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An accurate description of the nonequilibrium dynamics of systems with coupled spin and bosonic
degrees of freedom remains theoretically challenging, especially for large system sizes and in higher
than one dimension. Phase space methods such as the Truncated Wigner Approximation (TWA)
have the advantage of being easily scalable and applicable to arbitrary dimensions. In this work we
adapt the TWA to generic spin-boson models by making use of recently developed algorithms for
discrete phase spaces [1]. Furthermore we go beyond the standard TWA approximation by applying
a scheme based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations [2]
to our coupled spin-boson model. This allows in principle to study how systematically adding higher
order corrections improves the convergence of the method. To test various levels of approximation
we study an exactly solvable spin-boson model which is particularly relevant for trapped-ion arrays.
Using TWA and its BBGKY extension we accurately reproduce the time evolution of a number of
one- and two-point correlation functions in several dimensions and for arbitrary number of bosonic
modes.

I. INTRODUCTION

Coupled spin and bosonic degrees of freedom appear
in a variety of condensed matter and atomic, molecu-
lar, and optical (AMO) physics systems. As such, a
detailed understanding of their nonequilibrium dynam-
ics can have broad applications. While spin-boson mod-
els have been studied extensively in condensed matter
physics [3], AMO systems offer a unique platform where
the dynamics of both the spins and the bosons can be
studied in a controlled manner. For example, many-body
spin-boson models, where many spins couple to a single
or many bosonic modes, can be engineered using cold
atoms in cavities [4, 5] or trapped ions [6–10]. These
realizations provide a great deal of flexibility, from the
range of interactions to the dimensionality of the system.

Despite the ubiquity of spin-boson models in na-
ture, efficient computational methods for studying the
nonequilibrium dynamics are hard to develop. Theoret-
ical approaches are applicable to specific situations. For
instance, when the system features a large separation of
scales between spins and bosons, the bosons may be adi-
abatically eliminated [7], resulting in an effective spin
model. Alternatively, in the presence of permutational
symmetry of the density matrix one may use computa-
tional methods which take advantage of the reduction
of the complexity from exponential to polynomial [11].
However, for many physically relevant systems these ide-
alized approximations are invalid.

Recently, methods based on Matrix Product States
(MPSs) have been successfully applied to systems where
the spins and bosons contribute on similar footing in the
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dynamics [12] . These include cases with non-uniform in-
teractions, and could in principle also be applied to sys-
tems with additional non-commuting terms like a trans-
verse field [13]. While MPSs can efficiently treat cases
with many spins (Ns ∼ 100) when coupled to only
one mode, as soon as the number of relevant boson
modes is higher only moderate sizes can be simulated
(Ns ∼ Nb ∼ 10). Hence, alternative methods are re-
quired to handle large system sizes.

In this work, we study the dynamics of a system of
spins-1/2 coupled to a set of bosonic modes using phase
space methods. These methods are based on phase space
descriptions of quantum physics using classical variables
[14, 15]. The most prominent example and the start-
ing point of this paper is the Truncated Wigner Ap-
proximation (TWA). Observables in TWA are computed
by averaging over classical trajectories, which are ob-
tained by sampling the initial conditions from the Wigner
(quasi)probability distribution [16, 17] and evolving them
with the classical equations of motion. TWA has been
successfully applied to bosonic systems in fields ranging
from quantum optics and cold atoms [17, 18] to cosmol-
ogy [19, 20] and quantum field theory [21, 22]. In re-
cent years, promising progress has been made as well in
treating fermionic [23] and spin models [1, 24, 25] with
this method. In particular, it has been shown that using
discrete, instead of continuous, Wigner functions for the
spins can lead to significant improvements in spin-1/2
systems [1]. Here, we apply TWA to a spin-boson model
and make use of this discrete sampling for the spins, thus
differing from previous works on spin-boson systems [26].

The range of validity of TWA is usually linked to either
high occupancies or large macroscopic fields. However,
TWA is often found to be a successful description be-
yond its apparent range of validity, for example, in spin-
1/2 systems, where genuine quantum effects may become
relevant. Being able to compute next-order corrections
to TWA becomes then an essential task in order to un-
derstand and extend its applicability to such systems.
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For this we study recently developed extensions of TWA
[2, 27], adapted to our spin-boson model, which allow one
to add corrections order by order and hence estimate the
error of the approximation. In this framework correc-
tions are added by solving a truncated Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy of equations.

The computational cost of these phase space methods
scales with the number of equations to be solved. For
TWA this depends linearly on the total number of spins
and bosons. The extra computational cost introduced in
BBGKY by solving the dynamics of n-point (n ≥ 2) in-
stead of single-particle terms translates to a larger num-
ber of equations to be solved. Nevertheless, this number
still scales polynomially with the system size. As we show
in this work, including n = 2 and a few relevant n = 3
terms, relatively large system sizes (N & 100) are still
within computational reach. Furthermore, unlike unbi-
ased approaches where the dimensionality of the system
is a fundamental limitation, here the dimensionality, at a
given order of approximation, only enters the computa-
tional speed indirectly through the number of spins and
bosons that are effectively coupled.

While these methods can in principle be applied to
any system with spin and bosonic degrees of freedom,
here we study an analytically solvable model relevant for
trapped-ion experiments. Despite its integrability, this
model exhibits non-trivial many-body phenomena such
as spin-squeezing [28]. Moreover, it admits an effective
description in terms of an Ising model with couplings that
decay as 1/rα with interparticle distance r and tunable
exponent α ∈ [0, 3), allowing one to investigate quantum
magnetism. As such, it is an ideal model for benchmark-
ing the current experimental realizations of spin-boson
simulators [9, 29], as well as approximate computational
methods such as those discussed in this paper.

This work is organized as follows: Section II introduces
the spin-boson model and gives exact formulas for the
evolution of one- and two-point observables. The applica-
tion of the TWA method to spins and bosons is presented
in Section III and the first results on the single mode case
are discussed in Section IV. In Section V we show how
corrections may be added to the spin-boson TWA us-
ing BBGKY equations and apply this to the many-mode
case in Section VI. Section VII discusses the importance
of sampling the initial conditions and in Section VIII we
show the full capabilities of the method by computing the
evolution of a many-spin, many-boson, two-dimensional
system with experimentally relevant thermal initial con-
ditions for the bosons. Finally, we give an outlook and
present our conclusions in Section IX.

II. SPIN BOSON MODEL

We consider a system of trapped ions in one or two
spatial dimensions where the two internal states of the
ions, modeled as an effective spin-1/2, are coupled to the
phonon modes of the ion crystal [8, 9]. The ion crystal

is formed due to the interplay of the Coulomb repulsion
between the ions and the external electromagnetic trap-
ping potentials, and supports a set of normal modes. The
spin-phonon coupling is generated by lasers in a Raman
scheme used to impart net momentum kR along the direc-
tion perpendicular to the crystal structure [30]. Follow-
ing a frame transformation on the spins, the Hamiltonian
can be expanded to the lowest order in the Lamb-Dicke
parameter ηµ = kR

√
1/2Mωµ, where M is the mass of an

ion, {ωµ} are the phonon normal mode frequencies, and
~ = kB = 1 unless otherwise specified. The Hamiltonian
takes the form

Ĥ = Ĥboson + Ĥs−b (1)

with

Ĥboson =

Nb∑
µ=1

ωµn̂µ, (2)

Ĥs−b = −F cos (ωRt)

Ns∑
i=1

Nb∑
µ=1

biµ
ηµ
kR

(âµ + â†µ)σ̂zi . (3)

Here, n̂µ = â†µâµ, ωR is the Raman beatnote frequency
of the beams which create a spin dependent force with
magnitude F , and biµ is the amplitude of the vibrational
mode µ at site i in units of the normal mode oscillator
length.

