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We consider the spin-1 Bose-Einstein condensates with the isotropic Rashba spin-orbit coupling in
a two-dimensional torodial trap. Three types of striped phases are found in a non-rotational system,
i.e., the stripe phase with the periodic density modulation along the azimuthal direction, the stripe
phase with the periodic density modulation along both the azimuthal and the radial directions and
the stripe phase with the periodic density modulation along the radial direction. By adding the
rotation, the condensates occupy the mF = 0 component for small rotational frequency while occupy
both the mF = 1 and mF = −1 components for large rotational frequency when both the relative
interaction and the spin-orbit coupling are weak. For the stronger relative interaction and spin-orbit
coupling, the vortices of the system are elongated along the radial direction and linked one after
another. As the rotational frequency further increases, the density evolves from the elongated effect
of the vortices into a laminar vortex ring.

PACS numbers: 67.85.-d, 05.30.Jp, 71.70.Ej, 03.75.Mn

I. INTRODUCTION

The spin-orbit coupling (SOC) plays an important
role in many branches of physics, such as the quan-
tum spin Hall effect and topological insulators[1–5]. The
experimental progresses of the SOC in the spin-1/2
Bose-Einstein condensate (BEC) and the Fermi gases
have attracted great attention[6–11]. The emergence of
many new phases due to the SOC, such as the stripe
phase[12, 13] in the homogenous BEC, half-quantum vor-
tex configuration[14–17] in the trapped BEC and the
topological superfluidity[18] for fermions. When combin-
ing both the SOC and the rotation in the BEC system
with a harmonic trap, various novel features have been
predicted to occur[19–23]. Inspired by the experimental
schemes of the SOC in ultracold atoms by employing an
optical field to couple internal states or using gradient
magnetic fields[24–30], a rich variety of works about the
spin-orbit-coupled spin-1 BEC have been studied[31–38],
in which nontrivial ground state phases are predicted.

The toroidal trap can be realized by a blue detuned
laser beam to make a repulsive potential barrier in the
middle of a harmonic magnetic trap[39]. BEC in the
toroidal trap is used to study the persistent currents,
formation of matter-wave patterns by rotating poten-
tials and solitary waves[40–43] in both experiments and
theories. The spin-1/2 BEC with the SOC loaded in a
two-dimensional (2D) torodial trap[44–46] have attracted
considerable interest, the stable necklace-like states and
the persistent flow states are found. However, the spin-1
BEC with the SOC in a torodial trap is yet to be ex-
plored.

In this paper, we consider a spin-orbit-coupled spin-
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1 BEC trapped in a 2D torodial trap. Three types
of striped phases, namely, the periodically modulated
stripe phase along the azimuthal direction, the period-
ically modulated stripe phase along both the azimuthal
and the radial directions as well as the periodically mod-
ulated stripe phase along the radial direction are found in
the non-rotational potential. For these phases, the direc-
tions of the phase gradients of the mF = 1 and mF = −1
components are antisymmetric. In the presence of rota-
tion, the condensates occupy the mF = 0 component for
small rotational frequency while occupy both themF = 1
and mF = −1 components for large rotational frequency,
given both the relative interaction and the SOC are weak.
For strong relative interaction and SOC, the vortices of
the system are elongated along the radial direction and
linked one after another, with the rotation frequency in-
creases, the density evolves from the elongated effect of
the vortices into a laminar vortex ring.

The paper is organized as follows: In Sec.II we intro-
duce the model of the spin-orbit-coupled spin-1 Bose gas
in a 2D torodial trap. In Sec.III we display the phase di-
agrams without rotation. In Sec.IV a variety of ground-
state phase structures are found for the rotating conden-
sates. A summary is included in Sec.V.

