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We present a time-dependent density-matrix renormalization group investigation of the quantum distillation
process within the Fermi–Hubbard model on a quasi-1D ladder geometry. The term distillation refers to the
dynamical, spatial separation of singlons and doublons in the sudden expansion of interacting particles in an
optical lattice, i.e., the release of a cloud of atoms from a trapping potential. Remarkably, quantum distillation
can lead to a contraction of the doublon cloud, resulting in an increased density of the doublons in the core
region compared to the initial state. As a main result, we show that this phenomenon is not limited to chains that
were previously studied. Interestingly, there are additional dynamical processes on the two-leg ladder such as
density oscillations and selftrapping of defects that lead to a less efficient distillation process. An investigation
of the time evolution starting from product states provides an explanation for this behaviour. Initial product
states are also considered, since in optical lattice experiments such states are often used as the initial setup. We
propose configurations that lead to a fast and efficient quantum distillation.

I. INTRODUCTION

The interest in the nonequilibrium dynamics of interact-
ing quantum many-body systems has been driven both by re-
cent experiments and by theoretical considerations [1–4]. On
the experimental side, we highlight the possibility to study
the quantum-quench dynamics of ultra-cold atomic gases in
optical lattices [5, 6]. While many seminal experiments fo-
cused on Bose gases [7–12], the successful implementation
of fermionic quantum-gas microscopes by a large number
of experimental groups will likely draw future attention to
fermions [13–24], further adding to the existing experimental
work on quench dynamics in fermionic lattice gases [25–28].
In parallel, the marriage of pump-and-probe spectroscopy and
strongly-correlated electron systems is rendering the investi-
gation of ultrafast dynamics of correlated electrons a timely
topic in condensed matter physics as well [29–31].

In the field of ultra-cold quantum gases, a significant
amount of experimental work concentrates on the relaxation
and thermalization dynamics of low-dimensional quantum
systems [7–12, 27, 28, 32]. In parallel, experiments focusing
on the nonequilibrium transport properties of atoms in opti-
cal lattices were pushed forward, ranging from the few-body
[33–35] to the many-body regime [25, 36–38]. Not surpris-
ingly, many unusual and sometimes counterintuitive phenom-
ena exist in the transient dynamics of nonequilibrium prob-
lems, such as prethermalization [9, 39–41], the dynamical
quasi-condensation of hard-core bosons [38, 42–45], or the
quantum distillation mechanism [37, 46, 47].

Our work will focus on such an aspect of transient nonequi-
librium mass transport, namely the quantum distillation mech-
anism in a system of interacting fermions on an optical lattice.
Quantum distillation is the dynamical spatial separation of the
lattice gas into one portion that carries predominantly inter-
action energy and another one that carries mostly kinetic en-
ergy. This spatial separation occurs during the so-called sud-
den expansion [25, 36–38], i.e., the release of an interacting

quantum gas from a trap and its subsequent expansion into
an empty optical lattice (see [42–63] for theory work on this
specific nonequilibrium problem). In the presence of strong
on-site interactions U much larger than the typical tunneling
matrix element t, particles of opposite spin bound into a dou-
blon on the same site can only move with an effective tun-
neling matrix element td ∼ 4t2/|U |. Moreover, these dou-
blons are dynamically stable over an exponentially long time
[64, 65]. Therefore, in an initial state that has a large contri-
bution of doublons, the cloud can only expand on time scales
proportional to 1/t and via first-order processes if doublons
exchange their position with neighboring singlons, resulting
in the doublons moving towards the core of the system and al-
lowing the singlons to expand [46]. As a consequence of this
transient dynamics, the core region of the system will mainly
contain doublons and hence nr ≈ 2dr (where nr and dr are
the particle and doublon density at given site r, respectively)
while in the expanding wings, nr ≈ sr with sr the singlon
density, and thus a spatial separation of regions of high inter-
action versus high kinetic energy occurs. The effect crucially
relies on energy conservation and the bounded energy spec-
trum for a single-band system. A typical situation is illus-
trated in Fig. 1 for a Hubbard chain. Figure 1(a) shows local
densities at several times, with the singlons evaporating and
the doublon density increasing in the core region. Figures 1(b)
and (c) show dr and sr as a function of time and position, con-
firming this picture. Note that a dynamical freezing of mass
transport due to large density gradients in interacting lattice
gases, also known as selftrapping (see, e.g., [66, 67]), already
exists in the mean-field regime (see, e.g., [55]). Quantum dis-
tillation, however, goes beyond mere selftrapping and predicts
an expansion of the initial cloud and the possible contraction
of the doublon-cloud radius [46].

The quantum distillation mechanism has first been pro-
posed for interacting fermions in one-dimensional optical lat-
tices [46] but works for bosons as well [68]. We wish to dis-
tinguish between a strong and a weak version of quantum dis-
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Figure 1. (Color online) (a) Snapshots of the time evolution of the
local density profiles nr as calculated for a single chain with U/t‖ =
40, nconf = 1.8, and N = 18. (b,c) Time evolution of (b) doublon
dr and (c) singlon sr densities for the same parameters as in panel
(a). See the text for details.

tillation: in the former, the density of doublons grows in the
center of the system and even the total local density increases
beyond its initial value. In this regime, even a core region
with a perfect band insulator can be produced with fermions,
which clearly is the most extreme case of a very low-entropy
region spatially separated from the high-entropy expanding
singlons [46]. The strong version of quantum distillation has
been suggested as a possible cooling mechanism for fermions
[46]. The latter is an important goal in future fermionic op-
tical lattice experiments [69] (see [19, 22, 70–74] for recent
advances).

The weak version of quantum distillation consists of a mere
dynamical separation of singlons from doublons without an
increase of the core particle density beyond its initial value.
The separation between the two regimes, weak and strong
quantum distillation, is a smooth crossover that depends on
the initial conditions such as interaction strength or the shape
of the confining potential [46]. A particular clean separation
of a quantum gas into a noninteracting gas of singlons and
a core region of pairs (which carry the interaction energy)
can be accomplished by starting from a partially polarized
gas with attractive interactions [47]. In that case, all minor-
ity fermions (say of spin σ =↓) are bound into pairs in the
strongly interacting regime and hence the singlons that evapo-
rate out of the initially confined gas carry only σ =↑ and form
a non-interacting gas.

The quantum distillation effect was experimentally ob-
served using bosons in a one-dimensional lattice [37] and the
separation of the expanding cloud into regions with predomi-
nantly singlons or doublons (and local objects formed of more
than two bosons) was beautifully demonstrated. This exper-

iment operated in the weak-quantum distillation regime with
no discernible increase beyond the initial density. Moreover,
for bosons, even a state of two particles per site would, in most
cases, still be a correlated Mott insulator, while a fermionic
state with two fermions (of opposite spin projection) per site
is necessarily a product state. Thus, the experimental observa-
tion of quantum distillation with fermions and accessing the
strong quantum distillation regime remain open. In a broader
sense, the quantum distillation is one out of many interesting
phenomena related to the presence of long-lived and heavy
multi-particle objects in a sea of singlons, studied experimen-
tally [37, 64, 75] and theoretically [65, 76–81].