If ωR ≈ ωµ, for some mode µ, one can perform the
Rotating Wave Approximation (RWA), following which
we obtain the spin-boson Hamiltonian that will be used
throughout this work, namely

ĤRWA = − 1

2

∑
i,µ

Ωiµ
(
âµe

iδµt + â†µe
−iδµt

)
σ̂zi . (4)

Here, Ωiµ ≡ Ωµbiµ = Fbiµηµ/kR and δµ = ωR − ωµ
is the detuning from the near phonon mode. For small
Ωiµ/δµ or alternatively at stroboscopic times given by
t = 2πn/δµ (n ∈ Z) the dynamics of the spins effectively
decouples from the bosons and is described by an effective
Ising model given by

ĤIsing =
∑
i<j

Jij σ̂
z
i σ̂

z
j , (5)

where Jij = 1/2
∑
µ ΩiµΩjµ/δµ [31]. For positive de-

tunings the spin-spin coupling is well approximated by
Jij ∼ 1/rαij , where rij is the distance between ions i and
j, and α ∈ [0, 3) can be tuned by ωR. Even outside its
strict validity range this mapping to a spin-only Hamil-
tonian is useful to understand the dynamics of the full
spin-boson model.

We use the model of Eq. (4) to benchmark the ac-
curacy of our method by comparing the dynamics of
different observables to their exact forms. For most of
the work we let the system start from an initial state
|ψ(t = 0)〉 = | →〉⊗Ns ⊗ |0〉⊗Nb , where | →〉 denotes a
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spin pointing along the +x̂ direction and |0〉 is the vac-
uum state of the phonons. However, we will consider as
well more general initial conditions, such as rotated states
(cos(θ/2)|↑〉+ sin(θ/2)|↓〉)⊗Ns with θ 6= π/2 for the spins
(see Section VII). Since trapped ion experiments operate
at finite temperatures we consider as well the more gen-
eral case of a thermal initial state for the phonons given

by ρ̂th ≡
⊗

µ e
−βµĤb,µ/Tr(e−βµĤb,µ) with Ĥb,µ = ωµn̂µ

and a mode-dependent inverse temperature βµ = 1/Tµ
(see Section VIII).

We compute the ab-initio dynamics of three sets of
observables: the collective spin 〈Ŝx〉 ≡

∑
i〈σ̂xi 〉/Ns, spin-

spin two-point correlators 〈σ̂αi σ̂
β
j 〉c ≡ 〈σ̂αi σ̂

β
j 〉 − 〈σ̂αi 〉〈σ̂

β
j 〉

and spin-phonon correlators of the form 〈âµσ̂αi 〉c ≡
〈âµσ̂αi 〉 − 〈âµ〉〈σ̂αi 〉. For later comparison with the pro-
posed method we give the exact formulas for the evolu-
tion of these observables under the Hamiltonian ĤRWA

for initial states with the spins pointing in +x̂ and the
phonons thermally occupied. We begin by measuring the
site-resolved magnetization 〈σ̂xi 〉 given by [32]

〈σ̂xi 〉 = e−Γi(t)
∏
k 6=i

cos (ϕik(t)) , (6)

where

Γi(t) ≡ 4
∑
µ

(
n̄µ +

1

2

)
Ω2
iµ

δ2
µ

sin2(δµt/2) , (7)

ϕij(t) ≡
∑
µ

ΩiµΩjµ
δµ

(
t− sin(δµt)

δµ

)
, (8)

and

n̄µ ≡ 〈n̂µ〉(t = 0) =
1

e−βµωµ − 1
. (9)

The product of cosine functions in Eq. (6) describes
the depolarization of the collective spin, while the factor
e−Γi(t) adds oscillations on top of it. This dynamics can
also be understood if one studies the effective spin model
(5), where the coherent depolarization of the collective
spin length is caused by the Ising coupling. In this case,
one obtains the same evolution as in (6) but with Γi ≡
0 and ϕij(t) → 2Jijt. In fact, the latter substitution
becomes exact in the long time limit, as it can be seen
from the full expression (8) for ϕij(t).

The interactions between the spins lead as well to the
buildup of spin-spin correlations, which evolve as

〈σ̂xi σ̂xj 〉 =
1

2

e−Γ−
ij

∏
k 6=i,j

cos (ϕik − ϕjk)

+ e−Γ+
ij

∏
k 6=i,j

cos (ϕik + ϕjk)

 , (10)

where

Γ±ij ≡ 4
∑
µ

(
n̄µ +

1

2

)
(Ωiµ ± Ωjµ)

2

δ2
µ

sin2(δµt/2) . (11)

The evolution of the yy-component shows a similar be-
havior to (10) and therefore we restrict the discussion to
the xx-component. At the same time, the spin-dependent
displacement of the phonon modes leads to the growth
of spin-phonon correlations as characterized by

〈âµσ̂yi 〉 =
i

2δµ

(
1− e−iδµt

)
e−Γi(t)

∏
k 6=i

cos (ϕik)

×

2

(
n̄µ +

1

2

)
Ωiµ − i

∑
m 6=i

Ωmµ tan (ϕim)

 ,

(12)

where we note that for our particular initial state
〈âµσ̂xi 〉 = 0. The spin-phonon correlations oscillate
rapidly with δµ and are responsible for the e−Γi and

e−Γ±
i , which imprint oscillations on top of the general

trend of the collective spin and the spin-spin correlators,
respectively. Additionally we see that Eq. (12) is propor-
tional to Eq. (6) and hence the decay of the magnetiza-
tion runs parallel to that of the spin-phonon correlator.
Further insight into the evolution of these observables
will be given in the next sections by numerically evalu-
ating the above expressions.

For the most part of the remainder of this work we
consider a system of ions in a linear 1D trap but empha-
size that our conclusions are largely independent of the
dimensionality of the system and give a 2D example in
Section VIII.

III. TRUNCATED WIGNER APPROXIMATION
FOR SPINS AND BOSONS

In the following we use the well-known Truncated
Wigner Approximation (TWA) and its recently devel-
oped discrete extension [1] to model the dynamics of the
spin-boson system described by Eq. (4). We begin by a
brief description of the method and refer to [17] for more
details. Consider a single spin σ̂ = (σ̂x, σ̂y, σ̂z) coupled
to a single mode â. Within the TWA each spin is replaced
by a classical vector σ̂ → S = (Sx, Sy, Sz)T and each
boson by a complex number â→ A and â† → A∗. Simi-
larly, each operator Ô is replaced by a classical function
OW (S, A,A∗) called the Weyl symbol of Ô. From here on
we suppress the dependence on A∗ and write OW (S, A)
instead. This mapping is formally accomplished using
the Wigner-Weyl representation. For bosons it is given
by

OW (A) =

∫
d2η〈A−η/2|Ô|A+η/2〉e(η∗A−ηA∗)/2 , (13)

where |η〉, η ∈ C, is a coherent state and d2η =
dRe η dIm η/π. For spins the definition goes along the
same lines if one uses a Schwinger boson representation
[17].

The Weyl symbol of the density matrix ρ̂ is the Wigner
function W [16, 17]. This quantity plays the role of



4

a (quasi) probability distribution, in the sense that ex-

pectation values of observables are obtained via 〈Ô〉 =∫
d2AW (A)OW

(
A
)
, and an equivalent expression for

spin operators. In the TWA the time evolution of the
Wigner function is assumed to be approximately station-
ary along the classical trajectories. Within this approxi-
mation expectation values are hence obtained as

〈Ô(t; σ̂, â)〉 ≈
∫

dS0 d2A0W (S0, A0)OW
(
Scl(t), Acl(t)

)
≡〈OW (t;S, A)〉cl , (14)

where dS0 = dSx0 dSy0 dSz0 , d2A0 = dReA0 dImA0/π,
A0 ≡ A(0), S0 ≡ S(0) and Scl(t) ≡ Scl(t;S0, A0) and
Acl(t) ≡ Acl(t;S0, A0) fulfil the classical equations of mo-
tion. Numerically, this expression can be evaluated in a
three-step process: Monte Carlo sampling of the initial
conditions, evolution with the classical equations of mo-
tion and averaging.