II. MODEL

We consider the spin-1 BEC with isotropic Rashba
SOC trapped in a 2D toroidal trap. The Hamiltonian
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of the system is given by H = H0 +Hint, where

H0 =

∫
drΨ†

j [−
h̄2

2mB

∇2 + V (r) + υsoc + q(F 2

x + F 2

y )

− ΩLz]Ψj,
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∫
dr(
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2
c0n

2 +
1

2
c2|F|

2)

(1)

where Ψj(j = 0,±1) is the three-component spinor
wave function of the atoms condensed in the spin state
|F = 1,mF = j〉. mB is the atomic mass, n = n1 +
n0 + n−1 =

∑
j |ψj |

2 is the total density and r = (x, y).

The interaction strengths c0 = 4

3
h̄2π(2a2 + a0)/mB

and c2 = 4

3
h̄2π(a2 − a0)/mB are given in terms of

the s-wave scattering length as for atom pairs with to-
tal spin-F . F is the spin density F = (Fx, Fy, Fz) =

(Ψ†F̂xΨ,Ψ
†F̂yΨ,Ψ

†F̂zΨ) with the 3 × 3 spin-1 matrices

F̂ . The isotropic Rashba SOC is υsoc = −ih̄λ(Fx∂y −
Fy∂x) with the SOC strength λ. q is the quadratic
Zeeman shift. The toroidal trap potential can be de-
scribed by a shifted harmonic oscillator, i.e., V (r) =
1

2
mBω

2

r(r − r0)
2, where r2 = x2 + y2, r0 is the toroidal

trap radius and ωr is the harmonic trapping frequency.
The rotational frequency Ω is along the z direction with
the orbit angular momentum Lz = −ih̄(x∂y − y∂x). We
assume that the relative interaction strength g = c0/c2
in the present paper.
In the absence of rotation (Ω = 0), the wave function

can be written as Ψ(r, φ) = R(r)ψ(φ), where R(r) and
ψ(φ) are the wavefunctions along the radial direction r
and the azimuthal direction (the azimuthal angle φ), re-
spectively. The single-particle Hamiltonian H0 can be
rewritten as[47]

H0(r, φ) = −
h̄2

2mB

[
∂2

∂r2
+

1

r

∂

∂r
−

1

r2
(i
∂

∂φ
)2] (2)

−
λ

r
(cosφFx + sinφFy)(i

∂

∂φ
)

+ iλ(cosφFy + sinφFx)
∂

∂r
+ V (r)

where x = r cosφ and y = r sinφ. We can obtain the
correct form of the single-particle Hamiltonian in a toro-
dial trap with the Rashba SOC when the toroidal trap
radius is r0 ,

H0(φ) =
h̄2

2mBr20
(i
∂

∂φ
)2 −

λ

r0
(cosφFx + sinφFy) (3)

(i
∂

∂φ
)− i

λ

2r0
(cosφFy + sinφFx)

III. GROUND-STATE PHASE DIAGRAMS

WITHOUT THE ROTATION

We implement the mean field approximation to study
the ground-state phases of the spin-orbit-coupled spin-

1 BEC loaded in a 2D torodial trap. To highlight the
effect of the SOC and the relative interaction, we fix the
toroidal trap radius r0 = 4. Figure 1(a) gives the ground-
state phase diagram spanned by the SOC strength λ and
the relative interaction strength g without the quadratic
Zeeman shift (q = 0). We also study the influence of the
quadratic Zeeman shift (q = 1) on the ground-state in
Fig.1(c). We note that all the six phases are presented
in both cases and the quadratic Zeeman term only shifts
the boundaries of the phases. The quadratic Zeeman
term does not change the general features of the system
qualitatively. For clearance, we will not take account of
the quadratic Zeeman term in the following sections.
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FIG. 1: (Color online) The ground-state phase diagram of the
non-rotational system spanned by the SOC strength λ and the
relative interaction strength g for (a) without the quadratic
Zeeman shift (q = 0) and (c) with the quadratic Zeeman shift
(q = 1). The six phases are marked by (A)-(F). The toroidal
trap radius r0 = 4. (b) and (d) are the details of the phase
structures of the (B)-phase in (a) and (c), respectively. The
number of the petals n = 4l with l an integer number.

