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We demonstrate a two dimensional grating magneto-optical trap (2D GMOT) with a single in-
put cooling laser beam and a planar diffraction grating using 87Rb. This configuration increases
experimental access when compared with a traditional 2D MOT. As described in the paper, the
output flux is several hundred million rubidium atoms/s at a mean velocity of 16.5(9) m/s and a
velocity distribution of 4(3) m/s standard deviation. We use the atomic beam from the 2D GMOT
to demonstrate loading of a three dimensional grating MOT (3D GMOT) with 2.46(7)× 108 atoms.
Methods to improve output flux are discussed.

PACS numbers: 37.10.De, 37.10.Gh, 07.77.Gx, 37.20.+j
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I. INTRODUCTION

Matter wave interferometry has demonstrated orders
of magnitude improvement over a wide range of preci-
sion measurements [1–8]. These successes have spurred
interest in transitioning cold atom devices from the lab to
more demanding environments [9–17]. Recently, a three
dimensional grating magneto-optical trap (3D GMOT)
was demonstrated that satisfies many needs of a deploy-
able system [18–20]. Particularly, the GMOT increases
optical access while reducing system size, weight, power,
and cost compared to conventional techniques.

A similar principle can be used to form a two dimen-
sional GMOT (2D GMOT), resulting in a cold atomic
beam. As shown in Fig. 1(a)-(b), a 2D GMOT is formed
when a single red-detuned laser beam is normally in-
cident on a pair of planar diffraction gratings. The
diffracted beams intersect with the incident light to pro-
vide cooling along two axes. Assuming proper conditions
of polarization and magnetic field, atoms are captured
within the region of beam overlap.

The 2D GMOT is used to load a 3D GMOT in a dif-
ferent chamber, shown in Fig. 1(c)-(d). The 2D GMOT
enables faster loading rates and higher atom number in
the 3D GMOT by separating the source vapor from the
experimental region. The resulting 3D GMOT shows
comparable atom number scaling to standard six-beam
MOT’s [18] and is able to achieve sub-Doppler cooling
[21].

The rest of the paper will be organized as follows: the
theory considerations for adapting from the 3D to the 2D
case will be detailed. The design and characteristics of
a 2D GMOT with Doppler cooling along the atom beam
axis (the 2D+ configuration [22]) are then presented. Fi-
nally, the loading rates, lifetime, and atom number of the
combined 2D+ to 3D GMOT system are reported.
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FIG. 1. (Color online) (a) A laser beam impinges on a se-
ries of diffraction gratings to form a 2D GMOT. (b) Inverted
greyscale fluorescence of the 2D GMOT viewed along its axis.
(c) A schematic of a 3D GMOT and (d) its corresponding
inverted fluorescence image.

II. THEORY AND DESIGN

Unlike conventional MOT configurations, the GMOT
laser beams are not aligned with the magnetic field axes.
Accordingly, specific conditions for intensity and po-
larization must be considered when selecting gratings.
These conditions differ between the 2D and 3D case.

Each atom in a MOT scatters light from multiple off-
resonant laser beams with wavevectors kj and polar-
ization vectors ε̂j . Assuming the atom absorbs from
F = 0→ F ′ = 1, a circularly polarized beam drives tran-
sitions to the mF = −1, 0,+1 excited states with relative
strengths αmF

(ϕ, ε̂j) that depend on the beam’s polar-
ization and angle with respect to the local magnetic field
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ϕ. For a beam whose polarization is labeled by s = +1
for right circular or s = −1 for left, these strengths are
α±1 = (1∓ s cosϕ)2/4 and α0 = (sin2ϕ)/2. The average
force from a single beam j, of intensity Ij , on an atom
with velocity v in a magnetic field B is

Fj = ~kj
Γ

2

Ij
Isat

∑
mF =−1,0,1

αmF
(ϕ, ε̂j)

1 +
∑

j Ij

Isat
+

4(∆−kj ·v−µFmFB/~)2

Γ2

,

(1)
where Γ is the natural linewidth and ∆ = ωL − ω0, the
detuning of the laser frequency from the transition. Isat

is the saturation intensity and µF = gFµB . In the limit
of small Doppler and Zeeman shifts, the force becomes

Fj ≈ ~kj
Γ

2

Ij
Isat

[
K + C

(
kj · v−

µF s

~
kj ·B
|kj |

)]
, (2)

where K = (1 +
∑
j Ij/Isat + 4∆2/Γ2)−1, C =

8∆K2/Γ2[23].
Contrary to common MOT geometries, the optimal

light field for a GMOT does not have pure circular po-

larization because |k̂j · B̂| 6= 1 for the diffracted beams.
In addition, intensity balance states

∑
j Ijkj = 0, requir-

ing beam intensity to change with the diffraction angle.
As a result, the 2D and 3D GMOT configurations have
different constraints, as shown in the following.