A goal of our work is to improve the understanding of
fermionic quantum distillation and its efficiency. Before sum-
marizing our main results, let us describe what we mean by
the efficiency of the process. The perfect strong distillation
leads to a band insulator in the core. The size of this dynami-
cally formed band insulator is controlled by the initial number
of doublons in the confined region [46]. The next criterion for
the efficiency is the largest value of the local doublon occu-
pancy (or the particle density) reached in the expansion in the
center of the system. Another important aspect of the quan-
tum distillation is the time scale τQD on which that maximum
value is reached. Finally, even if strong quantum distillation
is not realized, the desired feature is a fast dynamical spatial
separation of singlons and doublons.

We study these aspects by pursuing three directions. First,
and most importantly, the effect has almost exclusively been
discussed for one-dimensional systems (with the exception of
a time-dependent Gutzwiller ansatz study of bosons in two
dimensions [55]), where one can expect quantum distillation
to be the most efficient: A singlon can only pass a neighbor-
ing doublon by exchanging the position with that doublon,
while in a two-dimensional lattice, one could imagine per-
colation effects with singlons escaping via random paths of
neighboring singlons and holons (empty sites). In order to ad-
dress the question of the efficiency of quantum distillation be-
yond strictly one dimension, we consider the Fermi-Hubbard
model on a two-leg ladder [see Fig. 2(a)] and study the ex-
pansion dynamics as a function of the ratio t⊥/t‖, where t‖
and t⊥ denote the tunneling-matrix elements along the legs
and rungs, respectively. We observe that the strong version of
quantum distillation can be found on such ladders in a wide
parameter regime, i.e., as a function of interaction strength
and initial density. Thus, the effect is not limited to strictly
one-dimensional systems. By going from a chain to the lad-
der, one can expect the existence of additional heavy excita-
tions on the two-leg ladder that are defined on a rung, inher-
ited from the t⊥ � t‖ limit. Such objects can slow down the
expansion even at low densities [58] and in our investigation,
we find that such additional heavy objects (or in other words,
bound states) render the distillation process slower on ladders.
Moreover, for both chains and ladders, the largest relative in-
crease of the double occupancy in the center is obtained for
small initial densities, whereas the purification of a clean band
insulator requires densities to be close to nr . 2 to begin with
[46]. Thus, initial densities close to half filling seem optimum
in order to observe a large effect while still having a sizable
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amount of doublons in the system.

Second, we consider initial states with only one defect in
the confined region (i.e., only one site where the density de-
viates from nr = 2) and compare the evaporation dynamics
of singlons and holons on isotropic ladders and chains. While
singlons escape via the quantum distillation mechanism, a sin-
gle holon can only move once a doublon has partly dissolved
into singlons or has slowly propagated as a whole, both of
which happens on much slower time scales. Therefore, the
density of holons in the initial state is the main limiting factor
for the quantum distillation on quasi-one dimensional struc-
tures. Importantly, though, this does not lead to a bottleneck
for the escape of singlons since they can exchange their posi-
tion with both doublons and holons, and thus holons primar-
ily reduce the achievable core density. The main difference
between ladders and chains is traced back to the extra pos-
sibility of singlons to oscillate between the two legs as they
escape and to a partial selftrapping of the singlon defect.

Third, many experiments with ultra-cold quantum gases in
optical lattices start from product states rather than ground
states in the initial trap [6, 25, 28, 36]. While this case has
been studied for bosons [68], no systematic study of this ex-
perimentally relevant initial condition has been carried out for
fermions. We analyze product states with various concentra-
tions of doublons, singlons, and holons as well as random or
translationally invariant states. Concerning the efficiency, our
results indicate that initial product states with a small number
of (or without any) holons are ideal candidates for a fast and
efficient quantum distillation. Curiously, the quantum distilla-
tion from engineered product states can be more efficient than
from correlated initial states with the same average density.

Clearly, an analysis of the most interesting regime of two-
dimensional quantum gases would require an experimental
effort, given the scarce set of available theoretical tools for
the strongly interacting regime (see, e.g., the discussion in
Ref. [82]). Few-leg ladders have been realized in many
ultra-cold quantum gas experiments using either supperlat-
tices [83], digital mirror devices [84] or synthetic lattice di-
mensions [85–89]. Note also that the ladders have been
widely studied as models with surprising quantum properties
such as spin gaps and superconductivity upon doping in con-
densed matter physics as well [90], with numerous realiza-
tions in quantum magnets [91].

The paper is organized as follows: In Sec. II we present the
model and the initial state preparation. Furthermore, we in-
troduce the quantities investigated throughout our work. Sec-
tion III is devoted to the presentation of the quantum distil-
lation process on ladders. We focus on various system pa-
rameters with a detailed comparison between chains and two-
leg ladders. In Sec. IV A, we analyze the defect evaporation,
i.e., single singlon and holon dynamics in the doublon back-
ground. In Sec. IV B, we compare the expansion from product
states to the expansion from correlated initial states. Finally,
in Sec. V, we summarize our results. An appendix contains
the calculation of the two-body spectrum on a two-leg ladder.

Figure 2. (Color online) Schematic representation of (a) a two-leg
ladder Hubbard model and (b) a typical initial state considered in
this work (see the text for details).

II. HAMILTONIAN AND SETUP

We consider the Fermi-Hubbard model on the quasi-1D
two-leg ladder geometry [see also the sketch in Fig. 2(a)]

H =− t‖
∑
r,`,σ

(
c†r,`,σcr+1,`,σ + H.c.

)
− t⊥

∑
r,`,σ

(
c†r,`,σcr,`+1,σ + H.c.

)
+ U

∑
r,`

nr,`,↑nr,`,↓ , (1)

where t‖ (t⊥) is the leg (rung) hopping matrix element, U is
the on-site interaction, c†r,`,σ creates a fermion on the r-th rung
of the `-th leg with spin σ = {↑, ↓}, and nr,`,σ = c†r,`,σcr,`,σ
is the density of fermions with spin σ on (r, `) site. The sum
over r goes over all L sites within each leg, where the sum
over ` goes over all sites in each rung. Furthermore, we use
t‖ = 1 (with ~ = 1). In the following we express time τ
in dimensionless units, i.e., τ t‖, since [τ ] = [1/t‖]. Also,
we set lattice spacing to unity a = 1. As a consequence the
density quantities in this work are also dimensionless. Fi-
nally, for completeness, we define (i) the rung particle den-
sity as nr =

∑
`,σ〈nr,`,σ〉 (with 〈·〉 denoting the expectation

value evaluated in a many-body state |ψ〉), (ii) the doublon
c†r,`,↓c

†
r,`,↑|0〉 (|0〉 empty lattice site) with the associated dou-

blon density dr =
∑
` dr,` =

∑
`〈nr,`,↓nr,`,↑〉, and (iii) a

singlon c†r,`,σ|0〉 with the singlon density sr = nr − 2dr. In
the rest of the paper, in order to facilitate a direct comparison
between the chain and ladder geometry, we refer to the former
as the sum of the uncoupled legs at t⊥/t‖ = 0. Furthermore,
unless stated differently, we always quote the total density on
a rung.