The classical variables are initialized as random num-
bers drawn from the Wigner distribution W (S, A). One
can write this as S(0) = 〈σ̂(0)〉 + δS0 and A(0) =
〈â(0)〉+ δa0, where δS0 and δa0 are random noise terms
with zero mean. The variance of the noise ensures that
the classical system reproduces the initial quantum and
statistical fluctuations of the original one. Each of these
initial configurations is then evolved using the classical
equations of motion. These can be obtained from the
mean-field equations for the expectation values 〈σ̂〉 and
〈â〉 by replacing 〈σ̂〉 → S and 〈â〉 → A, assuming all
products of operators have been previously symmetrized
(see e.g. Eq. (15)). After this procedure an expectation

value 〈Ô(σ̂, â)〉 at time t can be computed by averaging
the function OW (Scl(t), Acl(t)) over all classical trajecto-
ries. For totally symmetrized products of the operators
σ̂α, â and â†, the Weyl symbol is given by substituting
directly operators with classical variables. For instance,

〈|A|2〉cl ≈ 〈
1

2
(ââ† + â†â)〉 . (15)

It is important to note that while TWA uses mean-field
type equations, it goes well beyond a mean-field approx-
imation. In fact, the averaging over a noise distribution
involves taking processes of arbitrary order in fluctua-
tions around mean-field into account.

In this work we are interested in modelling the dy-
namics of many spins Si and many bosons Aµ. To
accomplish that we consider only initial states where
all the bosons and the spins are uncorrelated. Hence,
the Wigner function factorizes as W ({Si}, {Aµ}) =∏
iWs(Si)

∏
µWb(Aµ) and spins and bosons can be sam-

pled independently from each other. For bosons, we will
consider vacuum and free thermal states. In this case, the
Wigner function is just given by a Gaussian distribution

Wb(Aµ,0) =
1

2πσ2
µ

exp
(
−|Aµ,0|2/(2σ2

µ)
)
, (16)

where σ2
µ = (n̄µ + 1/2)/2 and n̄µ = 0 for vacuum. For

spins, the statistics of typical states like |↑〉 are highly

nontrivial and often Gaussian approximations are used
that reproduce only the low-order cumulants of the state
[17, 24]. However, new sampling schemes based on dis-
crete phase spaces have been recently proposed [1, 33]
which can capture expectation values to infinite order
(see Appendix C) and which have been proven to out-
perform continuous approximations. For example, for
the | ↑〉 state the Wigner distribution is given by

Ws(Si,0) =
1

4
δ(Szi,0 − 1)

∑
xi,yi=±1

δ(Sxi,0 − xi)δ(S
y
i,0 − yi) ,

(17)
i.e. the z-component is fixed at +1 and the transverse
directions are sampled with ±1. Based on this, one can
also construct the Wigner distribution for rotated initial
conditions, see Appendix C.

The classical equations that govern the evolution of the
classical variables {Aµ} and {Si} can be derived in the
following way. First, one derives the Heisenberg equa-
tions of motion for the operators âµ and σ̂i. After that,
all products of operators need to be totally symmetrized
using the corresponding equal-time commutation rela-
tions. In particular, products like (σ̂xi )2 need to be sim-
plified to 1. Finally, one simply substitutes âµ → Aµ
and σ̂i → Si. Following this recipe one obtains for the
Hamiltonian (4) the classical equations of motion

Ȧµ =
i

2
e−iδµt

∑
i

ΩiµS
z
i ,

Ṡxi = 2
∑
µ

Ωiµ Re
[
(Syi Aµ)eiδµt

]
,

Ṡyi = − 2
∑
µ

Ωiµ Re
[
(Sxi Aµ)eiδµt

]
,

Ṡzi = 0 .

(18)

IV. SINGLE MODE

In this section we apply the TWA to the regime where
δµ � Ωµ for all modes except for the center of mass
mode (COM) where δCOM & ΩCOM. In this regime the
dynamics of the system is dominated by the COM mode
and the homogeneity of this mode generates an effective
Ising model with uniform, all-to-all interactions.

Throughout this work we express frequencies in units
of 2π and define for convenience δ ≡ δCOM, Ω ≡ ΩCOM

and ω ≡ ωCOM. We consider a chain of Ns = 10 atoms
with parameters δ = 1 kHz and Ω = 0.65 kHz. To show
that for this choice of parameters the influence of the
other modes is suppressed we first note that the detuning
with respect to other modes can be expressed in terms of
the COM frequency as δµ = δ+∆ωµ where ∆ωµ = ω−ωµ.
The frequency difference with respect to the COM mode
(µ 6= COM) is ∆ωµ ≥ 80 kHz, see Appendix D. Similarly

one can write Ωµ = Ω
√
ω/ωµ. As a result of this we have

Ω/δ = 0.65 and Ωµ/δµ ≤ 0.008� Ω/δ for the remaining
modes.
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FIG. 1. Comparison of different observables using TWA and the exact solution for the single mode case in 1D and for Ns = 10
spins, δ = 1 kHz and Ω = 0.65 kHz. Panels (a) and (c) show the total magnetization and a spin-spin correlator, whereas
panels (b) and (d) show the real and imaginary parts of the two-point correlator between a single spin and the bosonic mode,
respectively. The deviation of the TWA solution from the exact behavior is due to the self-interaction terms.

We let the system start in a product state of both
bosons and spins. The bosons start in the vacuum state
|0〉⊗Nb with Nb = 1 and the spins begin in a product
state |→〉⊗Ns pointing in the +x direction. Fig. 1(a)
shows the results obtained with TWA for the total mag-
netization 〈Ŝx〉 ≡

∑
i〈σ̂xi 〉/Ns compared to the exact so-

lution. We find a remarkable agreement with the exact
solution except for a small deviation. As anticipated, the
total magnetization decays to zero due to the phonon-
mediated spin-spin interactions while the coupling to the
phonons induces oscillations on top at a frequency δ.

The spin-spin interactions create correlations between
spins at arbitrary distances. This is quantified by the

spin-spin connected two-point correlators 〈σ̂αi σ̂
β
j 〉c. As

Fig. 1(c) shows for i = 1 and j = 2, correlations are
built up between spins during the time that the total
magnetization decreases. In fact, due to the uniformity
of the interactions all spin-spin correlators (i 6= j) show
exactly the same behavior as Fig. 1(c). The correlations
between phonon and spins are also the same for all spins.
Figs. 1(b) and (d) show the real and imaginary parts
of the connected spin-phonon correlator 〈â1σ̂

y
1 〉c. This

quantity oscillates with the frequency δ, while its en-
velope first grows and then decays to zero as the total
magnetization vanishes. Except for small deviations the
agreement between TWA and the exact solution is re-
markable for both spin-spin and spin-phonon correlation
functions.

To understand the origin of the small discrepancies ob-
served in Fig. 1 we solve the classical equations of mo-
tion (18) and perform the sampling analytically, see Ap-

pendix A. This yields

〈Sxi 〉cl = e−Γi(t)
∏
k

cos (ϕik(t)) , (19)

〈Sxi Sxj 〉cl =
1

2

{
e−Γ−

ij

∏
k

cos (ϕik − ϕjk)

+ e−Γ+
ij

∏
k

cos (ϕik + ϕjk)

}
, (20)

〈AµSyi 〉cl =
i

2δµ

(
1− e−iδµt

)
e−Γi(t)

∏
k

cos (ϕik)

×

{
2

(
n̄µ +

1

2

)
Ωiµ − i

∑
m

Ωmµ tan (ϕim)

}
.

