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The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations
can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has
been measured extensively, the Casimir torque has not been observed experimentally though it was
predicted over forty years ago. Here we propose to detect the Casimir torque with an optically
levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with
the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel
or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque
that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a
levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and
photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will
be capable of detecting the Casimir torque under realistic conditions, and will be an important tool
in precision measurements.

I. INTRODUCTION

A remarkable prediction of quantum electrodynamics
(QED) is that there are an infinite number of virtual
photons in vacuum due to the zero-point energy that
never vanishes, even in the absence of electromagnetic
sources and at a temperature of absolute zero. In 1948,
Casimir predicted an atrractive force between two ideal
metal plates due to the linear momentum of virtual pho-
tons [1]. The number of electromagnetic modes between
two metal plates is less than the number of modes outside
the plates, thus the plates experience an attractive force,
which is Casimir force. Casimir force has already been
measured many times throughout the years [2–10]. Be-
sides the linear momentum, the angular momentum car-
ried by virtual photons can generate the Casimir torque
(or van der Waals torque) for anisotropic materials[11–
13]. Despite significant interests about the van der Waals
and Casimir torque [14–22], the torque has not been mea-
sured experimentally though it was predicted over 40
years ago, mainly due to the lack of a suitable tool [7–10].

Here we propose a method to measure the Casimir
torque with a nanorod levitated by a linearly polarized
optical tweezer in vacuum near a birefringent plate. The
relative orientation between the nanorod and the bire-
fringent crystal could be manipulated by the polariza-
tion of the trapping laser beam. When the long axis of
the nanorod is not aligned with a principle axis of the
birefringent plate, there will be a Casimir torque acting
on the nanorod, which tries to minimize the energy, as
shown in FIG. 1.(a),(b). Here d is the separation between
the nanorod and the plate, and θ is the angle between the
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long axis of the nanorod and the optical axis of the bire-
fringent plate. Casimir torque is related to separation
d and relative orientation θ, which will be shown in the
next section.

An optically levitated nanoparticle in vacuum can have
an ultrahigh mechanical quality factor (Q > 109) as it is
well-isolated from the thermal environment, which is ex-
cellent for precision measurements [23–35]. Optical lev-
itation of a silica (SiO2) nanosphere in vacuum at 10−8

torr [35], and force sensing at 10−21N level with a lev-
itated nanosphere [34] have been demonstrated in two
separate experiments. The libration of an optically levi-
tated nonspherical nanoparticle in vacuum has also been
observed [26, 33], which provides a solid foundation for
this proposal. We are going to detect the torsional vibra-
tion of the nanorod and measure its orientation with the
laser polarization in a scheme similar to those reported
in Ref. [26, 33]. The nanorod will be levitated using an
optical tweezer formed by a linearly polarized 1064 nm
laser beam near a birefringent plate (FIG. 1). The tor-
sional vibration of the nanorod will dynamically change
the polarization of the laser beam, which can be detected
with a polarizing beam splitter (PBS) and a balanced de-
tector. The birefringent plate will cause a static change
of the polarization of the laser, which can be canceled by
a tunable waveplate as shown in FIG. 1.(c).

In this paper, we will show that a silica nanorod with
a length of 200 nm and a diameter of 40 nm levitated by
a 100 mW optical tweezer in vacuum at 10−7 torr will
have torque detection sensitivity about 10−28 Nm/

√
Hz

at room temperature. The Casimir torque between a
nanorod with the same size and a birefringent plate sep-
arated by 266 nm is calculated to be on the order of
10−25 Nm. The Casimir torque is 3 orders of magnitude
larger than the minimum torque we can detect in 1 sec-
ond, and thus will be detectable with our system. A levi-
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FIG. 1. (a) A nanorod levitated by a linearly polarized optical
tweezer in vacuum near a birefringent plate. Its axis tends to
align with the polarization direction of the optical tweezer.
(b) There will be a Casimir torque on the nanorod when its
axis is not aligned with a principle axis (the black arrow) of
the birefringent plate. The trapping laser beam can also be
used as the detecting beam to measure the torsional motion of
the nanorod. Here d is the separation between the nanorod
and the plate, and θ is the angle between the long axis of
the nanorod and the optical axis of the birefringent plate.
(c) A proposed experimental scheme for detecting torsional
(TOR) vibration of a levitated nanorod. A silica nanorod
(represented by a brown rod) is levitated by a tightly focused
linearly polarized 1064 nm laser beam and it is very close to a
birefringent plate. The angle of the nanorod is monitored by
the exiting trapping laser. A tunable waveplate balances the
power of the beams after the polarizing beam splitter (PBS)
for the TOR detector.

tated nanorod in vacuum will be several orders more sen-
sitive than the state-of-the-art torque sensor. The best
reported torque sensitivity is 2.9×10−24 Nm/

√
Hz, which

was achieved by cooling a cavity-optomechanical torque
sensor to 25mK in a dilution refrigerator [36]. The force
detection sensitivity will be limited by the thermal noise
when the pressure is above 10−7 torr. When the pressure
is below 10−7 torr, the force sensitivity is mainly limited
by photon recoil, which is about 10−21 N/

√
Hz. Our cal-

culated turning point of the force sensitivity around 10−7

torr is consistent with the experimental observation of
photon recoils around 10−7 torr [35]. The exact turning
point depends on the size and shape of the nanoparticle,
as well as the intensity of the trapping laser.

Compared to the recent proposal of detecting the ef-
fects of Casimir torque with a liquid crystal [20], our
method with a levitated nanorod in vacuum will be able
to measure the Casimir torque at a much larger separa-
tion (d > 200 nm), where retardation is significant. We
will also be able to investigate the Casimir torque as a
function of relative orientation in detail. As an ultrasen-
sitive nanoscale torsion balance [36], our system will also

enable many other precision measurements.