Unless stated otherwise, our initial states are prepared as the
ground state of H ′ = H + Hconf for U/t‖ = UGS/t‖ = 0,
where

Hconf = ε

L∑
r=Lconf+1

∑
`,σ

nr,`,σ (2)

is the confinement potential. Here, ε/t‖ ' 104 and Lconf
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is the number of rungs in the confined region (to which we
will refer to also as the core). In order to decrease finite–size
effects we place the core on the leftmost side of the system,
see Fig. 2(b) (in contrast to Fig. 1, where we place it in the
center of the lattice). At τ = 0, we suddenly switch off the
confinement potential (ε→ 0) and let the system evolve under
the Hamiltonian (1) with the desired interaction strength U .
In our setup the expansion will be asymmetric and the trapped
gas will melt at the right edge of the confined region during
the time evolution. It is worth noting that such a choice of the
confinement potential does not change the general behaviour,
as was shown in Refs. [46, 50]. If not stayed otherwise, in this
work we will use the two-leg ladder geometry (` = 1, 2) with
L = 40 rungs and set confined region to Lconf = 10 rungs.
Furthermore, we impose open boundary conditions.

The nonequilibrium time evolution is studied by means
of the time-dependent density-matrix renormalization group
[92–94] (tDMRG) method with a third-order Trotter-Suzuki
scheme. The specific implementation follows Ref. [93, 94],
while a comprehensive introduction to the DMRG method can
be found in Ref. [95–97]. The premise is to obtain a wave-
function that approximates the actual ground-state – or time-
evolved state – in a reduced Hilbert space. The proposed so-
lution has the very peculiar form of a matrix-product state,
where the coefficients of the wave-function are obtained by
contracting a product of matrices. The matrices are deter-
mined variationally, and the DMRG method is one way to
do it efficiently. The accuracy of the wave function is typ-
ically quantified in terms of the discarded weight or trun-
cation error, which decreases with the size of the matrices,
or number of states kept (also called bond dimension m).
The solution can be made asymptotically exact as this bond
dimension approaches the total number of degrees of free-
dom. DMRG is formulated via diagonalizing reduced den-
sity matrices ρA that are obtained by cutting the system into
two parts A and B and then computing ρA = trB |ψ〉〈ψ|,
where |ψ〉 is the target wave-function. Diagonalization of
ρA leads to ρA =

∑s
α=1 wα|α〉〈α| (where s is the smaller

of the Hilbert space dimensions of part A and B). The ap-
proximation used is to truncate in the spectrum of ρA and
to keep only the m � s states with the largest eigenvalues
w1 > . . . wm > . . . .

During the time-dependent simulations, we allow the num-
ber of states to grow (controlled by a set discarded weight
δρ =

∑s
α>m wα) up to m = 2048 states. The time propaga-

tion uses the schemes described in Ref. [93, 94] with a time
step of δτ t‖ = 0.05. We carried out simulations with other
time steps and also different discarded weights to ensure that
the data are numerically accurate. At times τt‖ ∼ 30, the
fastest particles have reached the boundary of anL = 40 chain
with Lconf = 10 and have propagated back to the position of
the original interface between occupied and empty sites. This
defines the largest time beyond which the escape dynamics
inside the core r ≤ Lconf = 10 can become system-size de-
pendent.

A qualitative way to assess the accessible times in tDMRG
simulations is to look at the time dependence of the entan-
glement entropy SvN = −Tr[ρAlnρA] (see the discussion in
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Figure 3. (Color online) Snapshots of the rung doublon density dr
for (a) uncoupled chains (t⊥/t‖ = 0) and (b) the isotropic ladder
(t⊥/t‖ = 1) calculated for an initial density nconf = 1.9 in the
confined region (Lconf = 10, N = 38), and interaction strength
U/t‖ = 40. Insets in (a) and (b): (left) zoom on dr profiles of the
5 leftmost rungs, and (right) snapshots of dr for r = 1, . . . , 20 and
τ t‖ = 0, . . . , 40.

Ref. [95]). The behavior of the entanglement entropy for the
quantum distillation was discussed for the Hubbard chain in
much detail in Ref. [46] and we did not observe noticeable dif-
ferences in the case of ladders. Among time-evolution prob-
lems, the sudden expansion is a more benign problem than,
e.g., global quenches (where SvN ∝ t) due to the inhomo-
geneity of how SvN grows and its overall slower increase. The
time dependence in related geometric quenches was studied in
great detail in, e.g., Ref. [98].

III. RESULTS

A. Quantum distillation on isotropic ladders

In Fig. 3, we present a comparison of snapshots of the rung
double occupancy dr for uncoupled chains (t⊥/t‖ = 0) and
for the isotropic ladder (t⊥/t‖ = 1) at U/t‖ = 40. Both sys-
tems exhibit a similar melting dynamics at the interface of the
initially occupied region and the empty lattice. Furthermore,
in both cases we observe an increase of the doublon density
beyond its initial value in the core of the system. It is thus evi-
dent that the strong version of quantum distillation takes place
in the ladder geometry. A similar behavior is also observed in
the case of a three–leg ladder on smaller lattice L (not shown).

Regarding the time scales, in the related sudden expansion
experiments, the dynamics can be recorded up to an increase
of the initial cloud size by a factor of two for fermions [25]
or four to five for bosons [36]. This growth is covered in our
simulations as well, yet for smaller particle numbers per 1D
system than what can typically be realized in these experi-
ments.
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Figure 4. (Color online) Dynamical spatial separation of singlons and doublons as calculated for L = 40, Lconf = 10, and nconf = 1.9. Note
that here we plot the relative singlon and doublon densities sr/nr and 2dr/nr , respectively. (a) Initial state, τ t‖ = 0, for all configurations
studied. (b-c) Spatial singlon-doublon separation for U/t‖ = 40 and isotropic ladder t⊥/t‖ = 1 [for the same parameters as in Fig. 3(b)] for
(b) τ t‖ = 10 and (c) τ t‖ = 30. (d-e) Spatial separation for U/t‖ = 40, (d) uncoupled chains t⊥/t‖ = 0, and (e) a weak rung tunneling
t⊥/t‖ = 0.25. In panel (e), we present evidence for the disappearance of the dynamical separation in the core for the case of the isotropic
ladder at small interaction strength U/t‖ = 4.

The data presented in Fig. 3 shows that the initial density for
correlated initial states is typically nonuniform, due to Friedel
oscillations induced at the boundaries. The averaging-out of
these inhomogeneities after the removal of the boundary natu-
rally leads to a transient increase in the middle of the initially
occupied region (i.e., r = Lconf/2) but is not the reason for
the strong quantum distillation, which manifests itself in an
increase on all sites r ≤ Lconf/2 for the parameters of the
figure.