(21)

These expressions look identical to the exact quantum
solutions, Eqs. (6), (10) and (12), except that the in-
dices i and j are excluded in the sums and products of
the quantum solution. This stems from a kind of ‘self-
interaction’ that is an artefact of the TWA solution. To
see this we compare Eq. (19) to the expression we ob-
tain by instead integrating out the bosons exactly and
then doing TWA. For this we first solve the Heisenberg
equation of motion for âµ at the quantum level and then
insert it into the equations for σ̂xi and σ̂yi . The k = i in
the sum automatically drops out after symmetrization,
due to the anti-commutativity of the spin matrices. After
symmetrization we substitute operators by classical vari-
ables. Due to the excluded k = i term the result of TWA
becomes exact, 〈Sx〉cl = 〈Ŝx〉, for the initial conditions
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considered here. Similar self-interaction terms in higher
order products are also responsible for the differences ob-
served in the two-point correlators, but identifying them
becomes more involved.

For a single mode, this self-interaction term leads only
to a small discrepancy which, in fact, becomes negligible
as the number of spins Ns is increased, see also the results
of Section VIII. However, the situation can be different
when many modes contribute to the dynamics. To illus-
trate this we use ϕij ∼

∑
µ biµbjµ/(ωµδµ), valid at times

t � 1/δµ, and the fact that the vibrational eigenvectors
biµ form an orthonormal set, i.e.

∑
µ biµbjµ = δij . When,

for instance, the COM mode dominates the dynamics,
all µ 6= COM summands in ϕij are suppressed by 1/δµ
and only the µ = COM survives. Thus ϕij ≡ ϕ becomes
independent of i and j and the difference between the
TWA and exact solutions is simply one power of cos(ϕ).
A similar reasoning applies when the detuning is tuned
close to a different mode. However, consider the limit of
a large enough detuning δµ such that it is approximately
µ-independent.1 In this limit, ϕij ∼

∑
µ biµbjµ/ωµ. If

the frequencies ωµ are all of the same order of mag-
nitude we have that ϕii is a sum of positive terms,
whereas ϕi 6=j is a sum of positive and negative terms
that tend to cancel each other due to the orthonormal-
ity of biµ. Therefore, for large detuning the TWA solu-
tion, 〈Sxi 〉cl = cos(ϕii)〈σ̂xi 〉, acquires an extra cosine fac-
tor with an argument ϕii � ϕi6=j oscillating much faster
than typical time scales. This makes the TWA prediction
deviate significantly from the quantum solution already
at early times. To cure the self-interaction and, more
generically, to add corrections to the spin-boson TWA
we follow the method proposed in [2], which is based on
using an extended set of equations similar to a BBGKY
hierarchy.

V. BBGKY EXTENSION

In this section, we show how to add corrections to the
TWA by following the method proposed in [2], which
consists of increasing the number of classical variables
and evolving them with BBGKY-type equations. For
this we go back to the Wigner-Weyl representation in-
troduced in Section III and work in the Heisenberg pic-
ture, where the time dependence is in the Weyl symbols
of operators instead of the Wigner function. The evolu-
tion equations for the Weyl symbols can be obtained by
first deriving the Heisenberg equations of motion for the
operators and then applying the Weyl transformation to
both sides. In this way, one obtains an infinite hierarchy
of coupled equations for the Weyl symbols, analogous to

1 Strictly speaking one needs to go beyond the RWA in the limit
δ → ∞. However, we emphasize that the arguments that follow
are valid as well without the RWA.

the BBGKY hierarchy of equations for correlation func-
tions. For instance, for the system considered here the
evolution of (σ̂xi )W will depend on (âµσ̂

y
i )W , which in

turn depends on (âµâν σ̂
x
i )W and so on. In order to trun-

cate this infinite hierarchy of equations one may define
connected Weyl symbols analogous to connected correla-
tion functions, e.g. (âµσ̂

y
i )W ≡ (âµσ̂

y
i )W,c+(âµ)W (σ̂yi )W .

One can show that by setting all connected parts to zero,
i.e. by splitting all Weyl symbols of products of operators
into products of Weyl symbols, one recovers the TWA.
A natural extension of TWA is hence to avoid this split-
ting and take the evolution of the connected parts into
account. In the following we elaborate in more depth this
idea.

To simplify the notation we define Weyl symbols of
products of operators as

Sαi ≡ (σ̂αi )W ,

Sαβij ≡ (σ̂αi σ̂
β
j )W ,

Sαβγijk ≡ (σ̂αi σ̂
β
j σ̂

γ
k )W ,

Aµ ≡ (âµ)W ,

A00
µν ≡ (âµâν)W ,

A10
µν ≡

1

2
({â†µ, âν})W ,

(22)

Mα
iµ ≡ (σ̂αi âµ)W ,

Mαβ
ijµ ≡ (σ̂αi σ̂

β
j âµ)W ,

Mα10
iµν ≡

1

2
(σ̂αi {â†µ, âν})W ,

(23)

where i 6= j 6= k 6= i, all products of operators are
symmetrized, and in this notation ‘0(1)’ stands for â(†).
Note that products of operators are automatically sym-
metrized when the operators act on different sites or
modes. We define connected Weyl symbols (calligraphy
letters) in the same way one would do it for expectation
values, e.g.

Sαβij = S
αβ
ij + Sαi S

β
j ,

A10
µν =A10

µν +A∗µAν ,

Mα
iµ =Mα

iµ + Sαi Aµ ,

(24)

and analogously for higher order products. The equa-
tions of motion for the connected Weyl symbols S, A and
M can be obtained by combining the equations for the
full Weyl symbols S, A and M . As explained above, the
latter follow directly from the Heisenberg equations of
motion for the corresponding operators. To truncate the
hierarchy one needs to discard connected Weyl symbols
of high orders. In this work, we take all two-point func-
tions into account and neglect all third and higher order
functions with one exception: the spin-spin-boson symbol

M
αβ
ijµ. The reason for this is that these terms turn out to

be relevant in the evolution of spin-spin correlators. The
resulting equations are provided in Appendix B.

The success of the BBGKY hierarchy depends on the
correct initialization of S, A and M. To this end, consider
the classical average of some product of classical vari-
ables, i.e. of one-point Weyl symbols, at t = 0. Accord-
ing to the Wigner-Weyl framework, this gives precisely
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FIG. 2. Comparison of collective, single spin, and mixed spin-boson observables using TWA, BBGKY and the exact solution
for the many-mode case with Ns = Nb = 10, δ = 80 kHz and Ω = 19.42 kHz. In the above panels we demonstrate how using
the BBGKY extension allows one to greatly improve on the TWA in capturing the dynamics of collective spin length (a) and
variance (d), spin-spin correlators (b) and (e), as well as spin-phonon correlators (c) and (f).

the expectation value of the corresponding symmetrized
product of operators, e.g. 〈σ̂xi σ̂xj 〉 =

∫
dS0W (S0)Sxi S

x
j , as

long as one is using the correct Wigner function. There-
fore, all connected Weyl symbols are exactly zero at
the beginning. This is in particular true regardless of
whether one has correlated or uncorrelated initial condi-
tions.

Finally, it is important to note that two-point con-
nected Weyl symbols are not in one-to-one correspon-
dence with connected correlators. To see this recall the
relation between the Weyl symbols and the corresponding
expectation values outlined in Section III. For instance,
one would have

〈σ̂αi σ̂
β
j 〉c = 〈σ̂αi σ̂

β
j 〉 − 〈σ̂

α
i 〉〈σ̂

β
j 〉

=

∫
DS0

[
S
αβ
ij + Sαi S

β
j

]
−
∫
DS0 S

α
i

∫
DS0 S

β
j

6=
∫
DS0 S

αβ
ij , (25)

where DS0 =
∏
k dSk,0W (Sk,0). In other words, sam-

pling S
αβ
ij alone does not yield the connected part 〈σ̂αi σ̂

β
j 〉c

and neglecting S
αβ
ij , as done in the usual TWA, does not

necessarily make connected correlators vanish.

