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Lidar is a well known optical technology for measuring a target’s range and radial velocity. We
describe two lidar systems that use entanglement between transmitted signals and retained idlers to
obtain significant quantum enhancements in simultaneous measurement of these parameters. The
first entanglement-enhanced lidar circumvents the Arthurs-Kelly uncertainty relation for simultane-
ous measurement of range and radial velocity from detection of a single photon returned from the
target. This performance presumes there is no extraneous (background) light, but is robust to the
roundtrip loss incurred by the signal photons. The second entanglement-enhanced lidar—which re-
quires a lossless, noiseless environment—realizes Heisenberg-limited accuracies for both its range and
radial-velocity measurements, i.e., their root-mean-square estimation errors are both proportional
to 1/M when M signal photons are transmitted. These two lidars derive their entanglement-based
enhancements from use of a unitary transformation that takes a signal-idler photon pair with fre-
quencies ωS and ωI and converts it to a signal-idler photon pair whose frequencies are (ωS + ωI)/2
and (ωS − ωI)/2. Insight into how this transformation provides its benefits is provided through an
analogy to continuous-variable superdense coding.

Quantum metrology [1–3] addresses measuring un-
known parameters of a physical system using quantum-
mechanical resources. A typical single-parameter sce-
nario involves interrogating a physical system with M
probes that undergo independent, identical interactions
with the system. These probes then carry away infor-
mation about can be used to estimate the parameter of
interest. When the M probes are in a product state, the
standard quantum limit (SQL)—with root-mean-square
(rms) estimation error proportional to 1/

√
M—can be

achieved. Entangled probes, however, can realize the
Heisenberg limit (HL) [2, 3], viz., an rms estimation er-
ror that is proportional to 1/M [2–7]. SQL versus HL
behavior for single-parameter estimation arises in, e.g.,
in measuring time delays [5], point-source separations [8–
11], displacements [12–14], or magnetic fields [15].

Significant complications occur, in the independent,
identical interactions setting, when there are multiple
unknown parameters [12–15]. In particular, if these pa-
rameters are associated with noncommuting observables,
then the uncertainty principle would seem to forbid ob-
taining unlimited simultaneous knowledge of them from
a single returned probe [16–22]. In such cases quantum-
enhanced accuracy can be obtained by entangling probes
with locally-stored idlers [12–14, 23–27], in addition to
the benefit derived from entangling different probes.

In this Rapid Communication we address quantum
metrology for a specific pair of parameters associated
with noncommuting observables: the lidar problem of
measuring both a target’s range and its radial velocity.
We describe two lidar systems that use entanglement be-
tween transmitted signals and retained idlers to obtain
significant quantum enhancements in simultaneous mea-
surement of these parameters. The first circumvents the
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Arthurs-Kelly uncertainty relation [22] for simultaneous
measurement of range and radial velocity from detection
of a single photon returned from the target. This per-
formance presumes there is no extraneous (background)
light, but is robust to the roundtrip loss incurred by
the signal photons. For comparison, a system that does
not use entanglement would need to detect two returned
signal photons to achieve the same measurement perfor-
mance. Thus our system’s advantage can be quite signif-
icant when the lidar-to-target-to-lidar path is very lossy.
Note that it had previously been thought [28, 29] that
there was no entanglement advantage to be had in lossy,
noiseless lidar scenarios, with Ref. [29] proving that a
coherent-state probe achieves near-quantum-optimum er-
ror probability for discriminating between target absence
and presence in such a case.

Our second lidar—which requires a lossless, noiseless
environment—realizes HL accuracies for both its range
and radial-velocity measurements, i.e., their rms errors
are both proportional to 1/M whenM signal photons are
transmitted. For comparison, both the M -photon time-
domain and M -photon frequency-domain Giovannetti-
Lloyd-Maccone (GLM) states [5]—which also assume
lossless, noiseless operation—must probe the target to
obtain the same performance without stored idlers. Thus
our system’s advantage can be quite significant when the
probing flux must be kept as low as possible.

