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Abstract

The one clean qubit model (or the DQC1 model) is a restricted model of quantum computing

where only a single input qubit is pure and all other input qubits are maximally mixed. In spite of

the severe restriction, the model can solve several problems (such as calculating Jones polynomials)

whose classical efficient solutions are not known. Furthermore, it was shown that if the output

probability distribution of the one clean qubit model can be classically efficiently sampled with

a constant multiplicative error, then the polynomial hierarchy collapses to the second level. Is it

possible to improve the multiplicative error hardness result to a constant total variation distance

error one like other sub-universal quantum computing models such as the IQP model, the Boson

Sampling model, and the Fourier Sampling model? In this paper, we show that it is indeed possible

if we accept a modified version of the average case hardness conjecture. Interestingly, the anti-

concentration lemma can be easily shown by using the special property of the one clean qubit

model that each output probability is so small that no concentration occurs.
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I. INTRODUCTION

The one clean qubit model (or the DQC1 model) first introduced by Knill and Laflamme [1]

is a restricted model of quantum computing where only a single input qubit is pure and

all other input qubits are maximally mixed. In spite of the severe restriction, surprisingly,

the model can solve several problems whose efficient classical solutions are not known, such

as the spectral density estimation [1], testing integrability [2], calculations of the fidelity

decay [3], and approximations of the Jones polynomial, HOMFLY polynomial, and Turaev-

Viro invariant [4–7]. Furthermore, it was recently shown that if the output probability

distribution of the one clean qubit model is classically efficiently sampled with a constant

multiplicative error, then the polynomial hierarchy collapses to the third level [8] or the

second level [9]. (Here, we say that a probability distribution {pz}z is sampled by a machine

M with a multiplicative error ǫ ≥ 0 if

|pz − qz| ≤ ǫpz

is satisfied for all z, where {qz}z is the output probability distribution ofM .) Since a collapse

of the polynomial hierarchy is not believed to happen in computer science, the results suggest

the impossibility of classically simulating the one clean qubit model. Similar hardness results

for constant multiplicative error sampling were also shown for other sub-universal quantum

computing models, such as the IQP model [10] and the Boson Sampling model [11].

The requirement of constant multiplicative error sampling is, however, strong, and sam-

pling with a constant total variation distance error (or the L1-norm error) is considered

as more appropriate. (Here, we say that a probability distribution {pz}z is sampled by a

machine M with a total variation distance error ǫ ≥ 0 if

∑

z

|pz − qz| ≤ ǫ

is satisfied, where {qz}z is the output probability distribution of M .) In fact, the hardness

results with constant total variation distance errors were shown for the IQP model [12], the

Boson Sampling model [11], and the Fourier Sampling model [13] (assuming some conjec-

tures). Is it possible to show a similar constant-total-variation-distance-error hardness result

for the one clean qubit model?

In this paper, we show that it is indeed possible if we accept a modified version of

the average case hardness conjecture. Our proof is similar to those of Refs. [11–13], but
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there is one interesting difference which is specific to the one clean qubit model: the anti-

concentration lemma can be easily shown. For the Boson Sampling model and the Fourier

Sampling model, the anti-concentration lemma is a conjecture [11, 13]. For the IQP model,

it is shown with some calculations by using a special structure of IQP circuits [12]. For

the present case, as we will see later, the anti-concentration lemma is easily shown by using

a special property of the one clean qubit model that each probability is so small that no

concentration occurs. Note that recently two-design systems have also been shown to satisfy

the anti-concentration lemma [14].

Regarding the average-case-vs-worst-case hardness conjecture, on the other hand, the

present result (and the IQP result) are somehow weaker than the Boson Sampling result

and the Fourier Sampling result, since the average case hardness of the exact calculation is

shown for the Boson Sampling and Fourier Sampling, but not for the present model and the

IQP.

II. AVERAGE CASE HARDNESS CONJECTURE

As in the cases of other sub-universal quantum computing models, such as the IQP

model [12], the Boson Sampling model [11], and the Fourier Sampling model [13], we need a

conjecture so-called “average case hardness conjecture”, which claims that the #P-hardness

for the worst case can be lifted to an average case. To show our result, which is a hardness

of efficient classical sampling of the one clean qubit model with a constant total variation

distance error, we need the following conjecture.