The density and the phase profiles of the six differ-
ent phases (A)-(F) in Figs. 1(a) and 1(c) are shown
in Fig. 2(a)-(f), respectively. We start from the case
where the SOC is weak, which is indicated by the red
region (A) in Figs.1(a) and 1(c). In this phase, the den-
sities of the three components are uniform distribution
around the toroidal trap, respectibely, as shown in Fig.
2(a). The mF = 1 and mF = −1 components have
the same density profiles, the density values of them are
smaller (larger) than the mF = 0 component without
the quadratic Zeeman shift (with the quadratic Zeeman
shift), but the density radiuses are lager. The winding
number of the mF = 0 component is zero and there ex-
ists one winding number difference comparing with the
mF = 1 and mF = −1 components. For the fixed value
of r0, the boundary of the (A) phase is independent of
g. As the SOC is increased to λ = 0.5 (λ = 1.0) with-
out the quadratic Zeeman shift (with the quadratic Zee-
man shift), the (A) phase transforms to the (B) phase,
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FIG. 2: (Color online) Left panels: The ground-state density profiles of the mF = 1 component, the mF = −1 component,
and the mF = 0 component. Right panels: the phases of the mF = ±1 components. The relative interaction strength g = 5
and the toroidal trap radius r0 = 4. From (a) to (f), the SOC strength is respectively taken as λ = 0.25, 1.6, 2.4, 3, 4, 6.4 which
correspond to the phases of (A)-(F) in Fig. 1(a).

2 3 4 5 6
0

2

4

6

8

2 3 4 5 6

(E)

(C)

(b)

(B)

(A)

(C)

(D)

λ

r
0r

0

(a)

(A)

(B)

(D)

(F)

FIG. 3: (Color online) The ground-state phase diagram
spanned by the SOC strength λ and the toroidal trap ra-
dius r0 without the quadratic Zeeman shift (q = 0). The
relative interaction strength g = 0.67 in (a) and g = 5 in (b),
respectively.

as shown in Fig.1(a) (Fig. 1(c)).

We observe the exotic properties of the ground-state
with increasing the SOC strength λ. The (B) phase has
the periodic density modulation along the azimuthal di-
rection, it is a necklace-like state. The number of petals
of the three components are the same, as shown in Fig.
2(b). This phase occupies the largest ranges of λ and g.
In the limit strong SOC but weak relative interaction, the
system only has the (B) phase. In order to understand

the change of the number of the petals, Figs. 1(b) and
(d) display the detailed structures of the (B) phase with-
out and with the quadratic Zeeman shift, respectively.
We find that the number of the petals increases as the
SOC strength is enhanced. The corresponding region be-
comes small. The number of the petals n = 4l, l is an
integer, and the winding number of the mF = 1 and
mF = −1 components are n/2 + 1, which are different
from the two-component SOC BECs[46]. For this phase,
the total density (the fourth column in Fig. 2(b)) also
has the periodic density modulation along the azimuthal
direction.

As the SOC is further increased, the (B) phase trans-
forms to the (D) phase for g < 1 and the (C) phase trans-
forms to the (D) phase g ≥ 1, as shown in Figs. 1(a) and
1(c). The (C) phase is bent near the central hole in the
half of the perimeter and tends to be perpendicular to the
hole with outward expansion. The total density of the
(C) phase is divided into two parts and the (D) phase
is divided four parts, as shown in Figs. 2(c) and 2(d),
respectively. The (C) phase only exists in the regime
of the intermidiate interaction strength (g ≥ 1) with or
without the quadratic Zeeman shift. The regime of the
(D) phase is replaced by the (C) phase in the presence
of the quadratic Zeeman shift and with strong relative
interaction. Due to the rotational and the transitional
symmetries are broken, the (B)-(D) phases have the pe-
riodic density modulation along the azimuthal direction.
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FIG. 4: (Color online) The ground-state density and phase profiles for the mF = 1, mF = 0, and mF = −1 component for the
SOC strengths (η1) λ = 0.1, (η2) λ = 1 and (η3) λ = 4 (η=a,b,c), respectively. The relative interaction strengths (al) g = 0.25,
(bl) g = 5 and (cl) g = 20, (l = 1, 2, 3). The toroidal trap radius r0 = 2 and the rotation frequency Ω = 0.1.