II. TRAPPING POTENTIAL

We consider a silica nanorod with a length of l = 200
nm in the long axis and a diameter of 2a = 40 nm trapped
with a linearly polarized Gaussian beam in vacuum. The
electric field of the beam can be described under the
paraxial approximation as

Ex(x, y, z) = E0
ω0

ω(z)
exp{−(x2 + y2)

[ω(z)]2
}

×exp(ikz + ik
x2 + y2

2R(z)
− iζ(z)) , (1)

Ey(x, y, z) = Ez(x, y, z) = 0 , (2)

where E0 is the electric field amplitude at the origin, ω(z)
is the radius at which the field amplitudes fall to 1/e of
their axial values at the plane z along the beam, R(z) is
the radius of curvature of the beam’s wavefronts at z and
ζ(z) is the Gouy phase at z. In the case of rods with a
large apsect ratio, the components of the polarizability
tensor [32] parallel and perpendicular to the symmetry
axis are α‖ = V ε0(εr−1) and α⊥ = 2V ε0(εr−1)/(εr+1).
Here V is the volume of the object and εr is the relative
permittivity of the object. The absorption of electromag-
netic field of the silica is negligible, so we assume εr is
real.

When the size of the nanorod is much smaller than
the wavelength of the laser (here we choose wavelength
as 1064 nm), we can apply the Rayleigh approximation.
The induced dipole will be p = αxExx̂N + αyEyŷN +
αzEz ẑN , where the instantaneous electric field of the
laser beam E is decomposed into components along the
principle axes of the nanorod. The long axis of the
nanorod will tend to align with the polarization of the
laser. When the vibration amplitude is small, the opti-
cal potential is harmonic around the laser focus and the
vibrations of the trapped nanorod along different direc-
tions are uncoupled. Here we focus on its center-of-mass
motion along z axis and its rotation around z axis. Thus
the potential energy of the nanorod in the optical tweezer
is

U(z, φ) = − 1

2cε0
[α‖ − (α‖ − α⊥) sin2 φ)]Ilaser(z) , (3)

where c is the speed of light, ε0 is the vacuum permittiv-
ity, φ is the angle between the long axis of the nanorod
and the polarization of the Gaussian beam, and Ilaser(z)
is the laser intensity at the location of the nanorod. In
free space, the peak laser intensity at the focus is given
by Ilaser = Pk20NA2/(2π), where P is the laser power,
NA is the numerical aperture of the objective lens, and
k0 is the magnitude of the wave vector of the laser beam.
We assume NA= 0.85 in this paper.

Here we also need to consider the reflection from the
substrate, which will form a standing wave with the in-
cident wave and strengthen the trapping potential at the
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1/4 wavelength point (FIG. 1). We assume that the cen-
ter of Gaussian beam is 1/4 wavelength away from the
surface of the substrate. In our case, the wavelength is
1064 nm, so the center of the beam will be 266 nm from
the substrate surface. The refractive index is n0 = 1
for vacuum and are no = 2.269 and ne = 2.305 for or-
dinary and extraordinary axis of the birefringent crystal
BaTiO3 at 1064 nm[37], respectively. If the laser is per-
pendicular to the surface, the reflectance along ordinary
and extraordinary axis are Ro = 0.16 and Re = 0.15. For
a laser beam focused by a NA= 0.85 objective lens, the
angular aperture is 58◦. The angle of incidence varies a
lot at the surface of birefringent crystal and then the re-
flectance will become location and orientation dependent.
However, only reflected wave from light with a small in-
cident angle will interfere with the incident wave and
contributes to the trapping potential near z axis, where
the nanorod is trapped. Furthermore, when a linearly
polarized laser beam is focused before hitting a surface,
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FIG. 2. (a) Calculated trapping potential for a silica nanorod
with a length of 200 nm and a diameter of 40 nm as a function
of separation d. Here we set the center of Gaussian beam at
d = 266 nm, laser power as 100 mW and laser waist radius as
400 nm. Inset: Calculated Casimir free energy at 300 K as a
function of separation d at relative orientation θ = π/4. Here
we choose the substrate material to be barium titanate. (b)
Calculated Casimir force at 300 K as a function of separation
d between the silica nanorod and a birefringent crystal at
relative orientation θ = π/4. The blue solid line and red
dashed line represent the Casimir force when the birefringent
crystals are barium titanate and calcite, respectively.

50% of the laser will be parallel to the incident plane (p-
polarized), while the other 50% of the laser will be per-
pendicular to the incident plane (s-polarized). The aver-
age reflectance of a 50% p-polarized and 50% s-polarized
laser at the maximum incident angle 58◦ is 0.19, which
is still close to Ro = 0.16 and Re = 0.15. Therefore, we
use Ro and Re in the calculation for simplicity.

We assume that the linearly polarized laser is polarized
at π/4 relative to both optical axes of the birefringent
crystal, and the axis of the nanorod is aligned with the
polarization of the Gaussian beam (φ ≈ 0). Then the
potential near z = 0 (or d = d0) is

U(z) = U(d− d0) ≈ −1

4
α‖E

2
0 [

ω2
0

[ω(d− d0)]2

+
Ro +Re

2

ω2
0

[ω(d+ d0)]2
+ (
√
Ro +

√
Re) cos(2kd)

ω2
0

ω(d− d0)ω(d+ d0)
] , (4)

where d0 = 266 nm is the distance from the center of
the Gaussian beam to the birefringent crystal. We use
Eq. 4 to calculate the trapping potential and the result is
shown in FIG. 2 (a). Here the laser power is 100 mW and
the waist radius is approximately 400 nm. The potential
energy at the center of the beam is around −2.2× 104K,
which allow us to avoid losing the nanorod from thermal
motion at room temperature.