In order to further corroborate our observations, we next
discuss the dynamical spatial separation of singlons and dou-
blons during the quantum distillation process on the ladder. In
Fig. 4, we present the density of singlons sr and doublons dr
on each rung. Note that we normalize each of the densities to
the total particle density nr on the same rung, i.e., sr/nr and
2dr/nr. These normalized densities are equal to 1 if a singlon
(doublon) is the lone particle on a given rung. In Fig. 4(a),
we present our initial state, τ t‖ = 0, where all particles are
present only in the core, r ≤ Lconf , and the rest of the lattice is
empty. Figure 4(b) illustrates the behavior at a transient time
τ t‖ = 10, for which we can observe that only singlons (which
escaped from the core) propagate in the empty lattice [see also
Fig. 1(c)]. For the largest simulation time reached, before re-
flections off the far boundary start to matter [τ t‖ = 30, see
Fig. 4(c)], all the rungs (sites) outside the core are occupied
solely by singlons. On the other hand, it is clear from the pre-
sented results that the doublons remain in the core. Note that
we observe the same behavior also for the case of uncoupled
chains, see Fig. 4(d).

Although the overall behaviour in chains and ladders is
akin, there are also some differences in the dynamics of these
two setups. While for the 1D system [46] (or uncoupled
chains) the density in the first rungs increases up to its max-
imal value of nr = 2, thus forming a band insulator, for the
ladder geometry, this maximum occupation is never reached at

this value ofU/t‖ and nconf = 1.9 [see the insets of Fig. 3(b)],
at least on the time scales of our simulations. Thus, as ex-
pected, on ladders, the quantum distillation is somewhat less
efficient than in strictly 1D systems. One reason is the possi-
bility of a singlon to just keep exchanging its position with a
doublon on the same rung. Another origin of slower dynam-
ics on the ladder is a partial selftrapping of singlons. We will
discuss both of these scenarios in more detail in Sec. IV A.

In order to investigate the quantum distillation on ladders
in more detail, we analyze the time evolution of the average
doublon and singlon densities on the first r rungs,

sr =
1

r

r∑
i=1

si , dr =
1

r

r∑
i=1

di . (3)

In Fig. 5(a,b) we present results for r = Lconf = 10 and
r = 5. As is clearly visible in Fig. 5(a), the average doublon
density on the first Lconf sites remains constant, as expected.
Simultaneously, the singlon density steadily decreases. Such
results are again indicative of the presence of the distillation
process. However, in order to distinguish between the weak
or strong version of the latter it is better to measure the aver-
age density of part of the core. In Fig. 5(b) we present results
for r = 5 where for both types of lattices we see not only
a decrease of the number of singlons, but also an increase in
the doublon density of the core. While, for both chain and
ladder lattice geometry we observe the strong version of dis-
tillation, the internal times scales are different. Namely, for
τ t‖ . 10, the dynamics of both systems is essentially the
same. Next, for larger times, we observe that singlons escape
the core faster for uncoupled chains. For τ t‖ � 1, the num-
ber of singlons decreases to a small fraction of its initial value.
At τ/t‖ = 30, only ∼ 5% of the singlons remain in the core
for the chain and about ∼ 20% for the isotropic ladder. This
is clearly visible in Figs. 5(c) and (d), where we present snap-
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Figure 5. (Color online) Time dependence of the average doublon
and singlon occupancy averaged over the first (a) r = 10 and (b)
r = 5 rungs as calculated for U/t‖ = 40 and nconf = 1.9. In ad-
dition, in (a) we show results obtained from an initial product state
(PS) [system parameters are the same as in Fig. 13(i); see Sec.. IV B
for details]. Note that in (a), results for the ladder and for the expan-
sion from a product state on the chain are shifted by 0.05 and 0.1,
respectively. (c,d) Snapshots of the singlon density profiles for (c)
the chain and (d) the ladder geometry and at different times (see the
legend). The model parameters are the same as in Fig. 3.

shots of the singlon density at different times and for the same
parameters as in Fig. 3.

B. Dependence on model parameters

Let us now focus on the dependence of the distillation pro-
cess on t⊥/t‖ and U/t‖. First, we set U/t‖ = 40 and vary t⊥.
Our results presented in Fig. 6(a) indicate that for all values
of t⊥ considered here (0 ≤ t⊥/t‖ ≤ 2), there is an increase
of the core density beyond its initial value for τt‖ > 10 af-
ter some transient drop. Thus, although quantitatively less
efficient than at t⊥/t‖ = 0, the strong version of quantum
distillation takes place. Interestingly, the core density of dou-
blons resulting from the quantum distillation is independent
of the strength of the rung-tunneling matrix element already
for t⊥/t‖ & 0.2 [see Fig. 6(c)]. One needs to keep in mind,
though, that the results presented in Fig. 6(c) may not reflect
the τ ∼ τQD behavior yet, since for some values of t⊥, the
density still increases. Similarly, dynamical spatial separation
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Figure 6. (Color online) Time dependence of average rung double
occupancy dr for r = 3: (a) initial confinement density nconf = 1.9,
and interaction U/t‖ = 40 for various t⊥/t‖; (b) nconf = 1.9,
isotropic ladder for various U/t‖. (c) t⊥-dependence of dr=3 for
τ t‖ = 30, nconf = 1.9, and various U/t‖. Note that this result does
not reflect the τ ∼ τQD limit (see the text for details). (d) dr=3 as a
function of τt2‖/U for nconf = 1.9 and t⊥/t‖ = 1.

of singlons and doublons exists for all values of t⊥/t‖. We il-
lustrate this in Figs. 4(d),(e) and (c) for t⊥/t‖ = 0 , 0.25 , 1.0,
respectively.

Second, we keep t⊥/t‖ = 1 fixed and vary U/t‖. In
Fig. 6(b), we present the interaction dependence of our re-
sults. On grounds of energy conservation and of the require-
ment of the doublons to be long-lived objects, it is obvious
that the lower bound on the interaction strength for quantum
distillation to occur is Ub & W , where W is the bandwidth.
In the case of the isotropic ladder, W/t‖ = 6. Consistent with
this qualitative argument, our numerical results suggest that
the behavior is similar to the t⊥/t‖ = 0 case [46], i.e., the
process is the most efficient for U/t‖ & 10. Furthermore, we
also find a universal time scale ∝ τt2‖/U [compare Figs. 6(b)
and (d)], where results for various values of the interaction
strength U have the same - initial-filling dependent - behavior
at long times. This time scale captures the slow melting of
the block of doublons that was formed through the quantum
distillation process.

For U/t‖ = 4, we observe that the average density of the
doublons in the core decreases steadily with time. This indi-
cates that doublons do not remain anymore in the core but, si-
multaneously with the singlons, propagate through the lattice.
Note, however, that singlons and holons move through the lat-
tice at different speeds. While singlons propagate through the
empty lattice with the maximal possible velocity, vs = 2t‖,
doublons move much slower. As a consequence, one still ob-
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Figure 7. (Color online) Time dependence of (a) the average rung
doublon occupancy dr and (b) the relative average rung doublon
occupancy ∆d(τ)r for the first r = 3 sites, fixed U/t‖ = 40,
t⊥/t‖ = 1, and various initial nconf . (c,d) Density profiles dr for
(c) τ t‖ = 0 and (d) τ t‖ = 30 for the same parameters as presented
in panel (a). The legend of (a) applies to all panels.

serves a dynamical separation of singlons and doublons at
transient times. This is also presented in Fig. 4(f), where
for an interaction strength of U/t‖ = 4 we do not observe
singlon–doublon separation in the core anymore, while the in-
terface between regions with mostly doublons versus a region
with mostly singlons is now in the region where the lattice was
initially empty.