Lidars measure range from the roundtrip time delay in-
curred by an optical pulse in propagating to and from the
target. They measure radial velocity from the Doppler
shift on the light returned from a moving target. Our li-
dars use time-energy entangled signal-idler photon pairs
to enable joint measurements of the noncommuting ob-
servables associated with time delay and frequency shift,
despite only the signal photons having interacted with
the target. Moreover, our first lidar is, in essence, the
M = 1 special case of the second, although only the



2

first is robust to roundtrip propagation loss. Both derive
their entanglement-enhanced performance from use of a
two-photon unitary transformation [30, 31] that takes a
signal-idler photon pair with frequencies ωS and ωI and
converts it to a signal-idler photon pair whose frequencies
are (ωS + ωI)/2 and (ωS − ωI)/2. Interestingly, as we
will show, this transformation makes our lidars behave
much like continuous-variable superdense coding (CV-
SDC) [32] in quantum communication, hence providing
an intuitive explanation for their quantum advantage.

Lidar Range and Radial-Velocity Estimation. In our li-
dar sensing problem, shown Fig. 1(a),M quasimonochro-
matic signal photons with center frequency ωSc illumi-
nate a target whose range, r, and radial velocity, v (with
v > 0 indicating a target moving toward the lidar), are to
be estimated from the time delay, ∆tS = 2r/c, and the
Doppler shift, ∆ωS = 2ωSc

v/c, imposed on each photon
that returns to the lidar, where c is light speed.

For a lidar that performs single-mode detection at its
receiver, background light at optical wavelengths can be
ignored, e.g., background light will have an average of
∼10−6 photons per mode in daytime operation at 1.55µm
wavelength [33]. Thus, aside from the time delay and
Doppler shift incurred by each photon, the only propa-
gation effect we shall consider for the lidar-to-target-to-
lidar channel is its roundtrip transmissivity, η, which will
typically satisfy η � 1, making obtaining accurate time-
delay and Doppler-shift information from a small number
of target-return photons a priority.

Figure 1(b) shows a channel model for the Fig. 1(a)
scenario. Each signal photon incurs a time delay ∆tS/2
on its way to the target, a Doppler shift ∆ωS upon reflec-
tion from the target, another ∆tS/2 time delay en route
back to the lidar, where (without loss of generality) we
impose the roundtrip transmissivity η. In what follows,
D̂St

(∆tS/2) will denote the operator that time delays a
signal photon by ∆tS/2, and D̂Sω

(∆ωS) will denote the
operator that Doppler shifts a signal photon by ∆ωS .

To begin our development, let us find the best that
can be done when only one photon is returned from the
target. Suppose that M transmitted photons are emit-
ted one at a time by the lidar’s transmitter, and that
we know both those emission times and which transmit-
ted photon resulted in the one returned to the lidar [34].
Because a target’s range and its radial velocity are then
easily calculated from that photon’s time of arrival and
its Doppler shift, all that follows will address limits of si-
multaneous time and frequency measurements. Further-
more, in our quest for quantum enhancement, we will
assume that each signal photon is entangled with a re-
tained idler photon in an initial pure state |ψ〉 and that
each idler is stored, in a lossless manner [35], for a time
∆tI that is sufficient to enable its being jointly measured
with its signal-photon companion should that companion
be the one that is returned to the lidar.

Single-photon target-return lidar. When the lidar-to-
target-to-lidar roundtrip transmissivity is very low, i.e.,
η � 1, then transmission of M ' 1/η � 1 pho-
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Figure 1. (a) Lidar sensing of target range and radial velocity.
η is the roundtrip transmissivity, i.e., the fraction of the lidar’s
transmitted signal photons that return to the lidar’s receiver.
(b) Equivalent quantum-channel representation.

tons is necessary for a reasonable assurance that one
signal photon will be returned from that target. To
minimize the M value needed to estimate target range
and radial velocity it would be best were it possible to
simultaneously—and accurately—determine the time de-
lay ∆tS and the Doppler shift ∆ωS from measurement
of a single returned photon. This wish would seem to vi-
olate the Arthurs-Kelly uncertainty relation [22], which
states that δtS and δωS—the rms errors when time de-
lay and Doppler shift are estimated from such a simulta-
neous measurement—satisfy δtS δωS ≥ 1. However, be-
cause our lidar has the retained idler photon for use in
a joint measurement with its returned-signal companion,
we will see that the Arthurs-Kelly inequality can be cir-
cumvented. Indeed, starting from a biphoton state with
time-bandwidth product TW � 1 [39], we will show how
δtS ' 1/2W and δωS ' 1/2T can be achieved simulta-
neously from an appropriate joint measurement.