VI. MANY MODES

In this section we apply the BBGKY method to the
same system as in Sec IV but operate in a regime where
many phonon modes contribute to the dynamics. We
choose the experimentally relevant parameters [29] δ =
80 kHz and Ω = 19.42 kHz and perform the simulation
using Nb = 10 modes. This is the other regime of inter-

est in current trapped-ion simulators and can be accessed
if δµ � Ωµ for all modes of the crystal. In this regime
the spin-spin interactions mediated by the phonons decay
approximately as 1/rα with the interparticle distance r,
where α increases monotonically with the detuning. For
the above parameters the range of the interaction is ap-
proximately given by α ≈ 0.58 (see Appendix D).

Figs. 2(a) to (f) show the evolution of a representa-

tive selection of observables: the collective spin 〈Ŝx〉, the

spin variance in the orthogonal direction 〈Ŝ2
y〉, spin-spin

correlators 〈σ̂x1 σ̂xj 〉c for j = 2, 10 and the spin-phonon

correlator 〈âµσ̂yi 〉c for µ = 1, 2 and i = 1, 2, respectively.
As compared to the single mode case of Fig. 1 the dy-
namics happen at a shorter time scale due to the larger
value chosen for the coupling Ω. The larger detuning
leads however to the spin-phonon coupling being effec-
tively weaker and hence the oscillations caused by the
rotation of the phonons are not only faster but their am-
plitude is also smaller. Because of this, the spin-spin
and spin-phonon correlations built up are weaker as for
the single mode case and partly decay at long times, see
Figs. 1(b), (c), (e) and (f). For spin-spin correlations one
finds, as expected, that the larger the distance between
the spins the smaller the correlations are (c.f. Fig. 1(b)
and (e)). Similarly, for phonons that are further away
from resonance the spin-phonon entanglement created is
smaller (c.f. Fig. 1(c) and (f)).

The results obtained with TWA (red) and with its
BBGKY extension (orange) are shown in Fig. 2 for com-
parison with the exact solution (black). As anticipated
above, the TWA solution deviates from the exact one at
relatively short times. The reason for this is that the
effect of self-interactions becomes increasingly important
as the detuning δµ becomes larger (see end of Section IV).
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FIG. 3. Evolution of the collective spin 〈Sx〉 as obtained from
BBGKY with and without sampling, TWA and the exact so-
lution for the many-mode case with Ns = Nb = 10. Initial
conditions: the bosons start in the vacuum and the spins
along (cos(θ/2)|↑〉+ sin(θ/2)|↓〉)⊗Ns with (a) θ = π/2 and (b)
θ = π/4.

Remarkably, the corrections introduced by the BBGKY
extension explained above lead to a large improvement,
as seen by the close agreement between the BBGKY and
the exact dynamics. While some small deviations still
persist (see e.g. Fig. 2(c)), the error of the approxima-
tion can be further reduced by extending the hierarchy
to include higher order terms, e.g. Mα

iµν . In fact, the

inclusion of the third order terms Mαβ
ijµ proved to be cru-

cial for obtaining a good agreement between the spin-spin
correlators computed with BBGKY and the exact result,
see Figs. 2(b) and (e).

VII. ROLE OF SAMPLING IN BBGKY

Since the form of the BBGKY equations for the con-
nected Weyl symbols is exactly the same as for the corre-
sponding connected correlation functions one may won-
der how relevant the sampling over initial conditions is.
In the ideal case in which one would be able to solve
the full hierarchy of equations without approximation,
the sampling would not be needed since one could solve

for the correlation functions directly.2 However, when
truncating the hierarchy of equations the sampling over
initial conditions can lead to significant improvements,
as we show in the following.

Solving the BBGKY equations without sampling
means to initialize each correlation function to its value
at initial time. For the initial condition | →〉⊗Ns⊗|0〉⊗Nb ,
the only nonzero one-point function is given by 〈σ̂xi 〉 = 1.
Since the initial state is uncorrelated, all two- and three-
point connected correlation functions that we take into
account are initially zero except 〈 12{âµ, â

†
µ}〉c = 1/2. Us-

ing these initial conditions we solve the BBGKY equa-
tions for the same parameters as in Fig. 2. Fig. 3(a)
shows the evolution of the collective spin obtained from
this prescription (blue line) against TWA, BBGKY with
sampling and the exact solution. Although the BBGKY
without sampling correctly predicts the evolution at early
times, it clearly differs from the exact solution for times
t & 0.1 ms.

To extend the analysis to other scenarios we consider
in Fig. 3(b) the state (cos(π/8)|↑〉+ sin(π/8)|↓〉)⊗Ns , for
which the mean value of the spins is initially given by
〈σ̂i〉 = (1/

√
2, 0, 1/

√
2)T . At early times all methods

agree with the full solution. The BBGKY with sampling
is however the only method that lies perfectly well on top
of the exact solution over the whole time-range shown. In
contrast, TWA and the BBGKY without sampling show
significant deviations from the exact solution for times
t & 0.2 ms. These two examples clearly show that when
using BBGKY equations sampling over initial conditions
can lead to a large improvement.

VIII. LARGE SYSTEM SIZES

In the previous sections we have shown that the spin-
boson TWA together with a systematic BBGKY expan-
sion reproduces the dynamics of the spin-boson model
(4) for both the single-mode and the many-mode case.
While so far we have considered small systems in one
dimension, here we show that the method can easily be
applied to larger systems in higher dimensions and with
realistic initial conditions for the phonons.

To this end we consider a system composed of Ns =
100 spins and Nb = 100 phonon modes in two dimen-
sions in a setting similar to the experiment of Ref. [9].
We initialize the spins in the fully magnetized |→〉 state.
To mimic realistic experimental conditions we let each
phonon mode µ start in a thermal equilibrium state

ρ̂th ≡
⊗

µ e
−βµĤb,µ/Tr(e−βµĤb,µ) with Ĥb,µ = ωµn̂µ. We

assign to each phonon initially a fixed but random mean
occupancy of n̄µ = 5 + ηµ where ηµ is a gaussian random

2 One may check this in a system with a small number of N spins
where the hierarchy closes at order N .
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FIG. 4. (a)-(d) Comparison of the collective spin 〈Sx〉 using TWA and BBGKY for thermal initial conditions in two spatial
dimensions. The different plots correspond to the following values {δ,Ω} of detuning and force: (a) {1, 1} kHz, (b) {100, 12}
kHz, (c) {−26, 5} kHz and (d) {−250, 2} kHz. The insets show the corresponding values of Jij as a function of the interparticle

distance rij ≡ |ri − rj |/`0 in units of `0 = (2e2/(4πε0Mω))1/3. (e) Phonon frequencies for 2D. The dashed lines correspond to
the position of the beatnote frequency ωR for the different detunings used.

number with 〈ηµ〉 = 0 and
√
〈η2
µ〉 = 2. This sets the

inverse temperature βµ = 1/Tµ using (9).

Figs. 4(a)-(d) show the evolution of the total mag-

netization 〈Ŝx〉 for a range of different detunings δ =
{100, 1,−26,−250} kHz, where the force is respectively
given by Ω = {12, 1, 5, 2} kHz. As the detuning is
changed, the coupling strength of the spins to the differ-
ent modes µ varies depending on how close the beatnote
frequency, ωR = ω+ δ, is to the corresponding mode fre-
quency ωµ. In Fig. 4(e) we show for reference the values
of the different ωR as compared to the mode frequen-
cies. Because of this, the nature of the effective phonon-
mediated Ising interaction Jij changes as well. In the
inset of Figs. 4(a)-(d) we show Jij for the corresponding
detuning as a function of the interparticle distance rij .