Next, we comment on the dependence of the distillation on
the initial filling nconf in the confinement region. In Fig. 7(a)
we present the time dependence of the average doublon den-
sity in the first r = 3 rungs of the core. As is clearly
visible, for all considered values of nconf , we observe an
increase of double occupancy. Moreover, our results indi-
cate that for setups with small values of nconf , the processes
of quantum distillation leads to a larger relative increase of
the core double occupancy [see Fig. 7(b), where we present
∆d(τ)r = d(τ)r/d(0)r−1], related to the fact that in our ini-
tial states, prepared with UGS/t‖ = 0, a small nconf is a result
of a large number of singlons. For instance, for a density of
nconf = 1.5 (nconf = 1.9) we have ∼ 10 (∼ 18) doublons
and ∼ 10 (∼ 2) singlons in the initial state.

Finally, and to conclude this section, it is worth noting that
the ratio between singlons and doublons in the initial state can
also be controlled by the interaction UGS/t‖ with which the
initial state is obtained. Preparing the system in a correlated
state with UGS/t‖ 6= 0 leads to a decrease of the doublons-
to-singlons ratio in comparison to a noninteracting gas with
UGS/t‖ = 0. As a consequence, the time evolution from
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Figure 8. (Color online) Snapshots of density profiles for various ini-
tial densities nconf = 1.0, 1.1, 1.4, and 1.7, obtained for the expan-
sion from the ground state calculated with (a),(c),(e),(g)UGS/t‖ = 0
and (b),(d),(f),(h) UGS/t‖ = 40. d is the total number of doublons
in the system at time τ = 0.

the latter initial state can exhibit a larger relative increase
of the double occupancy. The results for UGS/t‖ = 0 and
UGS/t‖ = 40 for a chain presented in Fig. 8 confirm such a
behaviour. Within our core size Lconf , for small nconf ∼ 1,
UGS/t‖ = 0 is the better choice for the initial state since
U � t‖ leads to a Mott insulator (for exactly nconf = 1).
In the latter case, the doublon density is suppressed and quan-
tum distillation does not take place. On the other hand, for a
modest value of nconf ∼ 1.5, the correlated state with a large
doublons-to-singlons ratio leads to, again, a large relative in-
crease of the double occupancy. Finally, effects of UGS vanish
in the nconf → 2 limit, since every site is almost doubly occu-
pied.

IV. EXPANSION FROM FOCK STATES

In Sec. III, we chose as the initial state the ground state
of our system in a box trap with UGS/t‖ = 0. As a conse-
quence, in the core, we have a superposition of singlons and
doublons on every site [see Fig. 4(a)]. However, many op-
tical lattice experiments that study nonequilibrium dynamics
[6, 25, 26, 28, 32, 36, 38] start from product states rather than
ground states, including some sudden-expansion experiments
[25, 36, 38]. In order to account for this experimentally rel-
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evant condition, we next consider the time evolution starting
from product states, i.e.,

|ψprod〉 =

Lconf∏
i=1

c
ni,↑
i,↑ c

ni,↓
i,↓ |0〉 , (4)

where ni,σ = 0, 1 are specially chosen integers. Thus, each
site is occupied by exactly one singlon, doublon, or holon [for
the ladder, i = (r, `)].

We will first study product states that have doublons on all
but one or two sites to study the dynamics of individual defects
in Sec. IV A. Then we will consider more general classes of
product states with lower average densities in Sec. IV B.

A. Defect evaporation

In this section we investigate the behaviour of single defects
in the background of doublons on the two-leg ladder geome-
try. In order to do so, we prepare an initial state with dou-
blons on all but one or two sites in the confinement region,
r ≤ Lconf = 10. Such vacancies are obtained with the help
of large, local (one-site) potentials on the desired site(s). Sin-
glons or holons are placed on sites in the first, leftmost rung
r = 1. On that rung, we consider: one singlon on one leg
(N = 39 particles in the core), two singlons, one on each leg
(N = 38 particles), one holon on one leg (N = 38 particles),
two holons, one on each leg (N = 36 particles).

Note that the initial placement of a given defect does not
change the overall behaviour discussed in this section. Putting
the vacancy somewhere in the middle of the core (i.e., for the
setup presented in Fig. 1) would lead to a propagation in two
directions, each with properties as presented below. The quan-
tum distillation happens regardless of where singlons initially
sit in the initial state: remember that experiments use a block
of particles that can melt to either side and both left- and right-
moving portions of an initially localized defect can thus even-
tually leave the cluster, always resulting in doublons moving
into the core. In our case of an asymmetric expansion, the
portion of a singlon moving inside would be reflected at the
(left) boundary and then also eventually leave the cluster of
doublons after traversing through it twice.

1. Singlon defects

In Fig. 9(a), we present the time evolution of the doublon
density dr=1 on the first rung for U/t‖ = 40 for one and two
singlons placed on the first, r = 1, rung. Some general fea-
tures can be inferred: (i) a single singlon escapes the initially
occupied site with the same speed for chains and isotropic lad-
ders. (ii) The wavefront of a single singlon reaches the end of
the core (r = Lconf ) at time τ = Lconf/vs = 5 for both lat-
tices [depicted also in Fig. 9(b) as a vertical dashed line]. This
represents the fastest possible propagation with the velocity
v = 2t‖. (iii) The fast transport of singlons breaks down if
two singlons are placed next to each other. In Fig. 9(a), we
present the doublon density on the rung where two singlons

0.0

0.5

1.0

1.5

2.0

(a) doublon density

0.0

0.1

0 10 20 30

(b) Average singlon density

0

2

4

6

8

0 1

(c)

0.05 0.3

ℓ = 2 leg ℓ = 1 leg

0 1

(e)

(f) Singlon position

d
r
=

1
(τ

)

1 singlon - chain
1 singlon - ladder
2 singlons - ladder

s(
τ
) r

=
1
0

Time τ t∥

1 singlon - chain
1 singlon - ladder

T
im

e
τ

t ∥

sℓ=2(τ)
10

Rung r

0.1

1 10

Rung r

(d)

sℓ=1(τ)

Figure 9. (Color online) (a) Time dependence of the double occu-
pancy dr=1 on the first rung for initial states with a singlon placed
on the first rung r = 1. See the text for details on the initial state
(t⊥/t‖ = 0 , 1, Lconf = 10, and U/t‖ = 40). (b) Time evolu-
tion of the average singlon density in the initially confined region,
s(τ)r=10, for chain and isotropic ladder. The vertical dashed line
indicates the time at which the singlon reaches the end of the core
at τ ' Lconf/vs = 5t‖. (d) Position- (x-axis) and time- (y-axis)
dependence of the singlon density 〈sr,`〉 within the isotropic ladder,
t⊥/t‖ = 1, for L = 40 rungs and U/t‖ = 40. The boundary of the
initially occupied region is depicted as a vertical dashed line. (c,e)
Time evolution of the total singlon density s`, Eq. (5), on the leg (c)
` = 2 and (e) ` = 1. (f) Schematic representation of the position of
the singlon (red open circle) within the core at certain points in time:
the data unveil that the singlon, while moving towards the edge, also
oscillates between the two legs.

were initially placed (one on each leg). Initially, dr=1 rapidly
increases in a similar manner as in the case of a single singlon.
At τ t‖ ∼ 2, the doublon density reaches dr=1 ' 1, indicat-
ing that one singlon escaped the first site. Subsequently, for
τ t‖ > 2, the doublon density increases very slowly and, as a
consequence, the second singlon takes much longer to escape
from that rung. We argue that this can be viewed as a partial
selftrapping of singlons due to bound states, to be discussed
in more detail below.