We take them as the first type of the stripe phase.

As the SOC and the relative interaction are further in-
creased, the (E) phase emerges as the ground state, as
shown in Figs. 1(a) and 1(c). The density and phase
profiles of this phase are shown in Fig. 2(e). We find the
density of this phase has the periodic density modula-
tion along both the radial and the azimuthal directions,
which realizes the second type of the stripe phase. This
phase tends to be perpendicular to the hole with inward
expansion.

Finally, we move to the case where both the SOC and
the relative interaction are sufficiently strong, the (F)
phase emerges. Comparing with the (E) phase, the pe-
riodic density modulation along the azimuthal direction
disappears and along the radial direction becomes obvi-
ous. We take it as the third type of the stripe phase.
This phase consists of alternating density domains along
the radial direction, where stripes are filled and the three
component are segregated, as shown in Fig. 2(f).

The properties of the six phases have been discussed
for fixed toroidal trap radius r0 = 4. When the SOC
is weak, the (A) phase is preferred and the boundary of
this phase is independent of the relative interaction. Due
to the rotational and the transitional symmetry are bro-
ken, the (B)-(F) phases are classified as the three types of
the stripe phases: the first type of the stripe phase ((B)-
(D) phases) with the periodic density modulation along
the azimuthal direction, the second type of the stripe
phase ((E) phase) with the periodic density modulation
along both the azimuthal and the radial directions and

the third type of the stripe phase ((F) phase) with the
periodic density modulation along the radial direction.
In all these phases, the directions of the phase gradients
of the mF = 1 and mF = −1 components are antisym-
metric.

To get a deeper physical insight into this system,
we study the ground-state phase diagrams without the
quadratic Zeeman shift (q = 0) spanned by the SOC
strength λ and the toroidal trap radius r0 (2 ≤ r0 ≤ 6)
for fixed relative interaction g, as shown in Fig. 3. For
the weak relative interaction (g = 0.67), four phases are
shown in Fig.3(a). The regimes of the (A) phase, the (C)
phase and the (D) phase decrease as r0 is increased. The
(C) phase is nonexistence for large toroidal trap radius r0,
which leads to the phase transforms from the (B) phase
to the (D) phase directly. The toroidal trap radius plays
an important role for the (B) phase for the weak relative
interaction. The combination of the toroidal trap radius
and the SOC makes the (B) phase occupies the largest
regimeand the regime of the (B) phase increases as r0
and g are increased. The phase diagram becomes richer
when the relative interaction is strong (g = 5), where six
phases are shown in Fig.3(b). For the small toroidal trap
radius r0, the (D) phase in Fig. 3(a) is replaced by the
(F) phase when the SOC strength λ is large. The region
of the (F) phase also decreases with the toroidal trap ra-
dius r0 increases. The (D) and (E) phases emerge near
the toroidal trap radius r0 = 3, and the regions of the
both phases get up to the largest for a certain value of
r0, respectively.
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FIG. 5: (Color online) The ground-state density and phase profiles for the mF = 1, mF = 0, and mF = −1 component. The
rotation frequency Ω = 0.25 and other parameters are the same as in Fig.4.

By comparing Figs. 3(a) and 3(b), we find the rela-
tive interaction have little effect on the (A) phase. The
system favors the (B) phase for the weak relative interac-
tion. For both strong relative interaction and SOC, the
(D) phase is replaced by the (F) phase. The (D) phase
exists in the both regions of the small toroidal trap ra-
dius with the weak relative interaction and the large toro-
dial trap radius with the strong relative interaction. The
torodial trap radius and the relative interaction play an
important role for the (D) phase.