A circularly polarized beam with intensity I1, normally
incident on a grating, will diffract upwards at an an-
gle θ from normal (+ŷ) with intensity Iup, as shown in
Fig. 2. The incident beam has k1 = −|k|ŷ and s = +1,
denoting pure circular polarization. The magnetic field
B = G (xx̂− yŷ) has gradient G and is centered on the
beam overlap region. The resulting force from beam 1 is

F1 ≈ −~k
Γ

2π

I1
Isat

[
K + C

(
−kvy −

µFG

~
y

)]
ŷ. (3)

In general, gratings do not preserve polarization. The
diffracted beams will have a fractional intensity P+Iup

in the s = +1 polarization and P−Iup in the s = −1
polarization. Summing over the polarizations, the total
force in x̂ is

Fx ≈ ~kCΓsin2θ
Iup

Isat

(
kvx + (P− − P+)

µFG

~
x

)
x̂. (4)

Similarly,

Fy ≈ ~kΓK cos θ
Iup

Isat

+ ~kΓC cos θ
Iup

Isat

(
kvy cos θ + 2(P+ − P−)

µFG

~
y cos θ

)
− ~k

Γ

2

I1
Isat

[
K + C

(
−kvy −

µFG

~
y

)]
ŷ. (5)

FIG. 2. (Color online) A single broad input laser beam has di-
rection labeled by its wavevector k1. The input beam diffracts
from two gratings, creating additional beams labeled by k2,3

at angle ±θ from ŷ. Each beam applies forces to atoms near
the center of a linear magnetic field B. Under certain con-
straints on the grating efficiency and angle, the input beam
polarization, detuning, and intensity can be optimized to cool
and capture atoms in two dimensions.

The constant terms (i.e. those ∝ K) represent an in-
tensity mismatch that will shift the trap center if not
properly balanced. In particular, a trap will only form
at the magnetic field zero if

Iup =
I1

2 cos θ
. (6)

Then,

Fx ≈ ~kC
Γ

2

I1
Isat

sin2θ

cos θ

(
kvx + (P− − P+)

µFG

~
x

)
x̂, (7)

Fy ≈ ~kC
Γ

2

I1
Isat

(
kvy(1 + cos θ)

+
µFG

~
y
(

1 + (P+ − P−) cos θ
))

ŷ. (8)

Note that because ∆ is negative, these forces perform
trapping and cooling.

Eq. (6) shows the ideal intensity balance between the
three beams of the 2D GMOT. However, a subtle dis-
tinction separates Eq. (6) from the necessary grating effi-
ciency. Gratings compress the diffracted beam area with
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respect to the originally incident light. Thus, a perfectly
efficient grating (i.e. 100% of input power directed into
the first order) would produce Iup = I1/ cos θ. As a re-
sult, satisfying Eq. (6) requires a grating efficiency of
50%, independent of θ. If not, the resulting intensity im-
balance manifests as an offset in the trap location from
the field zero along the axis normal to the gratings [24].
In general, for a GMOT with N diffracted beams, the
ideal grating efficiency is 1/N .

The relatively high (1/N = 50%) efficiency require-
ments of the 2D GMOT preclude many grating types.
Any grating without a preferred direction would have to
diffract practically all power into the ±1 orders. Asym-
metric (e.g. blazed) gratings are therefore preferable.

Custom non-directional etched gratings have been fab-
ricated to this standard for the 3D GMOT [18, 25, 26],
albeit with considerable design time and fabrication cost.
Such gratings often require e-beam lithography for small
(≈ 500 nm) feature sizes. Manufacturing large area grat-
ings requires significant time in high-demand clean room
facilities, motivating our experiment to investigate the
option of using replicated blazed gratings.

Replicated gratings are inexpensive and readily avail-
able, but confined to existing master gratings. Addi-
tionally, replicated gratings are not designed to minimize
residual specular reflections, which can undermine trap
performance by driving anti-trapping transitions in the
atoms. To avoid reflected light, GMOT systems with
blazed gratings have gaps between the gratings which
are aligned with the central axis of the input laser.

In addition to intensity balance, the polarization of the
diffracted beams significantly effects the GMOT forces.
In particular, maximizing trapping in the x direction re-
quires P− = 1 and P+ = 0, as shown in Fig. 3(a). How-
ever, this polarization minimizes trapping in the y direc-
tion.

Fig. 3 shows the effect of imperfect polarization on the
trapping forces by adjusting the ratio of P+ to P− within
the 50% diffraction efficiency constraint. Fig. 3(a)-
(d) show (P+, P−) = (0, 1), (0.1, 0.9), (0.2, 0.8), and
(0.3, 0.7), respectively. The linear approximation of Fx
from Eq. (7) is shown as a dashed line. The force along
y increases at the expense of the x trapping strength.
Equal trapping strength along each axis can be achieved
for P− − P+ = cos θ. For the case of θ = 45◦, equal
trapping is achieved for P− ≈ 0.85 and P+ ≈ 0.15.