Our single-photon lidar uses a nondegenerate spon-
taneous parametric downconverter (SPDC) whose
output—for the signal-idler pair that will ultimately
be measured—can be taken to be the biphoton state
|ψ〉 =

´
dtS dtI ψ(tS , tI) |tS〉S |tI〉I with time-domain

wave function given by [39]

ψ(tS , tI) ∝ e−t
2
−/4σ

2
cor−t2+/4σ2

coh−i(∆ωt−/2+ωP t+), (1)

where |t〉 denotes a single photon at time t, t− ≡
tS − tI , t+ ≡ (tS + tI)/2, σcor is the biphoton corre-
lation time, σcoh is the pump coherence time, ∆ω ≡
ωSc − ωIc > 0 is the difference between the signal
and idler’s center frequencies, and ωP is the pump fre-
quency. This state’s frequency-domain representation,´

dωS dωI Ψ(ωS , ωI) |ωS〉S |ωI〉I , where |ω〉 denotes a sin-
gle photon with frequency ω, then has the wave function

Ψ(ωS , ωI) ∝ e−(ω−−∆ω)2σ2
cor/4−(2ω+−ωP )2σ2

coh , (2)

with ω− ≡ ωS − ωI and ω+ ≡ (ωS + ωI)/2.
The rms time durations of the SPDC’s signal and idler

photons are identical, and given by T =
√
σ2

coh + σ2
cor/4.

Likewise, their rms bandwidths are also identical, and
given by W =

√
1/16σ2

coh + 1/4σ2
cor, which we assume

to be much less than ∆ω. When σcor = 2σcoh, the
biphoton reduces to a product of pure-state signal and
idler photons satisfying TW = 1/2. A continuous-wave
downconverter, however, typically has σcoh � σcor [39],
so that T ≈ σcoh � 1/W ≈ 2σcor, making the signal
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and idler highly entangled, with entanglement entropy
SE = log2 (2TW )� 1.

Conditioned on the biphoton from Eq. (1) be-
ing the one whose returned signal and retained
idler will be measured, we have that |ψ(θ)〉 =

D̂St
(∆tS/2)D̂Sω

(∆ωS)D̂St
(∆tS/2)⊗D̂It(∆tI)|ψ〉, where

θ = [∆tS ,∆ωS ]T with T denoting transpose, is the state
from which we will determine the signal photon’s time
delay and Doppler shift. Using the Cramér-Rao (CR)
bound [1, 40–42], we show, in Appendix A, that unbiased
estimators of the signal photon’s time delay and Doppler
shift have rms errors that individually obey δtS ≥ 1/2W
and δωS ≥ 1/2T , and jointly satisfy

δtS δωS ≥ (1 + 2TW )/8T 2W 2. (3)

Without entanglement (TW = 1/2), we recover the
Arthurs-Kelly inequality, but with highly-entangled sig-
nal and idler (TW � 1), we get δtS δωS ≥ 1/4TW ,
which suggests that δtS = 1/2W and δωS = 1/2T might
be realized simultaneously. We next present a theoretical
design for a measurement that achieves that goal.

Our first step is to apply the biphoton unitary trans-
formation [43]

B̂SI =

ˆ
dωS

ˆ
dωI

∣∣∣∣ωS + ωI
2

〉
S

|ωS − ωI
2

〉
I
S〈ωS | I〈ωI |

=

ˆ
dtS

ˆ
dtI |tS + tI〉S |tS − tI〉I S〈tS | I〈tI | . (4)

to the postselected state |ψ(θ)〉 to obtain the product
state, B̂SI |ψ(θ)〉 = |ψS(θ)〉S⊗|ψI(θ)〉I , where, assuming
σcoh � σcor, we have that

|ψS(θ)〉S ∝ˆ
dωS e

i(ωS+∆ω)(∆tS+∆tI)−(2ωS−ωP−∆ωS)2T 2 |ωS〉S ,(5)

and

|ψI(θ)〉I ∝
ˆ

dtI e
−i(∆ωS+∆ω)tI/2−(tI−∆tS+∆tI)2W 2 |tI〉I .

(6)
Next, we measure the single-photon frequency ob-
servable of the signal photon and the single-photon
arrival-time observable of the idler photon, i.e., ω̂S =´

dωS ωS |ωS〉SS〈ωS | and t̂I =
´

dtI tI |tI〉II〈tI |. Using
the resulting outcomes, ω̃S and t̃I , we generate our time-
delay and Doppler-shift estimates ∆̃tS = t̃I + ∆tI and
∆̃ωS = 2ω̃S−ωP . These estimates are unbiased, 〈∆̃tS〉 =

∆tS and 〈∆̃ωS〉 = ∆ωS , with standard deviations 1/2W
and 1/2T , thus showing that our entanglement-enhanced
lidar simultaneously realizes the CR bounds on δtS and
δωS from a single-photon target return.