For δ = 1 kHz the spins couple predominantly to the
COM mode and the Ising interaction is practically uni-
form (α ≈ 0.04), analogous to Section IV. This can be
observed in the slow single-frequency oscillations on top
of the decay of the magnetization in Fig. 4(a). The am-
plitude of these oscillations is however comparably larger
due to the initial thermal occupation of the phonons. As
compared to the results presented in Fig. 1, Fig. 4(a)
shows that TWA (red) agrees even better with and in
fact lies almost perfectly on top of the exact solution
(black). The reason behind this is that, in the single
mode case, the self-interaction term responsible for the
deviation becomes negligible in the limit Ns → ∞, as
argued in Section IV.

For δ = 100 kHz we have a situation similar to Sec-
tion VI, where many weakly coupled modes contribute to
the evolution. The Ising interaction is characterized in
this case by a power-law with α ≈ 1.19. Due to the large
detuning the coupling to the phonon modes is weaker and
hence the amplitude of the oscillations is practically neg-
ligible, as shown in Fig. 4(b). Analogous to the results
presented in Section VI, we see here that the TWA again
fails to accurately describe the dynamics of the systems,
whereas the BBGKY method (orange) adds the neces-
sary corrections to make the result lie remarkably well
on top of the exact solution.

To explore other parameter regimes we consider as well
negative detunings. Compared to positive detunings the
landscape of Ising interactions is less trivial and can not
be captured by a simple power-law [34] (see insets of
Figs. 4(c) and (d)). For δ = −250 kHz the beatnote fre-
quency ωR lies within a dense region of mode-frequencies
(see Fig. 4(e)) and hence the spins couple strongly to
a handful of modes. As shown in Fig. 4(d) this leads
to superposed oscillations of different frequencies, whose
amplitude is additionally enhanced by the initial thermal
occupation of the phonons. Once again, we find that the
TWA result lies almost perfectly on top of the exact so-
lution and no BBGKY is needed. This is consistent with
the argument presented in Section IV that the effect of
the self-interaction term in TWA is ameliorated when δµ
varies strongly with µ.

Lastly, we consider δ = −26 kHz, which makes ωR lie
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approximately equidistant from the COM and the next
two phonon modes (see Fig. 4(e)). Because the detuning
from the nearest modes is relatively large, the amplitude
of the oscillations remains small as seen in Fig. 4(c). This
choice of detuning implies as well that the coupling of the
spins to the modes does not vary strongly enough with µ
to make the self-interaction term negligible. Therefore,
TWA shows a considerable deviation from the exact so-
lution, which is, however, cured again using the BBGKY
method.

In summary, we have shown that TWA and BBGKY
can be efficiently used for large system sizes, higher di-
mensions and thermal initial conditions. TWA accu-
rately describes the spin-boson dynamics when a hand-
ful of modes are dominant, whereas the BBGKY method
adds the necessary corrections whenever this is not the
case. Although for large system sizes the number of equa-
tions to be solved grows rapidly, we note that for the
initial conditions considered in this section and for com-
puting just the collective spin, the set of equations to be
solved can be significantly reduced without further ap-
proximations, see Appendix B.

IX. CONCLUSIONS AND OUTLOOK

In this paper we studied the unitary dynamics of a
system of spins coupled to one or many bosonic modes,
where the system parameters require one to treat the
spins and the bosons on equal footing. Such models
are particularly relevant to experimental AMO systems,
such as those realized by a 1D chain or a 2D array of
trapped-ions used for quantum simulation of a variety of
spin Hamiltonians. Our treatment is based on the trun-
cated Wigner Approximation (TWA) where one samples
a range of initial conditions and evolves each with clas-
sical mean-field equations. We began by adapting the
TWA to spins and bosons, making use of recently de-
veloped discrete sampling methods for the spins. We
further improved the TWA by introducing more clas-
sical variables and equations in a fashion similar to a
BBGKY hierarchy to capture the dynamics of the higher
order correlations in the system. From this point of view,
TWA emerges as the lowest order approximation in the
BBGKY hierarchy. We tested the convergence of the
various approximations extensively by comparing to ex-
act dynamics. We found excellent agreement for var-
ious one- and two-point functions for a large range of
parameters. Specifically, if a handful of bosonic modes
dominates the dynamics, the TWA was found to give ac-
curate results while in all remaining cases the BBGKY
extension added the necessary corrections allowing the
results to converge to the exact ones. Most importantly,

we demonstrated the applicability of the method to large
systems (N ∼ 100) in higher dimensions (2D) with a
thermal occupation of the bosonic modes, a case relevant
to current experiments. We emphasize that the fact that
the accuracy of TWA was found to depend on the number
of relevant bosonic modes does not necessarily generalize
to other models.

Of course better convergence always comes with a cost.
The inclusion of each subsequent order of classical vari-
ables increases the computational time by an order ∼ N
thus limiting the size of the systems which can be simu-
lated efficiently. However, it is worth pointing out that
depending on the observable of interest one may need
to go to different orders in the BBGKY approximation,
which can reduce the computational complexity.

While in this work we concentrated on an exactly solv-
able model, the TWA and BBGKY methods can also be
applied to more generic problems that do not admit an
exact solution. In this case, however, two challenges need
to be addressed. First, because of the lack of an exact
solution to compare with, a systematic evaluation of the
parameter regime of validity will be necessary. To this
end, computing higher orders in the BBGKY expansion
or comparing to exact numerical results in small systems
can help estimate the error of a given order of approx-
imation. Second, the truncation of the BBGKY hierar-
chy can lead to numerically unstable equations and hence
stable truncation schemes need to be developed. Despite
this, the numerical results presented in this work are en-
couraging and suggest that the BBGKY hierarchy com-
bined with a sampling over initial conditions can become
a powerful numerical method to compute the evolution
of relevant observables, such as one- and two-point func-
tions, at polynomial computational cost for significant
system sizes (N & 100) in one or higher dimensions. This
opens a new promising path for the study of a myriad of
models which cannot be simulated using other currently
available methods.
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SUPPLEMENTARY MATERIAL

Appendix A: Analytical sampling of classical
equations of motion

In this section we outline how to obtain the expressions
(19), (20) and (21) given in the main text by analytically
sampling the classical equations of motion, Eq. (18). Ac-
cording to these equations, the z-component of the spin is
a constant of motion Szi (t) = Szi (0) ≡ zi,0. The solution
for the other variables is given by

Aµ(t) =
1

2δµ

(
1− e−iδµt

)∑
i

Ωiµzi,0 +Aµ,0,

Sxi (t) = s⊥ sin (−sgn(yi,0)Ji(t) + θx,i) ,

Syi (t) = s⊥ sin (sgn(xi,0)Ji(t) + θy,i) ,

(A1)

where we defined Aµ,0 ≡ Aµ(0), xi,0 ≡ Sxi (0), yi,0 ≡
Syi (0), θx,i ≡ arcsin(xi,0/s⊥), θy,i ≡ arcsin(yi,0/s⊥),
s2
⊥ = x2

i,0 + y2
i,0 and (c.f. Eq. (8))

Ji(t) =
∑
j

ϕij(t)zj,0 − 2
∑
µ

Ωiµ
δµ

Im
{
Aµ,0

(
eiδµt − 1

)}
,

(A2)
Note that the signs of the angles θx,i and θy,i have to
fulfil sgn(xi,0)θx,i + sgn(yi,0)θy,i = π/2.

