensates
due to the Berezinskii-Kosterlitz-Thouless mechanism
[29–31], the disruptive role of pair fluctuations around
the mean-field (MF) [32–43], and the possible observa-
tion of exotic imbalanced superfluidity [44–46]. These
unusual features lie at the heart of many technologically
interesting materials such as high-temperature supercon-
ductors [47], where the dimensional crossover (DC) from
3D to 2D is dictated by the ratio of the Cooper pair size
to the thickness of the superconducting layer.

Despite rapid experimental advances, the fundamental
criteria for reaching the strict 2D regime at the BEC-BCS
crossover are still not well understood. Experimentally, a
2D Fermi gas is realized by freezing the atomic motion in
the transverse direction using a single highly-oblate har-
monic trap [13, 24] or a tight one-dimensional optical lat-
tice [10, 11, 16, 17, 20]. In the absence of interactions, the
2D condition is easy to clarify within the single-particle
picture: the chemical potential µ and temperature kBT
of the system should be smaller than the characteristic
energy scale ~ωz along the transverse direction, so that
all atoms stay in the lowest transverse mode [13]. With
strong interactions, the situation is less clear. Indeed, a
recent measurement of time-of-flight expansion indicates
that it is difficult to display the strict 2D kinematics when
the interaction becomes stronger [22]. Theoretically, the
DC of a strongly interacting Fermi gas from 3D to 2D is
challenging due to the strong correlations [48]. To date,
an interacting quasi-2D Fermi gas has only been studied
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Figure 1: (color online). The DC diagram, tuned by the
dimension parameter η (in logarithmic scale) and the value of
the interaction strength, (lz/a3D)vmax

c
, at which the Landau

critical velocity peaks. The red solid line (with circles) and
blue dashed line show (lz/a3D)vmax

c
predicted by the GPF

and MF theories, respectively. Their distinct dependences on
η enables us to identify the 2D and 3D regimes, and the quasi-
2D regime in between. The inset shows the DC diagram in
the non-interacting case, determined from the free Fermi gas
number equation (see text).

in the highly imbalanced polaron limit [49] or by using
mean-field approach that is known to break down in the
2D limit [50, 51].

In this Letter, we determine the dimensional crossover
diagram (see Fig. 1), by considering a uniform strongly
interacting quasi-2D Fermi gas with periodic boundary
condition (PBC) in the tightly confined transverse direc-
tion [52]. This configuration is motivated by the recent
successful production of a box trapping potential that
leads to a uniform Bose or Fermi gas in bulk [53, 54].
Although the box trapping introduces finite-volume ef-
fects on the boundaries, we can approximate the center
of this confinement with a uniform density Fermi gas,
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applying PBC [55] and then apply a gaussian pair fluc-
tuation (GPF) theory to obtain the zero-temperature
equation of state (Fig. 2) [41] and Landau critical ve-
locity (Fig. 3). For a given dimensional parameter
η ≡ k3DF lz, where lz is the length of the periodic box in

PBC along the transverse direction and k3DF ≡ (3π2n)1/3

is the three-dimensional (3D) Fermi momentum of the
gas with density n, we determine the interaction strength
at which there is a maximum of the Landau critical veloc-
ity [55], (lz/a3D)vmax

c
, where a3D is the 3D s-wave scatter-

ing length. A Fermi superfluid is most robust to external
excitations at this maximum, which is found, in 3D, close
to unitarity [56–58]. We obtain a regime where the max-
imum of the critical velocity in the BEC-BCS crossover
depends linearly on the logarithm of η for η < 2, denoting
a 2D regime (i.e., the long-dashed line in Fig. 1). Also,
(lz/a3D)vmax

c
depends linearly on η for η > 8, denoting a

3D regime. The region that links these regimes is defined
as quasi-2D and has properties distinct to the 2D and 3D
limits.

Theoretical framework. — We start by defining various
Fermi momenta. We consider a s-wave two-component
Fermi gas at zero temperature where the transverse di-
rection is confined with box length lz, implying the
discretization of momentum in the z-direction, kz =
2πnz/lz, for any integer nz. The Fermi momentum kF of
the dimensional crossover system can then be defined as
the maximally allowed momentum in the axial direction:

n =
1

2πlz

nmax∑

nz=−nmax

[
k2F −

(
2πnz
lz

)2
]
, (1)

where nmax is the largest integer smaller than kF lz/(2π).
It is useful to first examine the DC diagram for an ideal
Fermi gas, as shown in the inset of Fig. 1. At large lz (or
η), kF approaches the 3D Fermi momentum k3DF , as antic-
ipated. In the limit of small lz, instead, kF coincides with
a 2D Fermi momentum k2DF ≡