III. EXPERIMENTAL SETUP

Guided by the results of the previous section, an ex-
periment is built to demonstrate the 2D GMOT. The
experiment uses two epoxied glass vacuum cells [27] sep-
arated by a mini-conflat flange cross, as shown in Fig. 4.
All cell walls are anti-reflection coated on both sides of
the glass for 780 nm. The 2D GMOT is produced in a
chamber 30× 40× 72 mm3, which is capped by a silicon
reflector with a 1 mm diameter pinhole. The atom beam

(a)

(b)

(c)

(d)

FIG. 3. (Color online) Trapping forces in a 2D GMOT for
varying polarizations of the diffracted beams, assuming 50%
total efficiency. Thin black curves show Fx and thick blue
curves show Fy. Dashed black lines are the linear approxi-
mation of Fx from Eq. (7). Plots (a)-(d) show (P+, P−) =
(0, 1), (0.1, 0.9), (0.2, 0.8), and (0.3, 0.7), respectively.
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travels through the pinhole, then through a second filter-
ing (3 mm diameter) pinhole in the copper gasket of the
conflat cross. The atoms are then collected on the op-
posing side of the cross by a 3D GMOT in a 25× 40× 85
mm3 chamber.

Four permanent neodymium magnets (not shown) are
arranged along the corners of the 2D GMOT chamber,
creating an extended quadrupole magnetic field with a
20 G/cm gradient. They are positioned via a three axis
translation stage and a tip-tilt mirror mount to aid align-
ment of the 2D GMOT with the silicon pinhole. The
3D GMOT magnetic fields are produced by an anti-
Helmholtz coil pair, centered by cage rods that align the
3D GMOT optics. At 1.2 A current, they provide an
axial gradient of 10 G/cm.

Gratings are placed outside of each vacuum cham-
ber. For the 2D GMOT, two 17.5 × 38 mm2 rectangu-
lar gratings are placed with their blazes facing towards
the central axis, separated by a 5 mm gap. For the
3D GMOT, four trapezoidal gratings are combined to
produce a 38× 38 mm2 square with a 4× 4 mm2 gap at
its center.

FIG. 4. (Color online) The experimental setup for a
2D GMOT loading a 3D GMOT. Input lasers and magnetic
field sources omitted for clarity.

A single laser beam is input into each vacuum cell
with 51.5 mW red-detuned from the cooling transition
for 87Rb and 18.0 mW at the repump transition. As
shown in Fig. 5, the light is emitted from a single
mode, polarization-maintaining fiber (NA = 0.12) and
expanded through a negative lens (f = −9 mm). A
wide-angle quarter wave plate provides circular polariza-
tion to the expanding beam. Only the central fraction of
the beam is reflected towards the GMOT chamber by a
two-inch mirror. The central region has a broadly uni-
form intensity profile. The reflected light passes through
a two-inch lens with a 100 mm focal length. Varying the
distance from the fiber output to the final lens adjusts
the collimation of the downward beam.

FIG. 5. (Color online) The optical path of the cooling light
used for the 2D and 3D GMOT. A Gaussian beam emits
from a polarization-maintaining, single mode fiber and ex-
pands through a negative lens. A quarter waveplate provides
circular polarization. After expansion, the central, mostly
uniform portion of the beam reflects from a mirror. A final
lens adjusts the remaining light’s collimation.

The gratings are chosen using the theory presented
above. A more complete model would modify Eq. (1)
to account for the many mF states and gF factors of
Rb. These changes affect the strength of the trapping
forces. However, the derived conditions pertaining to
intensity balance and polarization remain valid. For
the 2D GMOT in particular, ideal gratings diffract at
θ = 45◦ to maximize the beam overlap area, correspond-
ing to ∼ 906 grooves per mm. Additionally, ideal grat-
ings diffract circularly polarized incident light at 50%
efficiency while modifying the output beam to be ≈ 85%
circularly polarized with the opposite handedness.

A commercially produced grating with 830 grooves per
mm and an 800 nm blaze wavelength approximates these
conditions, diffracting at θ = 40.3◦. Assuming light is
input normal to the grating, Fig. 6 shows the theoretical
diffraction efficiency for incident polarization parallel and
perpendicular to the groove direction. These combine to
give the average efficiency, shown as the thick solid curve.