Conjecture: For each n, there exists a discrete set Un+1 of uniformly-generated

polynomial-time (n + 1)-qubit unitary operators such that calculating

f(z, U) ≡ 〈z|U(|0〉〈0| ⊗ I⊗n)U †|z〉

with a multiplicative error less than 1/2 for more than 1/6 fraction of (z, U) ∈ {0, 1}n+1 ×

Un+1 is #P-hard.

Here, I ≡ |0〉〈0| + |1〉〈1| is the two-dimensional identity operator, and |z〉 is the

computational-basis state corresponding to the bit string z. (For example, if z = 010,

|z〉 = |010〉 = |0〉 ⊗ |1〉 ⊗ |0〉.)

Unfortunately, we do not know whether the conjecture is true or not, but we can show
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that it is true at least for the worst case. Here, we give two proofs for the worst-case

#P-hardness.

A. First proof

Let us consider a unitary operator U such that

U † =
[

I ⊗ |0〉〈0|⊗n +X ⊗ (I⊗n − |0〉〈0|⊗n)
]

(I ⊗ C),

where C is an n-qubit IQP circuit. Then,

f(0n+1, U) = |〈0n|C|0n〉|2.

For certain IQP circuits C, 〈0n|C|0n〉 is related to the partition function, Z, of the Ising

model [12, 15] and the gap function, gap(f), of a degree-3 polynomial f over F2 [12]:

〈0n|C|0n〉 =
Z

2n
,

〈0n|C|0n〉 =
gap(f)

2n
.

It is known that calculating |Z|2 and gap(f)2 with constant multiplicative errors is #P-

hard [12, 15]. Hence calculating |〈0n|C|0n〉|2 = f(0n+1, U) with constant multiplicative errors

is #P-hard for certain unitary operators U , which shows the correctness of the conjecture

for the worst case.

B. Second proof

We define two unitary operators U1 and U2 as

U †
1 =

[

(I ⊗ |0〉〈0|+X ⊗ |1〉〈1|)⊗ I⊗n−1
]

(I ⊗ V ),

U †
2 =

[(

I ⊗ |0〉〈0|⊗2 +X ⊗ (I⊗2 − |0〉〈0|⊗2)
)

⊗ I⊗n−2
]

(I ⊗ V ),

where V is an n-qubit unitary operator. Then, we obtain

f(0n+1, U1) = 〈0n|V †(|0〉〈0| ⊗ I⊗n−1)V |0n〉,

f(0n+1, U2) = 〈0n|V †(|0〉〈0|⊗2 ⊗ I⊗n−2)V |0n〉.

Now we show that calculating f(0n+1, U1) and f(0n+1, U2) with a constant multiplicative

error 0 ≤ ǫ < 1 is postBQP-hard. Since postBQP = PP [16] and PPP = P#P, it means that

4



the calculation is #P-hard. Proof is as follows. Let us assume that there exists an algorithm

that calculates a and b such that

|f(0n+1, U1)− a| ≤ ǫf(0n+1, U1),

|f(0n+1, U2)− b| ≤ ǫf(0n+1, U2).

Let L be a language in postBQP. Then, for any polynomial r, there exists a uniform family

{Vx}x of polynomial-time quantum circuits such that

• If x ∈ L then PVx
(o = 0|p = 0) ≥ 1− 2−r.

• If x /∈ L then PVx
(o = 0|p = 0) ≤ 2−r.

Here,

PVx
(o = 0|p = 0) =

PVx
(o = 0, p = 0)

PVx
(p = 0)

,

PVx
(o = 0, p = 0) is the probability that Vx outputs (o, p) = (0, 0), and PVx

(p = 0) is the

probability that Vx outputs p = 0.

Let us construct U1 and U2 by using Vx. Then, for any polynomial r, if x ∈ L,

b

a
≥

1− ǫ

1 + ǫ

f(0n+1, U2)

f(0n+1, U1)

≥
1− ǫ

1 + ǫ
(1− 2−r),

and if x /∈ L,

b

a
≤

1 + ǫ

1− ǫ

f(0n+1, U2)

f(0n+1, U1)

≤
1 + ǫ

1− ǫ
2−r.