III. CASIMIR INTERACTION

The Casimir force and the van der Waals force have
the same physical origin, as they both arise from quan-
tum fluctuations. Casimir forces between macroscopic
surfaces involve separations typically larger than 100 nm
where retardation effect plays an important role, while
van der Waals forces often refer to separations smaller
than a few nm where retardation is negligible[7–10]. To
calcualte the Casimir interaction between a nanorod and
a birefringent plate, we follow the method in Ref. [17, 38]
by assuming that a half space is a dilute assembly of
anisotropic cylinders. With that we could extract the
interaction between a cylinder and one semi-infinite half
space from the interaction free energy between two half
spaces. We notice that Ref. [17] has two typos. In Eq.
5 about the function N in Ref. [17], the first term in
the third line, should be ρ2

3(ε3 − ε1,⊥)(Q2 + ρ1,⊥ρ3) in-
stead of ρ3

3(ε3 − ε1,⊥)(Q2 + ρ1,⊥ρ3). In Eq.7 for the

function f̃(φ) in Ref. [17], the term inside the square
root should be Q2((ε1,‖/ε1,⊥) − 1) cos2 φ + ρ2

1,⊥ instead

of Q2((ε1,‖/ε1,⊥)− 1) cos2 φ+ ρ2
1,‖. The corrected inter-

action free energy per unit length of the cylinder, g(d, θ),
between a single cylinder and a half-space substrate is

g(d, θ) =
kBTa

2

4π

∞∑
n=0

′
∫ ∞
0

QdQ

∫ 2π

0

dφ

[
e−2dρ3

N

D

]
, (5)
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where

N = (
∆‖

2
−∆⊥){Q2 sin2(φ+ θ)× [f̃(φ)ε1,⊥(Q2 sin2 φ(ρ1,⊥ + ρ3) + ρ1,⊥ρ3(ρ3 − ρ1,⊥)) + (ε1,⊥ − ε3)(ρ3(ρ1,⊥ + 2ρ3)

−Q2)]− 2f̃(φ)ε1,⊥ρ1,⊥ρ
2
3[2Q2 sinφ cos θ sin(φ+ θ) + ρ23 sin2 θ] + f̃(φ)ε1,⊥ρ

2
3[Q2 sin2 φ(ρ1,⊥ − ρ3) + ρ1,⊥ρ3(ρ1,⊥ + ρ3)]

+ ρ23(ε3 − ε1,⊥)(Q2 + ρ1,⊥ρ3)}+ 2f̃(φ)∆⊥ε1,⊥[Q2 sin2 φ(Q2ρ1,⊥ − ρ33) + ρ1,⊥ρ
2
3(Q2 cos(2φ) + ρ1,⊥ρ3)]

−∆⊥(ε1,⊥ − ε3)× [(Q2 + ρ23)(Q2 + ρ1,⊥ρ3) + (Q2 − ρ23)(Q2 − ρ1,⊥ρ3)] (6)

and

D = ρ3(ρ1,⊥ + ρ3){ε1,⊥f̃(φ)[Q2 sin2 φ− ρ1,⊥ρ3]

+ε1,⊥ρ3 + ε3ρ1,⊥} . (7)

In the equations above,

ρ1,⊥ =

√
Q2 +

ε1,⊥ω2
n

c2
, (8)

ρ3 =

√
Q2 +

ε3ω2
n

c2
, (9)

f̃(φ) =

√
Q2((ε1,‖/ε1,⊥)− 1) cos2 φ+ ρ21,⊥ − ρ1,⊥

Q2 sin2 φ− ρ21,⊥
. (10)

Here ∆⊥ = (ε2,⊥ − ε3)/(ε2,⊥ + ε3), ∆‖ = (ε2,‖ − ε3)/ε3
are the relative anisotropy measures of the cylinder, d is
the separation between the cylinder and the half-space,
a is the radius of the cylinder, kB is Boltzmann con-
stant, T is temperature, ε3 is the dielectric response
of the isotropic medium between the cylinder and the
half space, ε1,⊥ and ε1,‖ are the dielectric responses of
the birefringent material, ε2,⊥ and ε2,‖ are the dielec-
tric responses of the cylinder material. Subscript n
is the index for the Matsubara frequencies, which are
ωn = 2nπkBT/~, and the prime on the summation in
Eq. 5 means that the weight of the n = 0 term is 1/2.
All the dielectric responses should be considered as func-
tions of discrete imaginary Matsubara frequencies, i.e., as

TABLE I. Model parameters used to determine the dielectric
function of the materials[14, 40, 41].

CIR CUV ωIR(rad/s) ωUV (rad/s)

Calcite‖ 5.300 1.683 2.691× 1014 1.660× 1016

Calcite⊥ 6.300 1.182 2.691× 1014 2.134× 1016

Barium titanate‖ 3595 4.128 0.850× 1014 0.841× 1016

Barium titanate⊥ 145.0 4.064 0.850× 1014 0.896× 1016

Silica 0.829 1.098 0.867× 1014 2.034× 1016

ε3 ≡ ε
(n)
3 = ε3(iωn), ε1,⊥(iωn), ε1,‖(iωn), ε2,⊥(iωn) and

ε2,‖(iωn).
The dielectric properties of many materials are well

described by a multiple oscillator model (the so-called
Ninham-Parsegian representation)[39]. For most inor-
ganic materials, only two undamped oscillators are com-
monly used to describe the dielectric function[40, 41],

ε(iξ) = 1 +
CIR

1 + (ξ/ωIR)2
+

CUV
1 + (ξ/ωUV )2

, (11)

where ωIR and ωUV are the characteristic absorption an-
gular frequencies in the infrared and ultraviolet range,
respectively, and CIR and CUV are the corresponding ab-
sorption strengths. For the birefringent materials, there
are separate functions describing dielectric functions for
the ordinary and extraordinary axis. The model parame-
ters used for our calculations are summarized in Table I.