The circularly polarized incident beam has equal in-
tensities of S and P -polarized light. Because each com-
ponent diffracts differently, the output beam is ellipti-
cally polarized. Using a Thorlabs TXP polarimeter [28],
we measure the overall diffraction efficiency at 68% with
P+ = 0.061 and P− = 0.939. Because the gratings are
located outside of the vacuum cell, the optical surfaces
of the glass chamber modify the intensity and polariza-
tion of the diffracted beams before they reach the atoms.
As a result, the overall efficiency drops to 64%, with
P+ = 0.066 and P− = 0.934.

The non-ideal diffraction causes an intensity imbalance
which can be compensated by adjusting the collimation
of the input beam. For the measurements to follow, the
beam is made to focus 40 cm after the final lens, with
the gratings positioned 5 cm from the lens. Thus, in
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FIG. 6. Polarization-dependent grating efficiency as a func-
tion of wavelength at normal incidence for a grating with 830
g/mm and an 800 nm blaze.

the GMOT chambers, the incident beam has an approx-
imately uniform intensity profile with 11.0 mW/cm2 at
the cooling transition and 3.8 mW/cm2 at the repump
transition.

A “push” beam is directed along the 2D GMOT axis
to provide enhanced longitudinal cooling, using 3.3 mW
of cooling light in a beam with a 4 mm waist. The beam
is retro-reflected from the silicon reflector. We refer to
the 2D GMOT with a push beam as a 2D+ GMOT.

The same gratings are used for the 3D GMOT. How-
ever, because the trap uses four diffracted beams, the
ideal diffraction efficiency should be 1/N = 25%. Ac-
cordingly, a 0.1 ND filter is placed between the 3D grat-
ings and the chamber wall.

IV. DIAGNOSTICS

The 3D GMOT fluorescence is monitored using a
photodiode (Thorlabs PDA100A [28]). Light from the
GMOT is collected using a f = 25.4 mm lens positioned
2f from the trap and the sensor surface. Switching the
3D GMOT’s magnetic field on produces a rising fluo-
rescence signal proportional to the number of captured
atoms. The 3D GMOT atom number N(t) is approxi-
mately described by the capture rate Rcapture and trap
lifetime τtrap

N(t) = τtrapRcapture

(
1− e−t/τtrap

)
. (9)

An 8 mW “plug” laser beam is then positioned just
before the exit pinhole, as seen in Fig. 4. The plug laser
acts to misalign the atomic beam from the 3D GMOT, ef-
fectively reducing Rcapture by an amount R. If the plug
beam is turned off for a short period, the 3D GMOT

will grow as atoms traverse the distance L from the
exit pinhole to the capture volume of the 3D trap, as
shown in Fig. 7. This growth is used to characterize the
2D+ GMOT beam.

FIG. 7. (Color online) A short pulse of the 2D+ GMOT is
released at t = 0, traverses a distance L, and is captured in a
3D GMOT, which grows as a function of time.

Analytic models for the flux of typical 2D+ MOTs have
been presented previously [22, 29]. We use a simplified,
closed form solution to fit the data. Specifically, we as-
sume the steady-state 2D+ GMOT can be described as
a distribution of atoms in position and velocity

η(z, v) =
A

σ
√

2π
exp

(
− (v − v0)2

2σ2

)
, (10)

where A represents the number of atoms/m in the beam,
weighted by a Gaussian distribution in velocity with peak
v0 and spread σ. Thus, the density of atoms with veloc-
ities between v1 and v2 is

∫ v2
v1
η(z, v)dv.

In the case of an atomic beam with a uniform speed
v0 (i.e. σ = 0), no atoms reach the 3D GMOT until
t = L/v0. For t ≥ L/v0, a constant flux reaches the
capture volume. While t << τtrap, loss terms can be
neglected and the resulting 3D GMOT growth is linear

N(t) =

{
0 t < L/v0

R
(
t− L

v0

)
L/v0 ≤ t << τtrap.

(11)

A more realistic atom beam (i.e. σ > 0) will not have
such an abrupt change in N(t). There is still no growth
for t < L/vc, where vc is the capture velocity of the
3D GMOT. But for t ≥ L/vc, atoms with velocities
between vc and v = L/t contribute to the 3D GMOT
number. The velocity spread of the atom beam causes a
gradual transition to linear growth given by

N(t) =

{
0 t < L/vc∫ 0

L−vct
∫ vc

(L−z)/t η(z, v) dv dz L/vc ≤ t << τtrap.