Therefore, if we can calculate a and b, we can solve L.

III. MAIN RESULT

If we accept the conjecture, we can show the following theorem, which is the main result

of the present paper.

Theorem: If there exists a probabilistic polynomial-time classical algorithm that outputs

z ∈ {0, 1}n+1 with probability qz(U) such that

∑

z∈{0,1}n+1

|pz(U)− qz(U)| ≤ ǫ
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for any U ∈ ∪nUn+1, then the polynomial hierarchy collapses to the third level. Here, ǫ = 1
36

and

pz(U) ≡ 〈z|U
(

|0〉〈0| ⊗
I⊗n

2n

)

U †|z〉.

The theorem says that if the output probability distribution pz(U) of the one clean qubit

model can be classically efficiently sampled with the total variation distance error ǫ, then

the polynomial hierarchy collapses to the third level.

Proof: Now let us give a proof of the theorem. Our proof is similar to those of Refs. [11–

13] except that the anti-concentration lemma can be easily shown.

Let δ > 0 be a parameter specified later. From Markov’s inequality,

Prz,U

[

|pz(U)− qz(U)| ≥
ǫ

2n+1δ

]

≤
2n+1δ

ǫ

1

2n+1|Un+1|

∑

U,z

|pz(U)− qz(U)|

≤ δ.

From Stockmeyer’s Counting Theorem [17], there exists an FBPPNP algorithm that outputs

q̃z(U) such that

|q̃z(U)− qz(U)| ≤
qz(U)

poly
.

Therefore,

|q̃z(U)− pz(U)| ≤ |q̃z(U)− qz(U)| + |qz(U)− pz(U)|

≤
qz(U)

poly
+ |qz(U)− pz(U)|

=
pz(U) + qz(U)− pz(U)

poly
+ |qz(U)− pz(U)|

≤
pz(U) + |qz(U)− pz(U)|

poly
+ |qz(U)− pz(U)|

=
pz(U)

poly
+ |qz(U)− pz(U)|

(

1 +
1

poly

)

<
pz(U)

poly
+

ǫ

2n+1δ

(

1 +
1

poly

)

with more than 1− δ fraction of (z, U).

Let S ⊆ {0, 1}n+1 × Un+1 be the set of (z, U) such that

ǫ

2n+1δ
≤

pz(U)

3
.

6



Since

pz(U) = 〈z|U
(

|0〉〈0| ⊗
I⊗n

2n

)

U †|z〉

=
1

2n
〈z|U(|0〉〈0| ⊗ I⊗n)U †|z〉

≤
1

2n
× 1 =

1

2n
,

for all (z, U), and

∑

z∈{0,1}n+1

pz(U) = 1

for all U , we obtain

1 =
1

|Un+1|

∑

U,z

pz(U)

=
1

|Un+1|

∑

(z,U)∈S

pz(U) +
1

|Un+1|

∑

(z,U)/∈S

pz(U)

<
1

2n|Un+1|
|S|+

2n+1|Un+1| − |S|

|Un+1|

3ǫ

2n+1δ
,

which means

|S|

2n+1|Un+1|
>

1− 3ǫ
δ

2− 3ǫ
δ

.

Therefore,

|q̃z(U)− pz(U)| <
pz(U)

poly
+

pz(U)

3

(

1 +
1

poly

)

= pz(U)
(1

3
+

1

poly

)

for more than

F ≡ 1− δ −
1

2− 3ǫ
δ

fraction of (z, U). For example, if we take δ = 6ǫ,

F =
1

6
.

Note that

pz(U) =
f(z, U)

2n
.
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Therefore, the above result means that there exists an FBPPNP algorithm that outputs

q̃z(U) such that

|q̃z(U)2n − f(z, U)| < f(z, U)
(1

3
+

1

poly

)

<
1

2
f(z, U)

for more than 1/6 fraction of (z, U). If our average-case hardness conjecture is true, it means

the collapse of the polynomial hierarchy to the third level.
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