Although a single singlon escapes the first rung in a similar
manner for the chain and isotropic ladder, the overall dynam-
ics of singlons in the sea of doublons crucially depends on
the lattice geometry. In Fig. 9(b), we present the time depen-
dence of the average number of singlons in the core s(τ)r=10.
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Figure 10. (Color online) (a-c) Position- (x-axis) and time- (y-axis)
dependence of the singlon density 〈sr,`〉 for (a) t⊥/t‖ = 0, (b)
t⊥/t‖ = 0.25, and (c) t⊥/t‖ = 2 for both legs of a ladder with
U/t‖ = 40. (d) Time evolution of the total singlon density on the
leg where the singlon was initially placed, i.e., s`=1, for t⊥/t‖ =
0, 0.05, 0.25, 0.5, 1, 2 (top to bottom). For clarity, the results for
t⊥/t‖ = 0.25, 0.5, 1, 2 are shifted by −0.5,−1.5,−2.5,−3.5, re-
spectively. Inset: rung–tunneling dependence of the frequency f =
1/∆τosc of singlon-density oscillations. The dashed line represents
the f ∝ t⊥-dependence.

Initially, there is no time dependence, reflecting that the sin-
glon still propagates within the core. The wavefront reaches
the right end of the occupied region at time τ t‖ = 5 for both
lattices. However, the remaining fraction of the singlon es-
capes the core with a different time dependence. For the chain,
the core density of singlons drops rapidly for τ t‖ > 5 and
reaches its minimum, ∼ 0, at τ t‖ ' 15. On the other hand,
in the case of the ladder, sr=10 linearly decreases with time,
reaching, at our largest simulation time τ = 30t‖, ∼ 10%
of its initial value. Note that a similar behaviour is also ob-
served in Fig. 5(b), where we present the time dependence of
the density of the escaping singlons when the initial state is
the ground state of the trapped gas with UGS/t‖ = 0.

To gather further insight into this dichotomy, in Fig. 9(d)
we investigate the position of most of the singlon density,
〈sr,`〉 > 0.05 [singlon density on a given site (r, `)], within
both legs, ` = 1, 2, on the isotropic two-leg ladder geom-
etry. Initially, for τ t‖ < 0.5, the singlon expands only on
the leg on which it was placed, i.e., the ` = 1 leg. Next,
until time τ t‖ ' 1, most of the particle is transferred to the
other leg. Remarkably, as is clearly visible in Fig. 9(d), for the
next ∆τosc ' 1/t⊥, singlons propagate solely on the other leg
(` = 2). Subsequently, the whole process repeats and between
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Figure 11. (Color online) Position- (x-axis) and time- (y-axis) de-
pendence of the singlon density 〈sr,`〉 for two singlons placed on the
first rung (r = 1). (a) Results for two singlons in an otherwise empty
lattice for t⊥/t‖ = 2, U/t‖ = 40, and N = 2. (b) Results for two
singlons placed in the sea of doublons for t⊥/t‖ = 1, Lconf = 10,
U/t‖ = 40, and N = 38 [compiled from the corresponding data
for two singlons presented in Fig. 9(a)]. The dashed lines in both
panels represent light-cones, i.e., the fastest velocities of singlons
(v/t‖ = 2) and heavy objects (v/t‖ = 0.23).

2.5 . τ t‖ . 3.5, the propagation takes place again only in
the first ` = 1 leg. Such oscillations are clearly visible in the
total singlon density of a given leg `,

s` =

L∑
r=1

〈sr,`〉 , (5)

presented in Figs. 9(c) and (e). Note that s`=2(τ) = sini −
s`=1(τ), where sini is the initial density of the singlons (in the
case discussed in this section, sini = 1). The time evolution
of s` yields information about the frequency f with which
singlons ”hop” between the legs. Such a frequency can be
determined from the time ∆τosc = 1/f between two consec-
utive wave crests in the time dependence of the total singlon
density in a given leg, i.e., s`=1(τ). In Fig. 10, we present the
t⊥-dependence of the singlon density 〈sr,`〉 on all sites [pan-
els (a-c)] together with the singlon density s`=1 on the ` = 1
leg [panel (d)] as a function of time. It is evident from the
latter [see the inset of Fig. 10(d)] that f = α t⊥, where α is
some constant.

The selftrapping, which requires more than one singlon to
be present in the initial state, can be understood from the
strong-rung limit t⊥ � t‖. The argument relies on a particle-
hole transformation applied to the initially occupied region: if
there is one singlon (i.e., a hole on the doublon background),
then this is equivalent to just a free particle in an empty sys-
tem, while two singlons in a background of doublons corre-
spond to two particles, which can have additional bound states
originating from the t⊥ � t‖ limit. Imagine isolated rungs
which have single-particle energies ε± = ±t⊥. Thus, mov-
ing one singlon from a rung into a neighboring empty one
is a resonant process for an infinitesimally small t‖. If there
are two singlons on a rung, then the two-particle energies are
ε2s = −2t⊥, 0, 0, 2t⊥. If the initial state has an overlap with
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the local ε2s = 0 states, then this is off-resonant with two
singlons in two rungs in the ε− = −t⊥ state, while moving
one into ε− = −t⊥ and another one into ε+ = t⊥ remains
possible. So far, we considered the noninteracting limit. In-
teractions can generally induce an energy mismatch between
two particles localized on a rung (provided they have opposite
spin and can actually feel the onsite interaction) compared to
two particles in different rungs, due to a splitting of levels that
should be order of 4t2⊥/U and the emergence of new bound
states. Thus, in that case, selftrapping of singlons is expected
to occur. In the Appendix, we compute the entire two-body
spectrum for large systems and discuss the emergent bound
states and continua in the symmetric and antisymmetric sec-
tors. We note that this physics is similar to the behavior of the
few-magnon magnetization dynamics in spin-1/2 ladders, see,
e.g., a recent study of Heisenbeg ladders [99].