(12)
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The solution to these integrals is presented in Ap-
pendix B. Additionally, we show that the flux of atoms
exiting the pinhole with velocities in the range v to v+dv
is

Φ(v)dv =
A

σ
√

2π
v exp

(
− (v − v0)2

2σ2

)
dv. (13)

The total flux defines the linear slope of N(t) as

R =

∫ ∞
−∞

Φ(v) dv = Av0. (14)

V. RESULTS

A discussion of the data processing and error analysis
for the following results is provided in Appendix C. Fig. 8
shows the rise in atom number when the 3D magnetic
coils are switched on. The solid curve is a fit to Eq. (9)
in which Rcapture = 1.12(3) × 108 atoms/s and τtrap =
2.20(3) seconds, corresponding to an upper limit on the
pressure in the 3D chamber of ≈ 1×10−8 Torr [30]. The
steady state MOT number is 2.46(7)× 108 atoms.

FIG. 8. Atom number in 3D GMOT versus time after
3D GMOT magnetic field is switched on.

The plug beam is then applied to reduce Rcapture. To
synchronize the subsequent time-of-flight experiment, the
plug beam power is monitored with a photodiode. The
plug beam is turned off and the resulting 3D GMOT
growth recorded for total time Ttotal. Over the course of
an hour, 16 independent experiments take place for each
of the following: Ttotal = 47, 97, 197, 297, and 397 ms.
The longer data sets determine the linear region of N(t),
while the shorter data sets have greater time resolution
to map the initial curvature in 3D GMOT growth.

The combined data is shown in Fig. 9. A and v0

are strongly determined by the overall linearity from

(a)

(b)

FIG. 9. Growth in 3D GMOT atom number versus time as
the plug laser beam is turned off, allowing the 2D+ GMOT to
load the 3D GMOT. The full data set is shown in (a), while
the initial growth is detailed in (b). The dashed line assumes
no spread in the velocity distribution of the 2D+ GMOT, as
in Eq. (11). The solid curve is a fit using Eq. (12).

t ≈ 100 − 400 ms. We first fit Eq. (11) to this data,
finding A = 4.9(3)× 106 atoms/m and v0 = 16.5(9) m/s.
Using these values, we fit Eq. (12) across our entire data
set to find σ = 4(3) m/s. The linear fit is depicted in
Fig. 9(b) as a dashed line, while the full fit is given as a
solid curve.

Comparing R to Rcapture, the plug beam reduces the
atomic flux by 72%. Additionally, it is likely that only ≈
25% of the 2D+ GMOT beam actually enters the capture
volume of the 3D GMOT, assuming typical atom beam
divergence as discussed in [22]. We therefore estimate
the total flux at the pinhole to be > 4× 108 atoms/s.
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VI. COMPARISONS AND OUTLOOK

Traditional 2D+ MOT’s have typical flux values near
109 atoms/s [22], and in extreme cases are as high as 1011

atoms/s [29]. However, high flux 2D+ MOT’s form across
10 cm lengths or higher and saturate with laser intensi-
ties near 20 mW/cm2. By comparison, the 2D+ GMOT
reported here forms over a length of several mm with
11 mW/cm2 laser intensity. The short beam length is
expected, as circular Gaussian beams cause the input
intensity profile to vary significantly, limiting the range
over which optimal cooling parameters are achieved. Fu-
ture work will employ beam shaping techniques to create
a top hat intensity profile within the trap region. A top
hat intensity profile will also help make more effective
use of available laser power.

Increasing the 2D+ GMOT length allows atoms with
higher longitudinal velocities to be collimated into the
MOT beam, increasing flux at the cost of a higher mean
speed. Additionally, length improves total output by in-
tegrating a longer capture volume. Assuming the pres-
sure is low enough that collisions are negligible, tradi-
tional 2D MOT flux scales linearly with increased length
[29, 31, 32]. While this experiment is not conducive to
independently varying length, we expect the 2D+ GMOT
to scale similarly.

Additionally, both the 2D+ GMOT and 3D GMOT
should benefit from higher laser intensity, which acts to
raise the capture velocity. Prior work has shown that
2D+ GMOT flux is maximal for laser intensities near
20 mW/cm2, while the 3D GMOT atom number satu-

rates near 50 mW/cm2 [18]. Both are significantly higher
than the 11 mW/cm2 produced by our laser system. De-
spite the difference, the loaded 3D GMOT described here
shows the highest atom number reported so far in a grat-
ing based system.

Because this work shows the first 2D GMOT, the sys-
tem described above was designed to be large enough
that time-of-flight diagnostics could be easily performed.
In future work, the 2D-to-3D GMOT system will be in-
tegrated into significantly smaller forms. By placing the
gratings within the vacuum cell and using atom chips to
create the necessary magnetic fields, we are presently de-
veloping a compact, laser-cooled system. Towards that
goal, we are investigating various experimental parame-
ters, including the grating choice, input beam polariza-
tion and collimation, capture volume, and vacuum qual-
ity. These results suggest further GMOT development is
warranted for use in field-deployable devices.