√
2πn2D =

√
2η/(3π)k3DF ,

where the column density n2D ≡ nlz. An ideal 2D Fermi
gas is thus realized when kF = k2DF or η < 3

√
6π ' 5.7,

for which only the lowest transverse mode is occupied.
This simple 2D condition is not applicable in the presence
of strong interactions, a situation that we shall consider
below. A strongly interacting Fermi gas, with contact
interactions between unlike fermions, tuned by a broad
Feshbach resonance [59], can be described by a single-
channel Hamiltonian density [32, 39, 60, 61],

H =
∑

σ=↑,↓

ψ̄σ(r)H0ψσ(r)− gψ̄↑(r)ψ̄↓(r)ψ↓(r)ψ↑(r), (2)

where ψσ(r) are the annihilation operators for each spin
state, H0 = −~2∇2/(2M) − µ is the free Hamiltonian
with atomic mass M , µ is the chemical potential, and
g > 0 denotes the bare interaction strength. The contact
potential is a convenient choice of interaction, however it
needs to be regularized and related to a physical observ-
able of the system. We achieve this by relating the bare

interaction strength g to the bound state energy B0 [52],

1

g
=
∑

k,kz

1

2 (εk + εkz ) +B0
, (3)

where εk = ~2k2/(2M) and the sums on (k, kz) carry a
volume factor that goes to (2π)2lz at the thermodynamic
limit. In order to recover the 3D limit, we require the
two-body T -matrix in the DC be equivalent to its 3D
counterpart in the limit lz → ∞. This implies that the
binding energy, B0, can be analytically related to the 3D
scattering length a3D, according to [52, 62],

B0 = 4

(
~2

Ml2z

)
arcsinh2

[
elz/(2a3D)

2

]
. (4)

It is also possible to define a 2D binding energy, ε2DB ≡
~2/(Ma22D), find the equivalence between the scattering
T -matrix and the 2D T -matrix as lz → 0, and show an-
alytically that B0 = ε2DB in the 2D limit.

We solve the many-body Hamiltonian Eq. (2) by us-
ing the zero-temperature GPF theory, which provides
reasonable quantitative predictions for equation of state
in both 2D [39, 63] and 3D [64, 65]. The theory takes
into account strong pair fluctuations at the gaussian
level on top of mean-field solutions [60, 61] and hence
we separate the thermodynamic potential into two parts:
Ω = ΩMF + ΩGF. The mean-field part is [39],

ΩMF =
∆2

g
+
∑

k,kz

(ξk,kz − Ek,kz ) , (5)

where ξk,kz = εk + εkz − µ, Ek,kz =
√
ξ2k,kz + ∆2, and

the order parameter ∆ is determined self-consistently
using the mean-field gap equation,

∑
k,kz

[(εk + εkz +

B0/2)−1 − E−1k,kz
] = 0, ensuring the gapless Goldstone

mode [56]. The pair fluctuation part is given by (Q ≡
(q, qz, ω)) [39],

ΩGF =
∑

q,qz

∞w

0

dω

2π
ln

[
M11 (Q)M11 (−Q)−M2

12 (Q)

MC
11 (Q)MC

11 (−Q)

]
,

(6)
with the matrix elements,

M11 (Q) =
1

g
+
∑

k,kz

(
u2+u

2
−

ω − E+ − E−
− v2+v

2
−

ω + E+ + E−

)
,

M12 (Q) =
∑

k,kz

(
− u+u−v+v−
ω − E+ − E−

+
u+u−v+v−
ω + E+ + E−

)
,

MC
11 (Q) =

1

g
+
∑

k,kz

u2+u
2
−

ω − E+ − E−
. (7)

Here, we use the notations E± ≡ Ek±q/2,kz±qz/2, u2± =

(1 + ξk±q/2,kz±qz/2/Ek±q/2,kz±qz/2)/2 and v2± = 1 − u2±
[39, 60, 61]. The chemical potential is found by solving
the number equation, n = −∂Ω/∂µ.
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Figure 2: (color online). (a) The dimensionless shifted chemi-
cal potential, (µ+B0/2)/εF, as a function of lz/a3D at various
dimension parameters (η = 1 ∼ 6), from the quasi-2D to 2D
regime. The inset shows the order parameter ∆/εF. (b) The
chemical potential near the 2D limit, replotted as a function
of ln(

√
B0/(2εF )). (c) The chemical potential near the 3D

limit in units of ε3DF is shown as a function of 1/(k3DF a3D).