We could use Eq. 5- 11 and parameter data in Table I
to calculate the Casimir free energy G(d, θ) = g(d, θ)× l,
where l is the length of the cylinder [42]. FIG. 2.(a) in-
set shows that the Casimir free energy is very small for
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FIG. 3. (a) Calculated Casimir torque in 300K as a function
of separation d between the silica nanorod (l = 200 nm, a =
20 nm) and a birefringent crystal at relative orientation θ =
π/4. The blue solid line and red dashed line represent the
torque when the birefringent crystals are barium titanate and
calcite, respectively. (b) Calculated Casimir torque in 300K as
a function of relative orientation θ between the silica nanorod
(l = 200 nm, a = 20 nm)and a birefringent crystal by a
separation d = 266 nm. The blue solid line and red dashed
line represent the torque when the birefringent crystals are
barium titanate and calcite, respectively.
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separation d > 100 nm, compared to the optical trap-
ping potential. So the nanorod will be trapped near the
center of the laser beam without being attracted to the
substrate by the Casimir force. When d < 100 nm the
size of the nanorod is comparable to the separation be-
tween the nanorod and the birefringent crystal, thus the
dilute cylinder approximation will fail. Therefore, we
only consider the situation when d > 100 nm.

Then the retarded Casimir (or Casimir-Lifshitz) force
is given by

F = −∂G(d, θ)

∂d
, (12)

and the torque induced by the birefringent plates is given
by [12]

M = −∂G(d, θ)

∂θ
. (13)

Using Eq. 12, 13, we have calculated the Casimir force
and torque expected for different separations at relative
orientation θ = π/4, both for the barium titanate and
calcite as the birefringent crystal. The results obtained
for T = 300 K are reported in FIG. 2.(b) and FIG. 3.(a).
The force and torque both decrease as the separation in-
creases. The force follows the same power dependence of
the separation for different birefringent materials. How-
ever, there is no single power law dependence that de-
scribes the torque at all separations regardless of the
choice of materials. That is because the Casimir torque
is directly determined by the dielectric response differ-
ence between ordinary and extraordinary axes, which is
discrepant between barium titanate and calcite (in Ta-
ble.1).

We have also calculated the Casimir torque at d =
266 nm as a function of the relative orientation. From
the results reported in FIG. 3.(b), one can clearly see
that the torque oscillates sinusoidally with periodicity of
π: M = M0 sin(2θ). The maximum magnitude of the
torque occurs at θ = π/4 and θ = 3π/4. For different
birefringent crystals, the maximum magnitudes of the
torque are different, but have the same periodicity. As
expected, materials with less birefringence give rise to
a smaller torque. Thus Casimir torque between silica
nanorod and calcite is smaller than that with barium
titanate.

IV. EFFECTS OF THERMAL PHOTONS

Several papers have reported measurements of the
thermal Casimir force [43, 44], which is due to ther-
mal photons (blackbody radiation) at finite temperature
rather than quantum vacuum fluctuations of the elec-
tromagnetic field. At room temperature, the thermal
Casimir force is typically much smaller than the con-
ventional Casimir force due to quantum vacuum fluctua-
tions. The measurements of thermal Casimir force could
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FIG. 4. (a),(b) Calculated temperature dependence of
Casimir force between a silica nanorod and a birefringent
crystal, separated with a distance of 266 nm and aligned with
an angle of π/4. The materials of the birefringent crystals
are barium titanate and calcite, respectively. To single out
the effects of thermal photons, we did not consider the tem-
perature dependence of dielectric parameters in the calcu-
lation. When the temperature is below 400K, the force is
almost unchanged, with only 2 % difference. As the temper-
ature increases, the casimir force increases and temperature
dependence becomes more and more significant. For barium
titanate, the temperature range for tetragonal structure is
278K-393K, the blue solid line represents this range. Calcite
is a very stable birefringent crystal during the plotted tem-
perature range. (c),(d) Calculated temperature dependence
of Casimir torque. When the temperature is below 400K, the
torque is almost unchanged. As the temperature increases,
the casimir torque decreases and temperature dependence be-
comes more and more significant. (e),(f)Dielectric functions
as a function of imaginary angular frequency for barium ti-
tanate and calcite. Blue solid lines and red dashed lines rep-
resent, ε‖ and ε⊥, respectively.

test different models of materials. In fact, it is still un-
der debate about how to calculate the thermal Casimir
force between real materials [45]. It is thus interesting to
see how thermal photons affect the Casimir torque and
whether thermal Casimir torque will be detectable with
our proposed method.

When the separation between the nanorod and the
birefringent crystal is relatively small and the temper-
ature is relatively low, the blackbody radiation could be
neglected. But when the temperature and the separation
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increase, a small fraction of the torque will come from
thermal photons. To single out the effects of thermal
photons, we assume the dielectric functions of materials
are independent of temperature. The effect of temper-
ature is only included in the Bose-Einstein distribution
of thermal photons. In other words, we let the explicit
temperature T in Eq. 5 and the Matsubara frequencies
ωn = 2nπkBT/~ be a variable, while assuming all pa-
rameters listed in Table 1 to be constants. While this is
a crude approximation, it can help us to understand the
effects of thermal photons on the Casimir torque. In real
experiments, the properties of materials will depend on
temperature. So the situation will be more complex.

The calculated results of the Casimir force and torque
for d = 266 nm as a function of temperature are shown
in FIG. 4.(a)-(d). We can see that the thermal Casimir
effect is very small (less than a few percent). So the
measured torque will mainly come from quantum fluctu-
ations. The purpose of this calculation is to estimate the
magnitude of the effect of thermal photons. Since we did
not consider the change of the dielectric constants of the
real materials as a function of temperature, the temper-
ature dependence of the experimental results is expected
to be different from FIG. 4. To avoid complications, it
will be better to do the experiment at a fixed tempera-
ture. Because the effect of thermal photons is very small
for separations considered here, the measured tempera-
ture dependence of the Casimir torque will be most likely
due to the temperature dependence of the dielectric func-
tions, instead of thermal photons.

V. TORQUE MEASUREMENT METHOD

For d = 266 nm, the maximum magnitude of the
Casimir torque on a silica nanorod (l = 200 nm, a =
20 nm) is around 3.2 × 10−25 Nm for barium titanate
and around 4.6× 10−26 Nm for calcite (Fig. 3). In order
to prove that our optically levitated nanorod system is
able to detect the Casimir force and torque, we calcu-
lated the sensitivity of the force and the torque and the
results will be shown in subsection A. and B.