VII. ACKNOWLEDGEMENTS

This work was supported by the Air Force Office of
Scientific Research under project number 15RVCOR169.
We would like to thank the Department of Energy’s Cen-
ter for Integrated Nanotechnologies for its expertise in
lithographic techniques and grating manufacture. We
appreciate the research group of Erling Riis at the Uni-
versity of Strathclyde for discussions related to GMOT
design.

[1] B. Barrett, I. Chan, and A. Kumarakrishnan, Phys. Rev.
A 84, 063623 (2011), URL https://link.aps.org/doi/

10.1103/PhysRevA.84.063623.
[2] S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator,

P. R. Berman, and B. Dubetsky, Phys. Rev. Lett. 79,
784 (1997), URL https://link.aps.org/doi/10.1103/

PhysRevLett.79.784.
[3] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard,

Rev. Mod. Phys. 81, 1051 (2009), URL https://link.

aps.org/doi/10.1103/RevModPhys.81.1051.
[4] C. Adams, M. Sigel, and J. Mlynek, Physics Re-

ports 240, 143 (1994), URL https://doi.org/10.1016/

0370-1573(94)90066-3.
[5] D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, Phys.

Rev. Lett. 97, 240801 (2006), URL https://link.aps.

org/doi/10.1103/PhysRevLett.97.240801.
[6] S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S.

Johnson, and M. A. Kasevich, Phys. Rev. Lett. 111,
083001 (2013), URL https://link.aps.org/doi/10.

1103/PhysRevLett.111.083001.
[7] J. E. Debs, N. P. Robins, and J. D. Close,

Science 339, 532 (2013), ISSN 0036-8075,
http://science.sciencemag.org/content/339/6119/532.full.pdf,
URL http://science.sciencemag.org/content/339/

6119/532.

[8] T. Kovachy, P. Asenbaum, C. Overstreet, C. A.
Donnelly, S. M. Dickerson, A. Sugarbaker, J. M.
Hogan, and M. A. Kasevich, Nature 528, 530
(2015), URL http://www.nature.com/nature/journal/

v528/n7583/full/nature16155.html.
[9] J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Ko-

vachy, A. Sugarbaker, S. Chiow, P. W. Graham, M. A.
Kasevich, B. Saif, S. Rajendran, et al., General Relativity
and Gravitation 43, 1953 (2011), URL https://link.

springer.com/article/10.1007/s10714-011-1182-x.
[10] E. Imhof, J. Stickney, and M. Squires, Atoms 4

(2016), ISSN 2218-2004, URL http://www.mdpi.com/

2218-2004/4/2/18.
[11] H. Müntinga, H. Ahlers, M. Krutzik, A. Wen-

zlawski, S. Arnold, D. Becker, K. Bongs, H. Dittus,
H. Duncker, N. Gaaloul, et al., Phys. Rev. Lett. 110,
093602 (2013), URL https://link.aps.org/doi/10.

1103/PhysRevLett.110.093602.
[12] J. A. Rushton, M. Aldous, and M. D. Himsworth,

Review of Scientific Instruments 85, 121501 (2014),
http://dx.doi.org/10.1063/1.4904066, URL http://dx.

doi.org/10.1063/1.4904066.
[13] J. Williams, S. Chiow, N. Yu, and H. Müller, New Jour-

nal of Physics 18, 025018 (2016), URL http://stacks.

iop.org/1367-2630/18/i=2/a=025018.

https://link.aps.org/doi/10.1103/PhysRevA.84.063623
https://link.aps.org/doi/10.1103/PhysRevA.84.063623
https://link.aps.org/doi/10.1103/PhysRevLett.79.784
https://link.aps.org/doi/10.1103/PhysRevLett.79.784
https://link.aps.org/doi/10.1103/RevModPhys.81.1051
https://link.aps.org/doi/10.1103/RevModPhys.81.1051
https://doi.org/10.1016/0370-1573(94)90066-3
https://doi.org/10.1016/0370-1573(94)90066-3
https://link.aps.org/doi/10.1103/PhysRevLett.97.240801
https://link.aps.org/doi/10.1103/PhysRevLett.97.240801
https://link.aps.org/doi/10.1103/PhysRevLett.111.083001
https://link.aps.org/doi/10.1103/PhysRevLett.111.083001
http://science.sciencemag.org/content/339/6119/532
http://science.sciencemag.org/content/339/6119/532
http://www.nature.com/nature/journal/v528/n7583/full/nature16155.html
http://www.nature.com/nature/journal/v528/n7583/full/nature16155.html
https://link.springer.com/article/10.1007/s10714-011-1182-x
https://link.springer.com/article/10.1007/s10714-011-1182-x
http://www.mdpi.com/2218-2004/4/2/18
http://www.mdpi.com/2218-2004/4/2/18
https://link.aps.org/doi/10.1103/PhysRevLett.110.093602
https://link.aps.org/doi/10.1103/PhysRevLett.110.093602
http://dx.doi.org/10.1063/1.4904066
http://dx.doi.org/10.1063/1.4904066
http://stacks.iop.org/1367-2630/18/i=2/a=025018
http://stacks.iop.org/1367-2630/18/i=2/a=025018