IV. THE GROUND-STATE PHASE

STRUCTURES WITH THE ROTATION

We turn to study the ground-state phase structures of
the rotational system. We take three typical rotational
frequency Ω, Ω = 0.1, Ω = 0.25 and Ω = 0.5 and the
toroidal trap radius is fixed as r0 = 2.
Figure 4 displays the density and phase distributions of

the ground-state phases with the low rotation frequency
Ω = 0.1. The SOC strengths are (η1) λ = 0.1, (η2)
λ = 1 and (η3) λ = 4, (η=a,b,c) and the relative in-
teraction strengths are (al) g = 0.25 , (bl) g = 5 and
(cl) g = 20 (l = 1, 2, 3). For the weak SOC (λ = 0.1),
the condensates mainly occupy the mF = 0 component
when the relative interaction g = 0.25 and g = 5. As
the relative interaction grows (g = 20), the mF = 1
and mF = −1 components have nearly the same distri-
butions of the density and occupy the left side around
the torodial trap. The mF = 0 component occupies the

right side around the torodial trap, as depicted in Figs.
4(η1). For the relative interaction g = 5 and g = 20,
Figs. 4(a2) and 4(a3) show the densities of each com-
ponent have the periodic density modulation along the
azimuthal direction and the total densities also have the
periodic density modulation with the weak SOC strength
(λ = 0.1). With increase of the SOC, the system evolves
from a triangular vortex (Fig. 4(b2)) into a pair of trian-
gular vortices (Fig. 4(c2)). For the large SOC strength
(λ = 4), a serious of vortices appear along the radial di-
rections which realizes a stripe phase with the periodic
density modulation along the radial direction, as shown
in Figs. 4(b3) and 4(c3).

Next, we study the density and phase distributions of
the ground-state phases under the rotational frequency
Ω = 0.25. In Fig.5, the parameter values of λ and g
are the same as those in Fig.4. When the SOC is rela-
tively weak (λ = 0.1), the condensates mainly occupy the
mF = 1 and mF = −1 components. With the increase
of the relative interaction g, the densities of the three
components exhibit obvious phase separation, as shown
in Figs. 5(b1) and 5(c1). For the weak relative interac-
tion g = 0.25 and large SOC λ = 4, the density of each
component of the system forms a pentagon (Fig. 5(a3)).
There are four periodic density modulations along the
azimuthal direction and the trap center region is pinned
by zero quantized vortex in the mF = 1 component and
four vortices on the periphery of density profiles of the
mF = 0 and mF = 1 components. The center region in
the mF = 0 component is pinned by a quantized vortex
and in the mF = −1 component is pinned by doubly
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FIG. 6: (Color online) The ground-state density and phase profiles for the mF = 1, mF = 0, and mF = −1 component. The
rotational frequency Ω = 0.5 and other parameters are the same with Fig.4.

quantized vortex for g = 5 and λ = 1 (5(b2)). There
are five periodic density modulations along the azimuthal
direction and the middle region is a stripe phase in the
mF = 1 component. Five vortices locate on the periph-
ery of density distributions and two vortices in the middle
region in the mF = 1 component. A large density hole
in the mF = −1 component in the trap center. The
mF = 0 component is pinned by doubly quantized vor-
tex and the mF = −1 component is pinned by a triply
quantized vortex when the relative interaction strength
g = 20 and the SOC strength λ = 1 (Fig. 5(c2)). For
the large SOC strength λ = 4, each component forms a
complex topological structure composed of laminar vor-
tex ring and a large density hole, the number of laminar
vortex ring is 2 at the relative interaction, as shown in
Fig. 5(b3) and 5(c3), respectively.