In a real system, there are some other effects, such as
stray fields, surface roughness and patch potential on the
surface, which may introduce errors to the measurement.
We will analyze these effects in subsection C. and D.

A. Torque sensitivity

To understand the limit of torque sensitivity in the
quantum regime, one must consider the noise limit which
comes from thermal fluctuations, as well as from photon
recoil. In air, the interaction between the nanorod and
the thermal environment dominates the noise, thus the
photon recoil from the laser can be neglected. However,
in high vacuum, the dominant source of noise can come

from the unavoidable photon recoil in the optical trap
and sets an ultimate bound for the sensitivity.

For small oscillation amplitudes, the equation of mo-
tion of a harmonic torsional oscillator is

θ̈ + γθ̇ + Ω2
rθ = M(t)/I , (14)

where θ is the angular deflection of the oscillator, Ωr is
the frequency of rotational motion, M is a fluctuating
torque, I is the moment of inertia around the torsion
axis, and γ is the damping rate of the torsional motion
which can be written as γ = γth+γrad. Here γth accounts
for the interaction with the background gas, γrad refers
to the interaction with the radiation field.

When the torque fluctuation is from Brownian noise,
the angular fluctuations of an oscillator excited by such a
stochastic torque could be calculated. The thermal noise
limited minimum torque that can be measured with a
torsion balance is[46]

Mth =

√
4kBTIγth

∆t
, (15)

where kB is the Boltzmann constant, T is the environ-
ment temperature, and ∆t is the measurement time. The
damping coefficient from thermal noise is γth = fr/I.

I = ρπa2l3

12 is the moment of inertia of the nanorod around
its center and perpendicular to its axis, ρ is the density of
the nanorod, a is the nanorod radius and l is the nanorod
length. fr = kBT/Dr is the rotational friction drag coef-
ficient. Dr is the rotational diffusion coefficient for a rod
in the free molecular regime and can be represented as
[47]

Dr = kBTKn/{πµl3
[
(
1

6
+

1

8β3
)

+f(
π − 2

48
+

1

8β
+

1

8β2
+
π − 4

8

1

8β3
)
]
} , (16)

where β = l/a is the rod aspect ratio, Kn = λ/a is the

Knudsen number, λ = µ
p

√
πkBT
2mgas

is the mean free path,

mgas is the molecular mass, µ is the gas viscosity and
f is the momentum accommodation, where we choose
f = 0.9. Thus the minimum detectable torque due to
thermal fluctuations Mth decreases with the square root
of the measurement duration ∆t, while increases with the
square root of the pressure p.

Apart from fluctuations due to contact with the back-
ground gas, the unavoidable photon recoil from the opti-
cal trap also contributes to the noise limit. The shot noise
due to photon recoil can be understood as momentum
or angular momentum kicks from the scattered photons.
The photon recoil limited minimum torque is

Mrad =

√
4I

∆t

d

dt
KR , (17)

where rotational shot noise heating rate of a nanorod
from a linearly polarized trapping beam is [48–50]

d

dt
KR =

8πJp
3

(
k20

4πε0

)2

(α⊥ − α‖)2
~2

2I
. (18)
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FIG. 5. (a)Calculated torque sensitivity limit of the rotational
motion of a levitated silica nanorod (l = 200 nm, a = 20 nm)
as a function of the background gas pressure. The blue solid
line and the red dashed line represent the torque sensitivity
limit due to only the thermal noise and due to both photon
recoil and thermal noise. The laser power is 100 mW and the
laser waist radius is 400 nm. (b)Calculated force sensitivity
limit of the translational motion of a levitated Silica nanorod
as a function of gas pressure. The blue solid line and the red
dashed line represent the force sensitivity limit due to only
the thermal noise and due to both photon recoil and thermal
noise.

Here the photon flux Jp is equal to the laser intensity over
the energy of a photon, which means Jp = Ilaser/~ω0. ω0

is the frequency of incident beam, k0 is the incoming wave
vector. Therefore, the total torque limit is given by

Mmin =
√
M2
th +M2

rad , (19)

We calculate the torque limit by using Eq. 15 - 19
and the result of the calculation is shown in FIG. 5.(a).
The torque detection sensitivity of a levitated nanorod
will be limited by the thermal noise when the pressure
is above 10−7 torr. When the pressure is below 10−7

torr, the torque sensitivity is mainly limited by photon
recoil from the 100 mW trapping laser, and is around
10−28 Nm/

√
Hz. Thus the Casimir torque will be 3 or-

ders larger than the minimum torque our system can de-
tect in 1 second, and is expected to be measurable.

B. Force sensitivity

Similar to the torque sensitivity, both thermal noise
and photon recoil needs to be considered to determine
force sensitivity. For small oscillation amplitudes, the
nanorod’s motion is described by three independent har-
monic oscillators (for three directions), each with its own
oscillation frequency Ω0i and damping rate γi, which is
a result of the asymmetric shape of the optical potential.

For example, the motion along y is described by,

ÿ + γy ẏ + Ω2
0yy =

1

m
Fy(t) , (20)

where y is the motion of the center of mass, m is the
nanorod mass, Fy is a fluctuating force along y axis acting
on the nanorod. The thermal noise limited minimum
force in one direction i that can be measured with a force
balance is

Fth(i) =

√
4kBTmγi

∆t
, (21)

Here m is the mass, γi is the damping coefficient of the
translational motion due to the background gas. For a
nanorod, damping coefficients are directly related to the
drag coefficients at each directions, which means that
γ⊥ = K⊥/m (component perpendicular to the axial di-
rection) and γ‖ = K‖/m (component parallel to the axial
direction). In the free molecular regime, the drag force
along different directions for a cylindrical particle are ex-
pressed by F⊥ = K⊥V⊥ and F‖ = K‖V‖ and drag coeffi-
cients are[51]

K⊥ =
2πµa2

λ

[
(
π − 2

4
β +

1

2
)f + 2β

]
, (22)