8

[14] B. Barrett, L. Antoni-Micollier, L. Chichet, B. Batte-
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Appendix A: 2D GMOT Derivation

The average force from the jth beam is

Fj ≈ ~kj
Γ

2

Ij
Isat

[
K + C

(
kj · v−

µF s

~
kj ·B
|kj |

)]
. (A1)

The magnetic field is B = G (xx̂− yŷ). The three beams
have k vectors,

k1 = −kŷ

with polarization s = +1 and

k2 = k (sin θx̂ + cos θŷ)

k3 = k (− sin θx̂ + cos θŷ)

with fraction P+ in the s = +1 polarization and the
remainder P− in the s = −1 polarization, where θ is the
diffraction angle from the +ŷ axis.

1. Beam 1

For the input beam,

F ≈ ~k1
Γ

2

I1
Isat

[
K + C

(
k1 · v−

µF s

~
k1 ·B
|k1|

)]
≈ −~kΓ

2

I1
Isat

[
K + C

(
−kvy −

µFG

~
y

)]
ŷ. (A2)

2. Beam 2

For the s = +1 fraction of the second beam,

F ≈ ~k〈sin θ, cos θ〉Γ
2

P+I2
Isat

[
K + C

(
kvx sin θ

+ kvy cos θ − µFG

~
x sin θ +

µFG

~
y cos θ

)]
. (A3)

For the s = −1 fraction of the second beam,

F ≈ ~k〈sin θ, cos θ〉Γ
2

P−I2
Isat

[
K + C

(
kvx sin θ

+ kvy cos θ +
µFG

~
x sin θ − µFG

~
y cos θ

)]
. (A4)

3. Beam 3

For the s = +1 fraction of the third beam,

F ≈ ~k〈− sin θ, cos θ〉Γ
2

P+I3
Isat

[
K + C

(
− kvx sin θ

+ kvy cos θ +
µFG

~
x sin θ +

µFG

~
y cos θ

)]
. (A5)

For the s = −1 fraction of the third beam,

F ≈ ~k〈− sin θ, cos θ〉Γ
2

P−I3
Isat

[
K + C

(
− kvx sin θ

+ kvy cos θ − µFG

~
x sin θ − µFG

~
y cos θ

)]
. (A6)

4. Total Forces

Combining the contributions of each beam in the x̂
direction with Iup = I1 = I2 and P+ + P− = 1,

Ftot,x ≈ ~kCΓsin2θ
Iup

Isat

(
kvx+(P−−P+)

µFG

~
x

)
. (A7)

Similarly,

Ftot,y ≈ ~k cos θ
Γ

2

Iup

Isat

(
2K +

[
2C

(
kvy cos θ

+ 2(P+ − P−)
µFG

~
y cos θ

)])
− ~k

Γ

2

I1
Isat

[
K + C

(
− kvy −

µFG

~
y

)]
. (A8)

For the constant terms (i.e. those ∝ K) to cancel, Iup =
I1/2 cos θ. Then,

Ftot,y ≈ ~kC
Γ

2

I1
Isat

(
kvy(1+cos θ)+

µFG

~
y(1+(P+−P−) cos θ)

)
.

(A9)
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Appendix B: GMOT Distribution Derivation

1. Beam Distribution

When the plug beam is pulsed off for a short period,
a small packet of atoms from the 2D+ GMOT is allowed
to pass through the pinhole, across a distance L, to the
3D GMOT trapping region. If the atoms from the beam
packet are slower than the capture velocity vc, they will
be collected into the 3D GMOT, which will grow with in-
creased atom number. The process is illustrated in Fig. 7.

Define the pinhole to be at z = 0. Assume that at t =
0, the atoms are distributed uniformly behind the pinhole
(z < 0) with no atoms past the pinhole (z > 0). Assume
the atoms have a Gaussian distribution in velocity. The
number of atoms between z and z + dz with velocities
between v and v + dv is given by

η(z, v) dz dv =
A

σ
√

2π
exp

(
− (v − v0)2

2σ2

)
dz dv, (B1)

where v0 is the peak velocity of the distribution and
σ is the velocity spread. A represents the number of
atoms/m, which is weighted by a normal distribution in
velocity. The total number of atoms with initial positions
between z1 and z2 with velocities between v1 and v2 is

N =

∫ z1

z2

∫ v2

v1

η(z, v) dv dz . (B2)

The 3D GMOT size at time t is proportional to the
number of atoms that reach the point z = L with veloc-
ities less than vc at or before time t. In other words, an
atom at position z must travel at least L + |z| in time
t. Accordingly, the minimum velocity that reaches the
3D GMOT by time t is v1 = (L + |z|)/t. The velocity
range that can effect the 3D GMOT at time t is then
[v1, v2] = [(L− z)/t, vc].