The results (19), (20) and (21) are obtained by sam-
pling the solutions (A1) and products thereof over initial
conditions as specified by the Wigner functions (16) and
(17). We denote this by 〈·〉cl ≡ 〈〈·〉cl,S〉cl,B = 〈〈·〉cl,B〉cl,S ,
where 〈·〉cl,B(S) stands for sampling over boson (spin) ini-
tial conditions. Recall that performing the spin and bo-
son samplings independently from each other is only pos-
sible if there is no correlation between spins and bosons
at t = 0. For the specific case of | →〉⊗Ns ⊗ |0〉⊗Nb as
initial state the averages are given by

〈O〉cl,S =
1

22Ns

∏
i

∑
yi,0=±1

∑
zi,0=±1

O ,

〈O〉cl,B =
∏
µ

∫
d2Aµ,0

2

π
exp

{
−2|Aµ,0|2

}
O ,

(A3)

where xi,0 = 1, d2Aµ,0 ≡ dRe(Aµ,0) dIm(Aµ,0) and O
stands for some product of classical variables.

Appendix B: BBGKY Equations

In the following we list the BBGKY equations of mo-
tion used in the main text, which can be obtained as
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explained in Section V. The equations for the one-point functions are given by

Ȧµ =
i

2
e−iδµt

∑
i

ΩiµS
z
i ,

Ṡxi = 2
∑
µ

Ωiµ Re
[
(My

iµ + Syi Aµ)eiδµt
]
,

Ṡyi = − 2
∑
µ

Ωiµ Re
[
(Mx

iµ + Sxi Aµ)eiδµt
]
,

(B1)

where again Ṡzi = 0. Note that setting M→ 0 one recovers the classical equations of motion (18). Keeping the mixed
spin-boson connected Weyl symbols M 6= 0 one needs to supplement these equations by

Ṁx
iµ =

∑
ν

Ωiν

{
2My

iµ Re
(
Aνe

iδνt
)

+ Syi
(
A00
νµe

iδνt + A10
νµe
−iδνt

)}
+

i

2
e−iδµt

{∑
k 6=i

ΩkµS
xz
ik − ΩiµS

z
i S

x
i

}
,

Ṁ
y
iµ = −

∑
ν

Ωiν

{
2Mx

iµ Re
(
Aνe

iδνt
)

+ Sxi
(
A00
νµe

iδνt + A10
νµe
−iδνt

)}
+

i

2
e−iδµt

{∑
k 6=i

ΩkµS
yz
ik − ΩiµS

z
i S

y
i

}
,

Ṁz
iµ =

i

2
e−iδµtΩiµ(1− Szi Szi ) ,

(B2)

where we neglected three-point Weyl symbols of the form Mα
iµν . These equations couple as well to the two-point Weyl

symbols Aµν and S
αβ
ij . Their evolution is given by

Ȧ00
µν =

i

2

∑
j

[
ΩjµM

z
jνe
−iδµt + (µ↔ ν)

]
,

Ȧ10
µν = − i

2

∑
j

[
ΩjµM

z
jνe

iδµt − (µ↔ ν, c.c.)

]
,

(B3)

and

Ṡxxij = 2
∑
µ

{
ΩiµRe

[ (
M
yx
ijµ + S

yx
ij Aµ + Mx

jµS
y
i

)
eiδµt

]
+ (i↔ j)

}
,

Ṡ
xy
ij = 2

∑
µ

{
ΩiµRe

[ (
M
yy
ijµ + S

yy
ij Aµ + M

y
jµS

y
i

)
eiδµt

]
− (i↔ j, x↔ y)

}
,

Ṡxzij = 2
∑
µ

ΩiµRe
[ (

M
yz
ijµ + S

yz
ij Aµ + Mz

jµS
y
i

)
eiδµt

]
,

Ṡ
yy
ij = − 2

∑
µ

{
ΩiµRe

[ (
M
xy
ijµ + S

xy
ij Aµ + M

y
jµS

x
i

)
eiδµt

]
+ (i↔ j)

}
,

Ṡ
yz
ij = − 2

∑
µ

ΩiµRe
[ (

Mxz
ijµ + Sxzij Aµ + Mz

jµS
x
i

)
eiδµt

]
.

(B4)

where Ṡzzij = 0, “c.c.” stands for complex conjugate and expressions like (i↔ j) are shorthand notation for the whole
expression appearing on its left, within the same level of parenthesis, after applying the indicated substitution. The

latter equations couple to the spin-spin-boson Weyl symbols M
αβ
ijµ, which one may approximately neglect to close

the hierarchy. However, for the particular problem considered in this work we found these variables to be relevant

in the dynamics of correlators such as 〈σ̂αi σ̂
β
j 〉. Therefore, we take into account the evolution equations of these
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spin-spin-boson variables, which are given by

Ṁxx
ijµ = 2

∑
ν

{
Ωiν

[
M
yx
ijµ Re

(
Aνe

iδνt
)

+ M
y
iµ Re

(
Mx
jνe

iδνt
)]

+ (i↔ j)
}

+
∑
ν

{
ΩiνS

yx
ij

(
A00
µνe

iδνt + A01
µνe
−iδνt

)
+ (i↔ j)

}
− i

2
e−iδµt

{
Sxxij

(
ΩiµS

z
i + ΩjµS

z
j

)
+
(
ΩjµS

xz
ij S

x
j + (i↔ j)

)}
,

Ṁ
xy
ijµ = 2

∑
ν

{
Ωiν

[
M
yy
ijµ Re

(
Aνe

iδνt
)

+ M
y
iµ Re

(
M
y
jνe

iδνt
)]
− (i↔ j, x↔ y)

}
+
∑
ν

{
ΩiνS

yy
ij

(
A00
µνe

iδνt + A01
µνe
−iδνt

)
− (i↔ j, x↔ y)

}
− i

2
e−iδµt

{
S
xy
ij

(
ΩiµS

z
i + ΩjµS

z
j

)
+
(
ΩjµS

xz
ij S

y
j + (i↔ j, x↔ y)

)}
,

Ṁxz
ijµ = 2

∑
ν

Ωiν
[
M
yz
ijµ Re

(
Aνe

iδνt
)

+ M
y
iµ Re

(
Mz
jνe

iδνt
)]

+
∑
ν

ΩiνS
yz
ij

(
A00
µνe

iδνt + A01
µνe
−iδνt

)
− i

2
e−iδµt

{
Sxzij

(
ΩiµS

z
i + ΩjµS

z
j

)
+ ΩjµS

xz
ij S

z
j

}
,

Ṁ
yy
ijµ = − 2

∑
ν

{
Ωiν

[
M
xy
ijµ Re

(
Aνe

iδνt
)

+ Mx
iµ Re

(
M
y
jνe

iδνt
)]

+ (i↔ j)
}

−
∑
ν

{
ΩiνS

xy
ij

(
A00
µνe

iδνt + A01
µνe
−iδνt

)
+ (i↔ j)

}
− i

2
e−iδµt

{
S
yy
ij

(
ΩiµS

z
i + ΩjµS

z
j

)
+
(
ΩjµS

yz
ij S

y
j + (i↔ j)

)}
,

Ṁ
yz
ijµ = − 2

∑
ν

Ωiν
[
Mxz
ijµ Re

(
Aνe

iδνt
)

+ Mx
iµ Re

(
Mz
jνe

iδνt
)]

−
∑
ν

ΩiνS
xz
ij

(
A00
µνe

iδνt + A01
µνe
−iδνt

)
− i

2
e−iδµt

{
S
yz
ij

(
ΩiµS

z
i + ΩjµS

z
j

)
+ ΩjµS

yz
ij S

z
j

}
.

(B5)

Here, Ṁzz
ijµ = 0 and we neglected higher order terms in order to close the hierarchy.