Finally, Fig. 6 displays the density and phase distri-
butions of the ground-state phases with the large rota-
tional frequency Ω = 0.5. For small relative interaction
g = 0.25, it is the same with the Fig. 5(a1) with λ = 0.1.
With the increase of the SOC strength α, the densities
of the three components form circles of the same radius.
The winding number is n−1 for the mF = 1 component,
n for the mF = 0 component and n+1 for the mF = −1
component (n is an integer), as shown in Figs. 6(a1)-
(a3). When the relative interaction increases (g = 5 and
g = 20), we find the total density form the periodic den-
sity modulation along the azimuthal direction with the
small SOC strength λ = 0.1 (Figs. 6(b1) and 6(c1)).
With the increase of the SOC strength (λ = 1 and λ = 4),
each component also forms the laminar vortex ring.

From Fig.4 to Fig.6, we show the density and phase
distributions of the ground-state phases of the system.
When the relative interaction is weak and the SOC
strength is small, the condensates occupy the mF = 0
component for small rotational frequency. As the rota-
tional frequency increases, the condensates occupy the
mF = 1 and mF = −1 components. For the large SOC
strength and small relative interaction, the total density
of the system forms a stripe phases when the relative
interaction is small. it forms a uniform ring when the ro-
tation frequency becomes even faster. For the large SOC
and strong relative interaction, the vortices tend to be
elongated along the radius and linked one after another
when the rotation frequency is small. It evolves from the
the elongated effect of the vortices into a complex topo-
logical structure composed of laminar vortex ring and a
large density hole as the rotational frequency increases.

V. SUMMARY

We have investigated the ground-state structures of
the spin-orbit-coupled spin-1 BEC in a 2D torodial trap.
For the system without the rotation, a rich variety of
the ground-state phases are identified. For the fixed the
torodial trap radius, the (A) phase is obtained with the
weak SOC, the relative interaction has little effect on this
phase. The three types of the stripe phases are identified
due to the broking rotational and the transitional sym-
metry. The first type of the stripe phase ((B)-(D) phases)
with the periodic density modulation along the azimuthal
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direction, the second type of the stripe phase ((E) phase)
with the periodic density modulation along both the az-
imuthal and the radial directions and the third type of
the stripe phase ((F) phase) with the periodic density
modulation along the radial direction. The torodial trap
radius and the relative interaction play an important role
for the (D) phase. By adding the rotation, the density of
system occupies the mF = 0 component with the small
rotation frequency and occupies both the mF = 1 and

mF = −1 components with the large rotation frequency.
For the strong relative interaction and SOC, the vortices
are elongated along the radius and linked one after an-
other. With the rotational frequency increases, the den-
sity evolves from the the elongated effect of the vortices
into a laminar vortex ring.
This work is supported by the NSF of China under
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D. Trypogeorgos, and I. B. Spielman, Nature Comm. 7,
10897 (2016).

[32] X. Luo, L. Wu, J. Chen, Q. Guan, K. Gao, Z.-F. Xu, L.
You, and R. Wang, Sci. Rep. 6, 18983 (2016).

[33] K. Sun, C. Qu, Y. Xu, Y. Zhang, and C. Zhang, Phys.
Rev. A 93, 023615 (2016).

[34] W. Han, X. F. Zhang, S. W. Song, H. Saito, W. Zhang,
W. M. Liu, and S. G. Zhang, Phys. Rev. A 94, 033629
(2016).

[35] Z. Q. Yu, Phys. Rev. A 93, 033648 (2016).
[36] M. Kato, X. F. Zhang, D. Sasaki, and H. Saito, Phys.

Rev. A 94, 043633 (2016).
[37] G. I. Martone, F. V. Pepe, P. Facchi, S. Pascazio, and S.

Stringari, Phys. Rev. Lett. 117, 125301 (2016).
[38] X. Y. Huang, F. X. Sun, W. Zhang, Q. Y. He, and C. P.

Sun, Phys. Rev. A 95, 013605 (2017).
[39] C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K.
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