Equation of state. — In Fig. 2(a), we report the di-
mensionless shifted chemical potential (µ + B0/2)/εF ,
where εF = ~2k2F /(2M) is the Fermi energy, at the BEC-
BCS crossover tuned by lz/a3D and at the DC tuned by
η = 1 ∼ 6. For all values of η, the dependence of the
chemical potential on η remains similar to the typical
decreasing slope found in 3D [60, 61]. However, as η de-
creases the curves shift towards negative values of lz/a3D.
The inset plots the order parameter, ∆/εF , and we see
a similar behavior to the chemical potential as we de-
crease η. As η approaches the 2D limit, we can compare
the magnitude of the chemical potentials with the 2D
case through the interaction parameter ln(

√
B0/(2εF )),

as shown in Fig. 2(b). We plot a range of dimensions,
η = 1 ∼ 4, and the 2D result (black dashed), and see a
clear trend of the chemical potential approaching the 2D
result for η . 2. In Fig. 2(c), we compare the chemical
potential to the 3D result (black short dashed), where
we plot the chemical potential in units of the 3D Fermi
energy ε3DF as a function of 1/(k3DF a3D). We find excel-
lent agreement in the BEC limit for η & 4 and by η > 8
the DC system is effectively in the 3D limit for the entire
BEC-BCS crossover. Thus, we see a distinct quasi-2D
regime for the dimension parameter 2 < η < 8. This ob-
servation is confirmed below by the calculation of Landau
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Figure 3: (color online). Landau critical velocity vc compared
with the speed of sound cs across the BEC-BCS crossover, as
a function of lz/a3D at different values of η. The theoretical
values at large η may be compared with the experimental
results of the critical velocity, obtained by Weimer et al. [66]
for a 3D trapped Fermi gas with ε3DF /~ωz ? 4.2, which in
our DC units roughly corresponds to a dimension parameter
η = k3DF lHO

z =
√

~ε3DF /(Mωz) = 2.9. Here, v3DF = ~k3DF /M is
the 3D Fermi velocity.

critical velocity.
Landau critical velocity. — Within the GPF the-

ory, we can calculate the critical velocity of the su-
perfluid through both the BEC-BCS and DC. Once
we know the dispersion of in-plane (qz = 0) collective
modes ω0(q = |q|), which corresponds to the poles of
[M11(Q)M11(−Q) −M2

12(Q)]−1, for a given set of the
parameters η and lz/a3D, we compute the speed of sound
of the superfluid, cs = limq→0 ω0(q)/q, and the pair-

breaking velocity vpb = [(
√

∆2 + µ2−µ)/M ]1/2 [56]. Ac-
cording to Landau’s criterion, the critical velocity in the
BEC-BCS crossover is then given by,

vc = min
q≥0

ω0 (q)

q
= min {cs, vpb} . (8)

In Fig. 3, we present the speeds of sound cs and critical
velocities vc for dimensions η = 1 ∼ 4 as a function of
the interaction strength lz/a3D. The critical velocity of a
3D Fermi superfluid at the BEC-BCS crossover has been
experimentally measured in a harmonic trap [58, 66] and
can be compared with our results using the transverse
harmonic oscillator length, lHO

z =
√

~/(mωz), as input to
determine η. In Ref. [66], the 3D regime is approximately
reached with ε3DF /(~ωz) ? 4.2 that corresponds to η ' 2.9
and the data match qualitatively well with the predicted
Landau critical velocity (i.e., at η = 3).

In 3D the BCS regime displays a large speed of sound
and a smaller pair-breaking velocity that limits the crit-
ical velocity [56, 57]. On the BEC side, close to the 3D
unitarity, the pair-breaking velocity becomes equal to the
speed of sound, which is referred to as the most robust
configuration of the BEC-BCS crossover [56]. Beyond
this point the speed of sound becomes the critical veloc-
ity, marking the system undergoing macroscopic conden-
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Figure 4: (color online). The density DSF S(Qr, ω) scaled by the ratio ωr/N , where ωr is the recoil energy and N the
particle number, in the quasi-2D regime for η = 4 at various interaction strengths lz/a3D, with the in-plane recoil momentum
Qr = (3.2kF , 0) (a), Qr = (0.6kF , 0) (b) and transverse recoil momentum Qr = (0, 2π/lz) (c). The spectral width of the
Bogoliubov-Anderson phonon peak is illustrated by the height of the delta function.