Connection to CV-SDC. Figure 2 shows entangled-
state and product-state representations of our single-
photon lidar for the photon pair that is ultimately mea-
sured. In Fig. 2(a), we start from a signal-idler (S-I)
product state whose frequency-domain wave function is
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Figure 2. (a) Entangled-state and (b) product-state represen-
tations of the single-photon target-return lidar.

proportional to e−(2ωS−ωP )2σ2
coh−(2ωI−∆ω)2σ2

cor/4. Apply-
ing the single-photon unitary transformation B̂†SI to this
state then yields the biphoton state from Eq. (1), al-
though in experiments we start from the biphoton state
in Eq. (1) directly. After that biphoton undergoes the
time delays and Doppler-shift shown in Fig. 2(a), appli-
cation of B̂SI converts them back to a product state,
from which a signal-photon frequency measurement, ω̃S ,
and an idler-photon arrival-time measurement, t̃I , pro-
vide the information needed for simultaneous Doppler-
shift and time-delay estimates. The product-state source
output to product-state measurement input is thus gov-
erned by the single-photon unitary transformation

Û ≡ B̂SI [D̂St(∆tS/2)D̂Sω (∆ωS)D̂St(∆tS/2)

⊗ D̂It(∆tI)]B̂
†
SI . (7)

After simple algebra, Û can be rewritten—up to a global
phase—as shown in Fig. 2(b):

Û = [D̂St
(∆tS + ∆tI)D̂Sω

(∆ωS/2)]

⊗[D̂It(∆tS −∆tI)D̂Iω (∆ωS/2)]. (8)

This form of Û acting directly on the same signal-idler
product state that was the input in Fig. 2(a) immedi-
ately leads to our single-photon lidar’s being able to sense
Doppler shift from a signal-photon measurement and ar-
rival time from an idler-photon measurement.

The preceding Û representations bear a clear similar-
ity to CV-SDC [32]. In CV-SDC, Alice initially prepares
quadrature-entangled signal and idler beams with aver-
age photon numbers n̄ � 1, then sends the idler to Bob
while retaining the signal. Next, Alice displaces her sig-
nal beam’s two quadratures with her analog messages and
sends that modulated beam to Bob. Bob combines Al-
ice’s modulated signal with his retained idler on a 50–50
beam splitter to recover a product of displaced squeezed-
vacuum states from which he can obtain Alice’s messages
(with a pair of homodyne detectors) at a capacity dou-
ble that of coherent-state communication with average
photon-number n̄. CV-SDC’s continuous-variable entan-
glement preparation, encoding, and product-state recov-
ery are just like the B̂†SI , time delays and Doppler shift,
and B̂SI transformations in Fig. 2(a).



4

.	.	.	.	.	.	

	
	

�tS�!S

	
	

�tS�!S

	
	

�tS�!S

	
	

�tI

	
	

�tI

	
	

�tI

| iSt

| iI!

⌦M
m=1B̂

(m)†
SI ⌦M

m=1B̂
(m)
SI

!̃1

!̃2

!̃3

t̃3

t̃2

t̃1

, 

, 

, 

Figure 3. Schematic for simultaneous time-delay and Doppler-
shift measurements with HL rms accuracies (M = 3).

Lidar with simultaneous HL scaling. Giovannetti,
Lloyd, and Maccone showed [5] that when the M -
photon, M -mode, frequency-domain GLM signal state,
|ψ〉Sω

∝
´

dωS e
−ω2

S/4W
2 ⊗Mm=1 |ωS〉Sm

interrogates a
perfectly-reflecting target, then time-resolved detection
of all M photons in the absence of background noise en-
ables the target’s roundtrip time delay, ∆tS , to be esti-
mated with HL rms accuracy δtS = 1/2MW . Likewise,
theM -photon, M -mode, time-domain GLM signal state,
|ψ〉St

∝
´

dtS e
−t2S/4T 2⊗Mm=1 |tS〉Sm

, enables that target’s
Doppler shift, ∆ωS , to be estimated with HL rms accu-
racy δωS = 1/2MT in this lossless and noiseless scenario.
These measurements are an either-or proposition: if an
M -photon GLM state interrogates the target we cannot
get both δtS = 1/2MW and δωS = 1/2MT . By sending
an M/2-photon, frequency-domain GLM state, followed
by an M/2-photon, time-domain GLM state, time-delay
and Doppler-shift measurements with δtS = 1/4MW and
δωS = 1/4MT can be obtained, but our second lidar will
realize δts = 1/2MW and δωS = 1/2MT from transmis-
sion of M signal photons.