K‖ =
2πµa2

λ

[
(β +

π

4
− 1)f + 2

]
, (23)

In our system, we only consider the motion perpen-
dicular to the axis, which will affect the measurement of
Casimir force. The force inducted by thermal fluctua-
tions is

Fth =

√
4kBT

∆t
K⊥, (24)

while the photon recoil limited minimum force is

Frad =

√
4m

∆t

d

dt
KT . (25)

Here the translational shot noise heating rate of a
nanorod from a linearly polarized trapping beam is[48]

dKT

dt
=

8πJp
3

(
k20

4πε0

)2

α2
⊥
~2k20
2m

, (26)

Therefore, the total force limit will be

Fmin =
√
F 2
th + F 2

rad , (27)

Then we use Eq. 23- 27 to calculate the force sensitivity
limit and the result is shown in FIG. 5.(b). The force
detection sensitivity will be limited by the thermal noise
when the pressure is above 10−7 torr. When the pressure
is below 10−7 torr, the force sensitivity is mainly limited
by photon recoil, which is about 10−21 N/

√
Hz. The

Casimir force is approximately 10−16 N at d = 266 nm,
therefore, it is expected to be measurable.
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FIG. 6. (a) Separation evolution diagram. (b) Relative orien-
tation diagram. t = 0 to t1 = 10µs, the laser is on. t1 = 10µs
to t2 = 20µs, the laser is off. t2 = 20µs to t3 = 40µs, the laser
is on again. During this period, there is no feedback cooling.
t3 = 40µs, the laser is still on and we add feedback cooling to
the nanorod.

C. Pulsed measurement scheme

Since the reflectances along the ordinary and extraor-
dinary axes of the birefringent plate are different, the
reflected light will not have the same polarization as the
incident light (Fig. 1). Thus there will be an optical
torque from the laser reflected by the birefringent plate.
To eliminate this effect, we will apply a pulsed measure-
ment scheme, which means to switch the optical tweezer
on and off repeatedly to detect the Casimir torque by
observing the rotation of the nanorod. We could extract
the contribution which comes from the Casimir effect to
the rotation during the period when the laser is off.

When the laser is off, the naonorod will experience
the torque attributed to the Casimir effect. We can use
this method to extract the torque from the Casimir part.
However, when the laser is off, the nanorod will fall to
the substrate by gravity as well as the Casimir force be-
tween it and the substrate. Therefore, we may lose the
nanorod when the off-period is too long, while increas-
ing the length of the off-period can amplify the signal
observed from the Casimir torque. FIG. 6 shows the
simulation for this method. Initially the polarization of
the laser is set to be 45◦ relative to the optical axis of the
birefringent plate, and the center of the laser beam is set
at a distance of 266 nm from the substrate. FIG. 6.(a) is
the separation evolution during the pulse measurement.
During the period 0 to t1 we will keep the laser on. Dur-
ing this time, the nanorod is trapped stably around the
center of the beam (d = 266nm), which is an equilibrium

position. At t = t1 = 10µs, we will turn off the laser. So
at this moment the nanorod will fall to the substrate with
a acceleration of about 200m/s2 due to gravity and the
Casimir force. We notice that, the nanorod will only fall
10 nm for a 10 µs period. At t = t2 = 20µs, we turn on
the laser again. The trapping force from the laser will pull
back the nanorod. Then the nanorod will do harmonic os-
cillations around the equilibrium position (d = 266 nm).
When time reaches t3 = 40µs, we will intentionally apply
feedback cooling to the nanorod [31, 35]. So the ampli-
tude of the nanorod will decay to almost zero. At the
end of a measurement cycle, the nanorod will come back
to the initial situation. FIG. 6.(b) is the angle evolution
during a pulsed measurement cycle. When the laser is on,
the nanorod experiences an optical torque from the inci-
dent laser beam and from the reflected light, as well as a
relatively small Casimir torque. Since the optical torque
provided by the trapping laser can be far larger than the
Casimir torque, the initial relative orientation is approx-
imately 45◦. When the laser is off during t1 = 10µs and
t2 = 20µs, the torque comes only from the Casimir effect.
We will repeat this sequence many times (could be mil-
lions of times [52]) and average the results to extract the
signal from the noise. The effective measurement time
will be t2 − t1 times the number of measurement cycles.

D. Other effects

In real experiments, there could be external stray
fields, surface roughness and surface patch potentials that
could affect measurements. If the nanorod has a perma-
nent electric or magnetic dipole, there may be a torque
on the nanorod due to stray electric or magnetic fields.
Different from the Casimir torque, such torque due to a
permanent dipole has a period of 2π. So if we rotate the
nanorod by 180◦, the dipole torque will change its sign,
while the Casimir torque will be the same (FIG. 3(b)).
Thus we can cancel out this dipole torque on the nanorod
by a careful design.

Roughness can change the effective separation between
the nanorod and the plate, and induce an additional
torque on the nanorod. However, after polishing, the
roughness could be controlled to be less than 3 nm for the
regime near the nanorod [53]. FIG. 2(b) and FIG. 3(a)
show the dependence of Casimir force and torque on the
separation. When the separation changes 3 nm at an av-
erage separation about 266 nm, the force and the torque
don’t change much. Therefore, the torque generated by
surface roughness can be neglected.