In order to illustrate that these arguments are correct, we
show time- and position-dependent plots of the singlon den-
sity 〈sr,`〉 in Fig. 11 for U/t‖ = 40. In Fig. 11(a), we present
results for just two particles (N = 2, each one placed on a
site of the same rung, with opposite spin σ) in an otherwise
empty lattice with t⊥/t‖ = 2. As is evident from the fig-
ure, the particles propagate with two distinct light-cones, each
corresponding to two velocities, fast one being 2t‖, the second
one being much smaller. The latter can be calculated from the
two-particle spectrum. While the detailed derivation is given
in the Appendix, here we just present the final result, i.e.,
the light-cone of the slow objects is defined by the velocity
v/t‖ = 0.23, as indicated in Fig. 11, which can be extracted
from the dispersion of the respective two-body bound state.
Also, we further verified that the selftrapping disappears if ei-
ther U = 0 or if the two particles have the same spin, in line
with the previous arguments.

Figure 11(b) illustrates the corresponding case of two sin-
glons in the sea of doublons [compiled from the data of
Fig. 9(a)]. Again, as is clearly visible, the qualitative be-
haviour remains the same even for t⊥ = t‖.

2. Holon defects

In the last part of this section, let us comment on the dynam-
ics of holons (i.e., empty sites) placed on the first rung. Our
results presented in Fig. 12(a) indicate that such a vacancy es-
capes the core about ∼ 10 times slower than singlons for this
set of parameters [compare with Fig. 9(a)]. The difference in
time scales of the single-defect dynamics stems from the fact
that singlons exchange their position with doublons, while in
the case of a holon vacancy, the doublons have to melt, i.e.,
they either dissolve into singlons or propagate slowly. Fur-
thermore, in contrast to singlons, the speed of escaping holons
does not depend on whether there is initially one or two holons
in the rung. In summary, it seems that the presence of holons
in the initial product state is the main limiting factor for an
efficient quantum distillation. In the next section Sec. IV B,
we will see that the effect of holons is not as drastic as the
single-holon case may suggest, so long as a sufficient density
of singlons is present.
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Figure 12. (Color online) (a) Time dependence of the double occu-
pancy dr=1 on the first rung for initial states with a holon placed
on the first rung, r = 1. See the text for details on the initial state
(t⊥/t‖ = 0 , 1, Lconf = 10, and U/t‖ = 40). (b) Interaction-
strength dependence of the single-holon escape process for a single
chain (i.e., t⊥/t‖ = 0 with Lconf = 10).

Finally, in Fig. 12(b), we present the interaction depen-
dence of the single-holon dynamics on a chain. As is clearly
visible, the density on the first rung increases faster for smaller
interactions since there, the doublons can melt. This be-
haviour is consistent with the results presented in Fig. 6(b).
Also, our results for the time evolution of dr=1 in the single-
holon dynamics are U -independent on the renormalized time
scale τ t2‖/U (not shown).

B. Expansion from product states with average densities n < 2

In this section we investigate the efficiency of quantum dis-
tillation starting from various product states and we here re-
strict the analysis to the case of a chain. In the results pre-
sented below we examine two types of product states: (i)
product states of holons, singlons and doublons with transla-
tional invariance in the confined region, and (ii) random prod-
uct states. It is worth noting that in many experiments with
ultra-cold quantum gases in optical lattices, one effectively av-
erages over many (possibly non-identical) realizations of the
initial state, while in quantum gas microscopes, the dynamics
of individual chains is accessible. Here, we do not perform
such an average. We rather focus on the fact that local config-
urations of vacancies can significantly influence the effective-
ness of the process. Note that for product states, since these
are not eigenstates of the Hamiltonian in the presence of the
trap to begin with, there will be additional local dynamics that
can result in the formation of additional doublons if two sin-
glons of opposite spin sit on neighboring sites [45, 100] (see
also similar effects for bosons discussed in [36, 45]).

In Fig. 13, we present snapshots of the doublon density for
various product states and at different times. In the same fig-
ure we present results obtained for the expansion from the
UGS/t‖ = 0 ground state at the same nconf as for the product
states. Note that in the former case, there is a superposition of
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Figure 13. (Color online) Snapshots of the doublon density dr at different times (τ t‖ = 0, 10, 20, 30; see the legend in (d)) for various initial
states as calculated for a chain with U/t‖ = 40. The legend for all panels is depicted in panel (d). We present data for: initial states with
(a-d) nconf = 1.0, (e-h) nconf = 1.1, and (i-l) nconf = 1.4. The first column [panels (a), (e), and (i)] depicts results for product states
with translationally invariant patterns, the second and third columns [panels (b-c), (f-g), and (j-k)] show data for product states with random
configurations. The last column [panels (d), (h), and (l)] depicts result obtained for the initial state that is the ground state of the confined gas
with UGS/t‖ = 0 (as in Sec. III).

singlons and doublons on every site. Also, during the distil-
lation at U/t = 40 one expects that the total doublon density
remains constant, since the conservation of double occupancy
is a property of the energy conserving time evolution of the
Hamiltonian at large U , and not of the initial state. Our re-
sults presented in Fig. 5(a) confirm this picture.

Let us first concentrate on product states of only doublons
and holons. Figures 13(a)-(c) depict results obtained from
states with an equal number of doublons and holons. Con-
sistent with our findings of Sec. IV A, we see that such initial
states do not lead to any quantum distillation at all, simply be-
cause singlons are absent. Instead, doublons just slowly prop-
agate. On the other hand, for the expansion from the ground
state at UGS/t‖ = 0 with the same initial density nconf , we
observe an increased doublon density in the first rungs [see
Fig. 13(d)].

Next, in Figs. 13(e-g) we present results obtained from the
initial state with a comparable number of doublons, singlons,
and holons. Again, the presence of holons is the main limit-
ing factor for quantum distillation. However, random product
states with local clusters of singlons and doublons can lead
to a large doublon density in those regions. Such a scenario
is depicted in Fig. 13(g), where we observe that the transient
doublon density in parts of the core exceeds the value obtained
for the expansion from the UGS/t‖ = 0 ground state.

The data for initial product states with mixtures of holons,
singlons and doublons further suggests that holons do not nec-
essarily lead to a bottleneck for quantum distillation as one
may have guessed from the discussion in Sec. IV A 2. Imag-

ine a cluster in the initial state such as | . . . 1210220 . . . 〉. This
will, within a few inverse hopping times and with a finite prob-
ability, evolve into:

| . . . 1210220 . . . 〉 → | . . . 2101220 . . . 〉 → | . . . 2012120 . . . 〉
→ | . . . 2021210 . . . 〉 → | . . . 2022101 . . . 〉

Therefore, the time scale for singlons to escape from the clus-
ter is essentially unaffected by the presence of holons and all
singlons can still escape, since they can exchange their po-
sitions with both singlons and doublons via first-order pro-
cesses. The main effect of holons is that they can’t escape
themselves, thus leading to a reduction in the achievable core
density after times ∝ Lconf/(2t‖).

Finally, panels (i-k) depict expansions from product states
with various configurations of solely singlons and doublons.
Our results indicate that, after a configuration-dependent tran-
sient time τ t‖ . 10, the ensuing dynamics is practically in-
distinguishable. Moreover, we find that the distillation pro-
cess for these product states is more efficient in comparison to
the expansion from the UGS/t‖ = 0 ground state, due to the
(engineered) absence of any holons in the former case.