This set of equations becomes less involved when the
spins start in the state | →〉⊗N . In this case, Szi (t) = ±1
and it follows from Eq. (B2) that Mz

iµ ≡ 0. This in turn
implies together with Eq. (B3) that Aµν ≡ 0. Using this
in Eqs. (B4) and (B5) we further obtain that Sxzij ≡ 0,

S
yz
ij ≡ 0, Mxz

ijµ ≡ 0 and M
yz
ijµ ≡ 0. With these simpli-

fications one is left with a reduced number of equations
and variables which take computationally less effort to
solve. We made use of this in the results presented in
Sections IV and VI.

The system of equations can be further reduced if one
is only interested in computing one-point functions 〈σ̂αi 〉
or spin-boson correlators 〈âµσ̂αi 〉. In such a case one may
use the fact that Eqs. (B1) and (B2) constitute for the
initial condition | →〉⊗N a closed set of equations and
thus neglect all other equations. The results presented
in Section VIII were computed using this reduced set of

equations.
Despite all these simplifcations, we emphasize that for

general initial conditions, such as those considered in Sec-
tion VII, the full set of equations has to be solved, at this
order of approximation.

Appendix C: Rotated initial conditions

In this section we fill some details about the discrete
sampling scheme used for rotated spin initial conditions,
i.e. initial states that are not aligned with x, y or z. To
simplify the discussion we consider a system composed of
just a single spin-1/2, σ̂ = (σ̂x, σ̂y, σ̂z)T . The following
procedure is nevertheless also applicable to systems of
many spins starting in a product state.

We start by recalling the sampling used for a spin ini-
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tially in the state | ↑〉, namely:

W|↑〉(S0) =
1

4
δ(Sz0 −1)

∑
x,y=±1

δ(Sx0 −x)δ(Sy0 −y) . (C1)

This sampling can be shown to fulfil

〈(σ̂α)n〉 =

∫
DS0 (Sα)n ,

〈{(σ̂α)m, (σ̂β)n}S〉 =

∫
DS0 (Sα)m(Sβ)n ,

〈{(σ̂x)m, (σ̂y)n, (σ̂z)l}S〉 =

∫
DS0 (Sx)m(Sy)n(Sz)l ,

(C2)

where we defined
∫
DS0 ≡

∫
dS0W (S0), and the sym-

metric product of two and three operators as

{A,B}S ≡
1

2
(AB +BA) , (C3)

{A,B,C}S ≡
1

6
(ABC +ACB +BAC

+BCA+ CAB + CBA) . (C4)

Using this we will show in the following that rotated
initial states of the form

| ↑R〉 ≡ e−iφ/2 cos(θ/2)| ↑〉+ eiφ/2 sin(θ/2)| ↓〉 (C5)

can be sampled using the Wigner function

W|↑R〉(S0) =
1

4
δ(SzR,0− 1)

∑
x,y=±1

δ(SxR,0−x)δ(SyR,0− y) .

(C6)
Here, the subscript ‘R’ denotes the rotated spin variables
S = RTSR and R is a rotation matrix given by

R =

cos(φ) cos(θ) sin(φ) cos(θ) − sin(θ)
− sin(φ) cos(φ) 0

cos(φ) sin(θ) sin(φ) sin(θ) cos(θ)

 (C7)

with RTR = 1.
To show the accuracy of the sampling (C6) the strat-

egy consists in rotating the whole system to make the
initial state lie along the z-direction, sample the initial
conditions in the rotated basis and then rotate back. We
write the initial state as

| ↑R〉 ≡ ÛR(φ, θ)| ↑〉 , (C8)

where we defined the rotation operator ÛR(φ, θ) =
e−i(φ/2)σ̂ze−i(θ/2)σ̂y . Using this we define the rotated spin

operators σ̂µR ≡ ÛR σ̂
µ Û†R, which can also be written as

σ̂R = R σ̂.
We define rotated classical spin variables SR = RS =

(xR, yR, zR)T , which are the Weyl symbols of the rotated
spin matrices, (σ̂αR)W = SαR. In the rotated basis, the
spin points in the (rotated) z-direction. Therefore, if we
sample the rotated spins according to (C6), i.e. xR,0 =
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FIG. 5. (a) Phonon frequencies for 1D. The dashed lines cor-
respond to the position of the beatnote frequency ωR for the
different detunings δ used in the main text. (b), (c) Effec-
tive spin-spin interaction Jij as a function of the interparticle
distance rij ≡ |i − j| (dimensionless) for the two different
detunings. The grey dashed lines show the result of a fit to
1/rαij .

±1, yR,0 = ±1, zR,0 = 1, then (C2) will be fulfilled for
σ̂ → σ̂R and S → SR. This justifies the sampling given
in (C6).

The equations of motion for the rotated spin SR can be
obtained from the Heisenberg equations for σ̂R after all
products of operators have been symmetrized and simpli-
fied as explained in the main text. For the spin-1/2 case
considered in this work, they can be obtained as well by
rotating the equations for S as

ṠR = R Ṡ(RTSR) . (C9)

Again, it is essential that in deriving the equations for S
all products of spin matrices have been symmetrized and
simplified as, e.g., (σ̂x)3 = σ̂x.

Given (C6) and (C9) one could in principle work in
the rotated basis. However, it is usually convenient to
reexpress everything in terms of the original basis. To
this end, one can use Eq. (C6) to initialize the rotated
spins and then rotate back to the original basis. Rotating
back (C9) one can then evolve the spins using the original
equations for S. In order to compute expectation values
of the original spin matrices, one needs to first express
the observable in terms of the rotated spin operators.
Then all products have to be symmetrized and simplified.
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After that one substitutes σ̂αR → SαR =
∑
λRαλS

λ and
the resulting function of classical spin variables is the one
to be averaged. The expectation value of, for instance,
σ̂, would thus be given by

〈σ̂〉 =RT 〈σ̂R〉 ≈ RT 〈SR〉cl = 〈S〉cl . (C10)

Here 〈·〉cl has to be understood as an average by sampling
the rotated spins as mentioned above.

Based on the previous equality one could in principle
skip the back and forth rotation and directly associate
σα ↔ Sα. However, this procedure works generally only
when computing observables that have been symmetrized
and reduced to their simplest form. For example, if one
chooses to compute 〈(σ̂x)3〉 as 〈(Sx)3〉cl instead of using
(σ̂x)3 = σ̂x to compute it as 〈Sx〉cl one may not obtain
the correct result. The reason for this is that in general

〈(σ̂λ)3〉 =
∑
α,β,γ

RTλαR
T
λβR

T
λγ〈σ̂αR σ̂

β
R σ̂

γ
R〉

i.g.

6=
∑
α,β,γ

RTλαR
T
λβR

T
λγ〈SαR S

β
R S

γ
R〉cl = 〈(Sλ)3〉cl ,

(C11)

unless the product σ̂αR σ̂
β
R σ̂

γ
R happens to be automatically

symmetrized. In other words, given a symmetrically or-
dered operator f(σ̂), we have that (f(σ̂R))W = f(SR),
but in general (f(σ̂))W = (f(RT σ̂R))W 6= f(RTSR) =
f(S).

Appendix D: Phonon modes and spin-spin
interactions

In this section we fill in some details about the phonon
frequencies used for the 1D simulations of Sections IV,
VI and VII, and compute the resulting spin-spin interac-
tions. Fig. 5(a) shows the frequency ωµ of each of the 10
phonon modes. In the same plot we give as well the value
of the beatnote frequency ωR = ω + δ for the different
detunings δ used. For each detuning one obtains a dif-
ferent spin-spin interaction Jij mediated by the phonons,
which is given by [9]

Jij =
1

2

∑
µ

ΩiµΩjµ
δµ

. (D1)

Figs. 5(b) and (c) show Jij as a function of the distance
for the two different detunings δ = 1 kHz and δ = 100 kHz
used. Each plot shows as well the result of a fit to a
power-law decaying function 1/rαij . We obtain α ≈ 0.01
and α ≈ 0.58, respectively.
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