Besides, there could be an inhomogeneous surface
patch potential along the surface of real materials. Such
patch potential can introduce a force and a torque, which
can affect Casimir force and torque measurements. Luck-
ily, it has been experimentally demonstrated that most
levitated nanoparticles have zero electric charge, which
can be verified by driving the particle with an AC elec-
tric field[34, 54].
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FIG. 7. Calculation results of the electric potential, electric field and induced torque on the nanorod due to a patch potential.
We assume that a round patch with a diameter of 5 µm lies on the birefringent plate and it is maintained at a potential of 10
mV, while the plate is kept at zero potential. (a) The potential at a height of 266 nm above the plate (a plane parallel to the
birefringent plate). The center of the round patch is at (0,0). (b) The amplitude of the electric field at the height of 266 nm
above the plate. The electric field reaches its maximum at the edge of the patch and is always pointing away from the center
of the patch. The white arrows show the directions of the electric field. (c) The torque induced by the patch potential. The
axis of the nanorod is parallel to the y-axis. (d) The potential in a plane perpendicular to the birefringent plate and going
through the center of the patch (y = 0, shown as the white dashed line in (a)). The center of the patch is at (0,0), which is
not shown in the plot. (e) The electric field from the patch in the X-O-Z plane (shown as the white dashed line in (b)). Here
we only consider the electric field along x axis. (f) The torque induced by the patch potential in a plane perpendicular to the
birefringent plate and 1.77 µm from the center of the patch (y = 1.77µm, shown as the black dashed line in (c)).

When there is no charge on the nanorod, the electric
field of a patch potential can still cause a force and a
torque due to the induced dipole. Here we analyze this
situation and consider that there is a round patch with
a diameter of 5 µm on a large birefringent plate. The
patch is assumed to have a potential of 10 mV, while the
plate is kept at zero potential. Then the potential at any
point above the plane is given by [56][57]

Φ(ρ, z) = V0r0

∫ ∞
0

e−λzJ1(λr0)J0(λρ)dλ, (28)

where r0 = 2.5µm is the radius of the patch, V0 = 10
mV is the fixed potential of the patch, J0 and J1 are
the zero-order and first-order Bessel function of the first
kind, ρ and z are the position of the potential in polar
coordinates. The long axis of the rod aligns with the
laser polarization, which is assumed to be y direction in
FIG. 7.(a). Then the induced torque along z axis from
the patch potential on the nanorod becomes

Tz = (α⊥ − α‖)ExEy, (29)

where α‖ and α⊥ are the components of the DC polar-
izability tensor parallel and perpendicular to the axis of
the nanorod, Ex and Ey are the electric field along x axis

and y axis, respectively. Here the positive torque is in the
direction along the positive z axis.

The calculated results of the electric potential, electric
field and induced torque on the nanorod due to the patch
potential are shown in FIG. 7. FIG. 7(a) is the calculated
patch potential in the plane 266 nm above the birefrin-
gent plate. FIG. 7.(b) is the calculated electric field in the
plane 266 nm above the birefringent plate. We can see
that the electric field reaches the maximum value at the
edge of the patch and is always pointing away from the
center of the patch. FIG. 7.(c) shows the induced torque
from the patch potential and it also reaches the maxi-
mum at the edge. The torque at the edge could reach
2× 10−25 Nm, which is at the same order as the Casimir
torque. FIG. 7.(d) is the calculated potential in a plane
perpendicular to the birefringent plate (y=0, shown as
the white dashed line in (a)). Here the height above
the plate ranges from 100 nm to 500 nm. FIG. 7.(e) is
the calculated patch potential in the X-O-Z plane (y=0,
shown as the white dashed line in (b)). Here we only con-
sider the electric field along x axis. We can see that the
electric field is anti-symmetric with respect to the z axis
and is large at the edge of the patch. FIG. 7.(f) shows
the induced torque from the patch potential in a plane
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FIG. 8. The torque profile at z = 266 nm, y = 1.77µm when
there is a round patch with a diameter of 5 µm at the center.
The patch is maintained at a potential of 10 mV. The green
dashed line is the induced torque from the patch potential
on the surface (corresponding to a horizontal line at z = 266
nm in FIG. 7(f)). The red dotted line is the Casimir torque
between a silica nanorod and a barium titanate plate at a
separation of 266 nm (the same result as FIG. 3). The blue
solid line is the Casimir torque between a silica nanorod and a
calcite plate at a separation of 266 nm. The maximum value
of the induced torque is at the same order as the Casimir
torque, for both barium titanate and calcite situation. But
the induced torque will change its sign at different positions.
Therefore, we can cancel out the effect from patch potential
by averaging the measured torque at multiple locations.

perpendicular to the plate but has a distance of 1.77 µm
from the center of the patch (y = 1.77µm, shown as the
black dashed line in (d)). In this plane, the maximum
electric field is 45◦ relative to the plane. The torque also
reaches the maximum at the edge.

FIG. 8 provides a more detailed profile of the induced
torque at a height of 266 nm and 1.77 µm from the
center of the patch (corresponding to a horizontal line
in FIG. 7(f)). Comparing the induced torque by the
patch potential with the Casimir torque between silica
nanaorod and two birefringent plates, we can see that
the maximum value of the induced torque is at the same
order as the Casimir torque. However, when the nanorod
is not close to the edge of the patch, the induced torque is
far smaller than the Casimir torque. Besides, the induced
torque has different signs at different positions, while the
Casimir torque is independent of the location for a sin-
gle crystal birefringent plate. Therefore, we can cancel
out the torque from the patch potential by measuring the
torque at multiple locations along a line (1D) or along a
2D array.

One possible way is to measure the torque at points
that are equally spaced on the birefringent plate. For
1D scan, we will measure the points along the direction
which is perpendicular to the axis of the nanorod. We

assume that the axis of the nanorod is trapped along y
direction, then we will measure the torque along positions
that are equally spaced along x axis. In this way, the
average of measured torque will be

M1D(x) =
1

N

N−1∑
i=0

M(x+
L

N
i), (30)

where x ∈ (0, LN ) is the position of the first measure-
ment point, N is the total number of measurements, L
is the measurement range, and M(x+ L