V. CONCLUSIONS

We studied the quantum distillation process within the
Fermi-Hubbard model on a quasi-1D ladder geometry. As
one of the main results of our work, we showed that this
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phenomenon is not limited to chains, which were previously
studied [46]. Our investigation suggests that the distillation
process on the ladder exhibits a similar dependence on model
parameters such as interaction strength and initial density as
in the strictly 1D case. Interestingly, for both lattices stud-
ied here, a large initial density of the core is not a necessary
condition for the strong version of quantum distillation to take
place. Our results indicate that even with a small initial den-
sity nconf ∼ 1, distillation occurs (provided that the initial
state is constructed from a mixture of singlons and doublons).
A small initial density is also preferable since it leads to the
largest relative increase in the core density, making it easier to
measure. The formation of a perfect band insulator, however,
requires that n . 2 in the initial state [46].

Although the overall behaviour in chains and ladders is sim-
ilar, there are also some differences in the dynamics of these
two setups. The most essential one is related to the time scale
for the doublon density to reach its maximum inside the core.
Our results indicate that due to a peculiar zig-zag–like mo-
tion of singlons, their escape dynamics on the ladder geom-
etry is slower. A second process that gives rise to a slower
escape dynamics is a partial selftrapping of singlons in the
core region. These two effects are t⊥-dependent and partially
originate from the large t⊥ > t‖ limit. Concerning the ap-
plication of quantum distillation as a mechanism to produce
low-entropy regions, our results are encouraging since on the
ladder, the efficiency is only slightly worse than on chains.

In order to disentangle the dynamics of different defects on
top of a high-density initial state, we complemented the anal-
ysis of correlated initial states by studying the evaporation of
a few initially fully localized holon or singlon defects in an
otherwise band-insulating background. This result corrobo-
rates the aforementioned observations: each type of defects,
i.e., singlons or holons, plays a different role in the processes
of the distillation. The dynamics of singlons explains the dif-
ferences in the time scales for the distillation process com-
paring ladders to chains. Holons (in a sea of doublons) can
only move once a doublon has either partly dissolved into sin-
glons or moved as a whole, both of which happens on much
slower time scales. In a mixture of singlons, doublons and
holons, the main effect of holons is primarily to reduce the
achievable core density [i.e., the density reached after times
∝ Lconf/(2t‖)], without introducing an actual bottleneck for
the escape dynamics of singlons. Nevertheless, the density of
holons is the main limiting factor for the quantum distillation.

In order to account for the fact that product states are fre-
quently used in experiments, we investigated the distillation
process starting from various product states. We identify con-
figurations that lead to a fast and efficient quantum distillation,
such as states with a small or vanishing number of holons.
Engineered product states of doublons and singlons that can
be produced with a high fidelity and thus a low admixture of
holons may be the best path for observing a significant quan-
tum distillation process, combined with a low initial average
density. Employing single-site resolution techniques may be
helpful in order to resolve local transient increases in the den-
sity and doublon density.

ACKNOWLEDGMENTS
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APPENDIX: TWO-PARTICLE BOUND STATES

The formalism to calculate the two-particle spectrum in
one-dimensional systems is well established [101] and has
been used in several scenarios involving spinless fermions,
bosons, and the Hubbard chain [56, 80, 81, 102–105]. We
hereby extend these ideas to the case of a two-leg ladder with
periodic boundary conditions in the leg direction. The ap-
proach that we present below is mostly inspired by the origi-
nal work of Ref. 101, which was extended to spinfull fermions
in Ref. 104. We start by defining a complete orthonormal ba-
sis spanned in terms of states c†r,`,↑c

†
r′,`′,↓|0〉 = |r, `; r′, `′〉,

where r, r′ = 1, · · · , L are the positions of the fermions
along the legs and `, `′ = 1, 2 are the leg indices. We ex-
ploit translational symmetry to solve the problem in subspaces
with well defined lattice momentum k = 2πn/L, where
n = −L/2, · · · , L/2−1. To this aim, we introduce the trans-
lational invariant states:

|k, r, `, `′〉 =
1√
L

L∑
d=1

eıkd T̂d c
†
1,`,↑c

†
r,`′,↓|0〉 ,

where the translation operator acts on the original basis states
as T̂d|r, `; r′, `′〉 = |r + d, `; r′ + d, `′〉. Periodic boundary
conditions apply, implying that the indices should be assumed
mod (L). In addition, we consider reflection symmetry about
the plane that bisects the rungs, which leads to a new repre-
sentation:

|k, σ = ±, r, `〉 =
1√
2

(
|k, r, 1, `〉 ± |k, r, 2, 3− `〉

)
.

The new states are classified by lattice momentum k, symmet-
ric/antisymmetric (bonding/antibonding) σ = ± sectors, and
relative position between the two fermions. Note that σ = ±
can be associated to lattice momenta 0, π.

The Hamiltonian matrix elements are easy to obtain as:

H|k, σ, `, r〉 =− t‖
(
q|k, σ, `+ 1, r〉+ q∗|k, σ, `− 1, r〉

)
− 2t⊥δσ,+|k, σ, `, 3− r〉+ Uδ(`,r),0|k, σ, 0, 0〉 ,
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Figure 14. Two-particle states in the (a),(c) antibond-
ing/antisymmetric and (b), (d) bonding/symmetric sector of
the spectrum for (a,b) t⊥/t‖ = 10 , U/t‖ = 80 and (c,d)
t⊥/t‖ = 2 , U/t‖ = 40 as calculated for L = 40. Green points in
the right panel depict bound states.

with q = cos (k/2) exp (ık) and |k, 1, σ, r〉 ≡ |k, L+ 1, σ, r〉.
Notice that the rung hopping has no effect on the antibonding
states, which implies the lack of bound states in this sector.
The use of symmetries enables us to numerically solve the
spectrum for very large systems (hundreds of sites) since the
matrix dimension for each subspace (k, σ) is dim = 2L.

In order to intuitively understand the two-particle spectrum

we first analyze the case t⊥/t‖ = 10 and U/t‖ = 80, which
brings us close to the isolated rung limit. We show the spec-
trum for such parameters in Fig.14 (a,b) for a relatively small
ladder with L = 40 for visualization purposes. In the an-
tisymmetric/antibonding sector we encounter a flat band at
ω/t‖ = U/t‖ and a scattering continuum centered about
ω/t‖ ∼ 0. One can show that in this sector there is no hy-
bridization between states with single and double occupation,
and the latter are localized and non-dispersive. In the sym-
metric/bonding sector we distinguish bound states centered
approximately around ω ∼ −4t2⊥/U and U + 4t2⊥/U . These
states can hop coherently along the leg direction. In addition,
we find two continua of scattering states around ω ∼ ±2t⊥,
which correspond to two independent fermions on separate
rungs far apart from each other.

Results for the parameters close to the ones used in this
work (i.e., t⊥/t‖ = 2, U/t‖ = 40) are shown in panels
(c) and (d) of Fig. 14. The fermions are now more disper-
sive, increasing the bandwidth of the scattering continua. One
can clearly resolve the band corresponding to the low-energy
bound states, which can be accurately fitted to an expression
of the form

ε(k) = α cos (k)− β cos (2k) .

The maximum slope of this dispersion yields the value v/t‖ ∼
0.23.
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