To simultaneously achieve HL accuracies, we employ
two GLM states together with the M -mode generaliza-
tion our first lidar’s Û transformation, see Fig. 3. We
start from GLM signal and idler states |ψ〉St and |ψ〉Iω
that are entangled by the application of ⊗Mm=1B̂

†
SIm

.
Next, the signal photons illuminate and return from the
target, having accumulated a roundtrip delay ∆tS and
a Doppler shift ∆ωS , while the idler photons are stored
at the lidar for a time ∆tI . Applying ⊗Mm=1B̂SIm to the
returned and retained photons then undoes the entan-
glement. Paralleling the development of Eq. (8), we find
that the state transformation for this arrangement is

ÛM =
[
⊗Mm=1D̂Stm

(∆tS + ∆tI)D̂Sωm
(∆ωS/2)

]
⊗[

⊗Mm=1D̂Itm(∆tS −∆tI)D̂Iωm
(∆ωS/2)

]
. (9)

It now follows that a Doppler shift measurement on the
ÛM -transformed signal photons has rms accuracy δωS =
1/2MT and a time-delay measurement on the ÛM -
transformed idler photons has rms accuracy 1/2MW .

Discussion. We have exhibited lidars that provide
entanglement-enhanced accuracies in the simultaneous

measurement of target range and radial velocity. These
parameters are associated with noncommuting observ-
ables: a single photon’s arrival time and frequency. Our
general scheme of transforming operations with noncom-
muting generators to commuting observables can be ap-
plied to other simultaneous-measurement scenarios that
involve noncommuting generators.

Two final items deserve discussion: idler storage loss
and realizing the B̂SI transformation. Loss of a single
idler photon kills the performance gain of our GLM-based
lidar over an unentangled system, but idler storage loss
has a more benign impact on our single-photon lidar.
Lossless idler storage enables our lidar to make simul-
taneous time-delay (range) and frequency-shift (radial-
velocity) measurements at their individual CR-bound
limits from detection of one signal photon, an event that
occurs with success probability η. Without entangle-
ment, however, two signal photons must be received to
achieve this performance, an event that occurs with suc-
cess probability η2. When our single-photon lidar has
overall idler storage loss ηI , its success probability is
ηIη. Consider idler storage in a short fiber-loop mem-
ory. Such a memory could be loaded and unloaded with
an optically-controlled directional coupler. A portion of
the pump pulse for Alice’s SPDC could gate that cou-
pler to load the idler photon into the memory, and—
if the coupler could be arranged to have single-photon
sensitivity—the returned signal photon could gate the
coupler to unload the memory’s stored idler photon. A
target at 37.5 km range would then require 50-km of re-
circulating fiber propagation. With 0.2 dB/km fiber loss,
that would imply ηI = 0.1. So, for η � 0.1, as could well
be the case, our lidar would enjoy a substantial perfor-
mance advantage despite its 10 dB idler storage loss.

We have been exploring how B̂SI might be realized us-
ing single-photon χ(2) interactions and linear optics [44–
48]. Our notional scheme, for approximating it over the
bandwidth occupied by the the returned signal and re-
tained idler’s biphoton state, is shown in Appendix B. It
uses single-photon-sensitive SPDCs to convert single pho-
tons at frequencies ωS and ωI to orthogonally-polarized
photon pairs at frequencies ωS/2 and ωI/2. One pho-
ton from each pair is then applied to a single-photon-
sensitive sum-frequency generator and a single-photon-
sensitive difference-frequency generator to produce out-
puts at f(ωS + ωI)/2 and (ωS − ωI)/2.

Acknowledgments. This research was supported by Air
Force Office of Scientific Research Grant No. FA9550-14-
1-0052. Q. Z. acknowledges support from the Claude E.
Shannon Research Assistantship.