sation. The 2D and quasi-2D critical velocities behave
similarly to the 3D case. However, the tuning point of
the BEC-BCS crossover (lz/a3D)vmax

c
– at which the crit-

ical velocity peaks – shows a non-trivial dependence on
the dimensional parameter η. This enables us to charac-
terize the DC diagram in the presence of strong interac-
tions, as shown in Fig. 1. In the region 0 ≤ η < 2, the 2D
regime, we see the logarithmic dependence of the critical
velocity maximum with respect to η, with the peak of
the critical velocity in 2D at ln(k2DF a2D) ' 0.73 [40, 55].
Moreover, a linear behavior is observed in the nearly 3D
regime with η > 8 placing the peak of the critical ve-
locity in 3D at 1/(k3DF a3D) ' 0.056 [55, 56]. In between
(2 < η < 8,), the maximum of the critical velocity lies in
the interval −1 < lz/a3D < 0.67 and (lz/a3D)vmax

c
varies

non-monotonically with η. We identify this as the quasi-
2D regime, consolidating the previous conclusion made
from equation of state.

Probing the quasi-2D regime. — A practical way to
measure both the speed of sound, cs, and the order pa-
rameter, ∆, is via Bragg spectroscopy. The spectroscopic
response probes the dynamic structure factor (DSF) [67–
69], which in the case of a Fermi superfluid exhibits a
peak corresponding to the Bogoliubov-Anderson phonon
mode and a continuum of particle-hole excitations [56].
Due to the presence of a pairing gap in the excitation
spectrum, an external excitation of momentum Qr is col-
lective if it does not break pairs when it excites states
with energy below the threshold,

ωth(Qr) =

{
2∆ µ > 0 and ~2Q2

r ≤ 8Mµ

2
√
µ2
Qr

+ ∆2 otherwise
,

(9)
where µQr

= µ − ~2Q2
r/(8M), and for our DC sys-

tem with finite transverse box length lz, we have set
Qr = (qr, qz), a combination of an in-plane momentum
qr, and a transverse excitation, qz = 2πnz/lz for fixed
integer nz. We note that the calculation of the dynamic
structure factor S(Qr, ω) within the GPF theory is noto-
riously difficult [70], so we instead use the random phase
approximation within the mean-field framework [71].

In Fig. 4, we plot the DSF in the quasi-2D regime
at η = 4, normalized by the number of particles N and
recoil energy ωr = ~Q2

r/(2M) for three different recoil
momenta, (a) Qr = (3.2kF , 0), (b) Qr = (0.6kF , 0) and
(c) Qr = (0, 2π/lz). One observes in Figs. 4(a)-(b)
that the response is similar to the 3D case [71], show-
ing the characteristic peaks in the continuum spectrum
for ω > ωth, and the presence of the phonon mode.
We note the appearance of a second peak, marked by
ωth(qr, 4π/lz) (green dashed) in Fig. 4(a), correspond-
ing to the generation of a transverse excitation. The re-
sponse at ωth(qr, 2π/lz) is absent, due to the need of the
system to excite two modes along z with opposite mo-
menta, in order to conserve the total momentum. The
same structure, present in Fig. 4(b), is not resolved due
to the energy required at this momentum. The DSF, for
a transverse recoil momentum Qr = (0, 2π/lz), is shown
in Fig. 4(c), and has a specific structure due to the quasi-
2D regime. A second continuum peak is found by shifting
ωth(0, 2π/lz) by a multiple of ωr, which means multiple
axial excitations are featured in quasi-2D. This is a sig-
nature of such regime, as in 3D the isolated peaks must
merge in a continuous structure, while in 2D, the peak
ωth(0, 2π/lz) + 2ωr is far away from the main spectrum.

Conclusions. — In summary, we have examined the
role of dimension in a strongly interacting Fermi super-
fluid by treating the transverse confinement with PBC.
We have mapped out a dimensional crossover diagram
from the zero-temperature equation of state and have
quantitatively determined the boundaries between 2D,
quasi-2D, and 3D from the location of maximum Landau
critical velocity. This sets a framework for characterizing
the BCS-BEC crossover in quasi-2D, where the different
regimes of the superfluid can be experimentally probed
using Bragg spectroscopy. Our results are directly appli-
cable to an interacting dimensional crossover Fermi gas
realized by imposing a box trapping potential in the tight
confinement direction [54], and we expect our findings to
be qualitatively similar under harmonic transverse con-
finement.
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