At t = 0, no atoms exist past the pinhole, so z2 = 0.
The fastest atom capable of being trapped is vc, and it
can only travel a distance vct in time t. The fastest atom
can have an initial position no further behind the pinhole
than z1 = L − vct. Using these limits, the total number
of atoms that reach the 3D GMOT by time t is

N(t) =

∫ 0

L−vct

∫ vc

(L−z)/t
η(z, v) dv dz

=
A

σ
√

2π

∫ 0

L−vct

∫ vc

(L−z)/t
exp

(
− (v − v0)2

2σ2

)
dv dz

=
A

2

∫ 0

L−vct
erf

[
v0 − L−z

t

σ
√

2

]
dz − A

2

∫ 0

L−vct
erf

[
v0 − vc

σ
√

2

]
dz.

= A
σt√
2π

(
exp

[
−

(Lt − v0)2

2σ2

]
− exp

[
− (v0 − vc)2

2σ2

])

+
A

2
(v0t− L) erf

[
v0 − L

t

σ
√

2

]
− A

2
t(v0 − vc) erf

[
v0 − vc

σ
√

2

]
+
A

2
(L− vct) erf

[
v0 − vc

σ
√

2

]
. (B3)

2. Flux Distribution

Integrating η(z, v) from v = v′ to v′ + dv gives the
density of atoms in the 2D+ GMOT with velocities
in that infinitesimal range. Further integrating from
z = −v′(t+ dt) to −v′t gives the number of those atoms
exiting the pinhole between times t and t+ dt.

dN(v′, t) =

∫ −v′t
−v′(t+dt)

∫ v′+dv

v′
η(z, v) dv dz

=

∫ −v′t
−v′(t+dt)

[η(z, v′)dv] dz

= A

∫ −v′t
−v′(t+dt)

[
1

σ
√

2π
exp

(
− (v′ − v0)2

2σ2

)
dv

]
dz

=
Av′

σ
√

2π
exp

(
− (v′ − v0)2

2σ2

)
dvdt. (B4)

Dropping the primes, the flux of atoms in a narrow range
of velocities between v and v + dv is

Φ(v)dv =
dN

dt
=

A

σ
√

2π
v exp

(
− (v − v0)2

2σ2

)
dv, (B5)

which peaks when v = (v0 ±
√
v2

0 + 4σ2)/2. The total
flux that was blocked by the plug beam is

R =

∫ ∞
−∞

Φ(v) dv = Av0. (B6)
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Appendix C: Data Processing and Error Analysis

As the 3D GMOT grows, its fluorescence is recorded as
a series of voltage signals from the photodiode. The ith

measured signal Si is converted to atom number Ni with
associated error wi given by the following uncertainties:

1. The photodiode monitoring the 3D GMOT fluores-
cence has 799 µV root-mean-square noise at the 40
dB gain setting.

2. The measured voltage could result from either a
change in atom number or a variation in the scat-
tering rate Rsc, which depends on laser intensity
and detuning. On the time-scale of this experiment,
∆ = −10.1(1) MHz and I = 11.03(2) mW/cm2.
These laser fluctuations lead to an additional 0.9%
uncertainty in the measured voltage.

3. Conversion of the measured voltage to atom num-
ber is imprecise. The atom number is given by [33]
as

Ni =
4πSi

GΩβEphotonRsc(Tglass)m
, (C1)

for the detector gain G and responsivity β, im-
aged solid angle Ω, and photon energy Ephoton.

Tglass is the transmissivity of the m optical sur-
faces in the imaging setup. Accounting for the rel-
evant uncertainties in these values, the conversion
is Ni ≈ [1.61(4)× 109 V−1]Si.

The acquired data is binned in time every M = 10
points, such that the kth bin is represented by mean time

t̄k =
1

M

M∑
l=1

ti, (C2)

weighted average signal

N̄k =

∑M
l=1

Ni

w2
i∑M

l=1
1
w2

i

, (C3)

and weighted average error

w̄k =

√
1∑M

l=1
1
w2

i

, (C4)

where i = Mk + l.


	Two dimensional grating magneto-optical trap
	Abstract
	Introduction
	Theory and Design
	Experimental Setup
	Diagnostics
	Results
	Comparisons and Outlook
	Acknowledgements
	References
	2D GMOT Derivation
	Beam 1
	Beam 2
	Beam 3
	Total Forces

	GMOT Distribution Derivation
	Beam Distribution
	Flux Distribution

	Data Processing and Error Analysis