N i) is the torque
measured at the i-th point, which includes both Casimir
torque and the torque from patch potential. We let x be
a variable to simulate the situation when we do not know
the exact location of the patch. The measurement range
L should be larger than the size of a patch. In the situa-
tion when there are many patches, L will be the larger the
better for a single crystal birefringent plate. Here we sim-
ulate the results for the situation we discussed before in
FIG. 8 and setN to be 1, 2, 3, 4, 8 and 16. The results are
shown in FIG. 9. We compare the effect from the patch
at z = 266 nm, y = 1.77 µm with the Casimir torque
between the silica nanorod and the birefringent plates
(barium titanate and calcite). Here we set the measure-
ment range L = 10 µm. FIG. 9.(a) shows the expected
measured torque (blue solid line) when the patch-induced
torque is included, which means M = MCasimir+Mpatch.
The red dashed line shows the Casimir torque between
the nanorod and barium titanate plate. (b)-(f) show the
average of the torque measured at N equally spaced po-
sitions on the plate when N =2, 3, 4, 8, 16, respectively.
We use Eq. 30 to the get the average torque. We can see
that the average torque from the patch decays very fast
when we increase N . FIG. 9(g)-(l) show similar results
when the birefringent plate is a calcite plate. In real ex-
periments, we may not know the position of the patch.
However, as shown in Fig. 9(f),(l), when N is large, the
torque from the patch potential will be negligible com-
pared to the Casimir torque and will only have a weak
dependence of the measurement position. Therefore, we
can use this method to minimize the effect from patch
potential.

We also consider a two-dimensional scan, which means
we will measure the torque following a 2D array in the
X-O-Y plane. In this way, the averaged torque will be

M2D(x, y) =
1

K2

K−1∑
i=0

K−1∑
j=0

M(x+
L

K
i, y +

L

K
j), (31)

where (x, y) is the position of the first measurement point
on the plate and x ∈ (0, LK ), y ∈ (0, LK ). K is the num-

ber of measurements along one axis, N = K2 is the total
number of measurements, L is the measurement range in
one dimension and M(x+ L

K i, y+ L
K j) is the torque mea-

sured at the i-th point along x axis and the j-th point
along y axis. Here we also choose measurement range
L to be 10 µm. FIG. 10 shows the relation between
the number of measurements and the averaged torque
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FIG. 9. The torque after averaging the measured torque at equally spaced positions. We assume there is a round patch with
a diameter of 5 µm at the center (x = 0, y = 0, z = 0) and the patch is maintained at a potential of 10 mV. We compare the
patch-induced torque at z = 266 nm, y = 1.77µm (corresponding to a horizontal line in FIG. 7(f)) with the Casimir torque
between the silica nanorod and the birefringent plates (barium titanate and calcite). (a) The blue solid line shows the expected
measured torque when the patch-induced torque is included, which means M = MCasimir +Mpatch. The red dashed line is the
Casimir torque between the nanorod and barium titante plate. (b)-(f) show the torque after averaging the measured torque at
N different positions and these positions are equally spaced on the plate. We can see that the torque from the patch decays
very fast when we increase N . (g)-(l) show similar results when the birefringent plate is a calcite plate.
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FIG. 10. The maximum value of the averaged torque from
a patch potential Max(Mpatch) as a function of the total
measurement number N . The effect from the patch poten-
tial decreases after averaging the measured torque at equally
spaced positions. Here the blue dotted line shows the maxi-
mum torque after averaging for one-dimension measurements
along the x axis, while the black dashed line shows the maxi-
mum torque after averaging for two-dimension measurements.
The red solid line shows the equation M = M0/N , where
M0 = 2.65 × 10−25Nm is the maximum value of the patch-
induced torque at 266 nm above the birefringent plate (no
averaging).

from patch potential, both for one-dimensional (blue
dotted line) and two-dimensional scans (black dashed
line). Vertical axis shows the maximum of the averaged
torque from the patch potential, horizontal axis corre-
sponds to the number of measurements. The red solid
line shows M = M0/N , where M0 = 2.65 × 10−25Nm is
the maximum value of the patch-induced torque at 266
nm above the birefringent plate (no averaging). For the
two-dimensional averaging method, the maximum aver-
aged torque from the patch potential approximately fol-
lows the 1/N law. The 1D averaged torque from the
patch along x axis decays much faster than the 2D av-
eraged torque from the patch potential. When N = 30,
the maximum value of the 1D averaged torque from the
patch potential is about 3 × 10−28 Nm, which is three
orders smaller than the Casimir torque between a silica
nanorod and a barium titanate plate. This further proves
that we can decrease the effect from patch potential by
measuring the torque at multiple locations.

Meanwhile, we can reduce the surface patch potential
by careful preparation of the sample, as done in an exper-
iment that measured the Casimir force which improved
the flatness to be less than 3 nm over mm2 area[58]. We
can determine the topography and observe patch poten-
tial on the surface by using Kelvin probe force microscopy
and choose the area with relatively small roughness and
patch potential to do the measurement[53, 55]. We can
also measure the toque due to the surface patch poten-
tial directly by utilizing the angular dependence of the
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Casimir torque. As shown in FIG. 3.(b), the Casimir
torque will be maximum when the relative angle between
the nanorod and the optical axis of a birefringent crystal
is 45◦, and it will be 0 when the angle is 0◦ or 90◦. So
we can directly measure the the torque due to the patch
potential by setting the angle to be 0◦ and 90◦ when the
Casimir torque is zero. We can then subtract the torque
due to the surface patch potential from the total mea-
sured torque to obtain the Casimir torque at 45◦.

VI. CONCLUSION

In this paper, we show that the calculated Casimir
force is on the order of 10−16 N and the torque is on the
order of 10−25 Nm between an optically levitated silica
nanorod (l = 200nm, a = 20nm) and a birefringent crys-
tal separated by 266 nm. Considering noise from thermal

interaction and photon recoil, we get the sensitivity of our
system, which is on the order of 10−28 Nm/

√
Hz at 10−7

torr. Therefore, the system will allow us to measure the
Casimir torque and test the fundamental prediction of
quantum electrodynamics [2–13]. Besides its fascinating
origin, the QED torque between anisotropic surfaces is
expected to be important for the anisotropic growth of
some crystals [21] and biological membranes. Our system
will enable many other precision measurements, such as
a measurement of the torque on a single nuclear spin [26].
It can also study electrostatics of surfaces.
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