Appendix A: Time-frequency Cramér-Rao bound. Let
the positive operator-valued measurement Π̂θ̃ on the
postselected state |ψ(θ)〉 be an unbiased estimator of θ.
The CR bound [42] on this estimator’s error-covariance
matrix, V(θ) = 〈(θ̃ − θ)(θ̃ − θ)T 〉, is

tr[GV(θ)] ≥ tr
[
GJ−1

θ

]
+ [
√

det(G)/det(Jθ)]

× | 〈ψ(θ)|[L∆tS , L∆ωS
]|ψ(θ)〉 |,
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Figure 4. Notional scheme for approximating the bipho-
ton transform B̂SI . SPDC: single-photon-sensitive sponta-
neous parametric downconverter with extended phase match-
ing. SFG: single-photon-sensitive sum-frequency generator.
DFG: single-photon-sensitive difference-frequency generator.

where: G is an arbitrary 2× 2 positive-semidefinite real-
valued cost matrix; det(·) denotes determinant; [â, b̂]

denotes the commutator âb̂ − b̂â; Ĵθ is the quantum
Fisher-information matrix, whose jkth element, for j, k =
∆tS ,∆ωS , is (Jθ)jk ≡ 4

[
Re
(
∂θj 〈ψ(θ)| ∂θk |ψ(θ)〉

)
+ 〈ψ(θ)| ∂θj |ψ(θ)〉 〈ψ(θ)| ∂θk |ψ(θ)〉

]
; and, for j = ∆tS ,

∆ωS , Lj ≡ 2
(
∂θj |ψ(θ)〉 〈ψ(θ)|+ |ψ(θ)〉 ∂θj 〈ψ(θ)|

)
are

the symmetric logarithmic derivatives.
The time-domain wave function of |ψ(θ)〉 is

ψθ(tS , tI) = ψ(tS − ∆tS , tI − ∆tI)e
−i∆ωS(tS−∆tS/2),

from which we obtain Jθ = 4 diag
[
W 2, T 2

]
, and

|〈ψ(θ)|[L∆tS , L∆ωS
]|ψ(θ)〉| = 4. Next, using G =

diag[1, 0] and diag[0, 1] in the CR bound, we get
δtS ≥ 1/2W and δωS ≥ 1/2T . Maximizing the CR
bound for G = diag[W 2, zT 2] over z ≥ 0 then gives (3):

δt2S δω
2
S ≥

δω2
S

W 2

(
1

4
+

1

16T 2W 2 (4T 2δω2
S − 1)

)
≥ (1 + 2TW )2/64T 4W 4,

Appendix B: Approximating B̂SI . Figure 4 depicts a
notional scheme for approximating the biphoton unitary
transform B̂SI over the bandwidth occupied by the joint
state |ψ(θ)〉. The SPDCs are type-II phase matched
and satisfy the extended phase-matching condition [49]
over an appropriately broad bandwidth and they are
presumed to have 100% conversion efficiency for single-
photon pumps. Thus a frequency-ωS signal photon ar-
riving the upper SPDC in Fig. 4 is converted into a pair
of orthogonally-polarized frequency-ωS/2 photons, and
a frequency-ωI idler photon arriving the lower SPDC in
Fig. 4 is converted into a pair of orthogonally-polarized
frequency-ωI/2 photons. Polarizing beam splitters (not
shown in Fig. 4) then direct one frequency-ωS/2 pho-
ton and one frequency-ωI/2 photon to a sum-frequency
generator (SFG) [50] and the other frequency-ωS/2 and
frequency-ωI/2 photons to a difference-frequency gener-
ator (DFG) realized by four-wave mixing with a strong
pump beam [51, 52]. Both the SFG and DFG are pre-
sumed to have 100% conversion efficiency at the single-
photon level over an appropriately broad bandwidth.
Their respective outputs are thus single photons at fre-
quencies (ωS + ωI)/2 and (ωS − ωI)/2.

The SPDC and SFG blocks in Fig. 4 require single-
photon-sensitive χ(2) interactions [46–48], such as those
previously considered for use in quantum computa-
tion [45] and optimum mixed-state discrimination [53].
The DFG block in Fig. 4 employs four-wave mixing with a
strong (hence classical) pump, which makes it effectively
a single-photon-sensitive χ(2) interaction. Thus our no-
tional scheme for realizing the B̂SI transformation only
requires single-photon-sensitive χ(2) interactions and lin-
ear optics.
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