
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Action-noise-assisted quantum control
Amikam Levy, E. Torrontegui, and Ronnie Kosloff

Phys. Rev. A 96, 033417 — Published 25 September 2017
DOI: 10.1103/PhysRevA.96.033417

http://dx.doi.org/10.1103/PhysRevA.96.033417


Action Noise Assisted Quantum Control

Amikam Levy,1, ∗ E. Torrontegui,1, 2, † and Ronnie Kosloff1

1The Fritz Haber Research Center for Molecular Dynamics,
The Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel

2Instituto de Física Fundamental IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain
(Dated: September 12, 2017)

We study the effect of action noise on state-to-state control protocols. Action noise creates
dephasing in the instantaneous eigenbasis of the Hamiltonian and hampers the fidelity of the final
state with respect to the target state. We find that for shorter protocols the noise more strongly
influences the dynamics and degrades fidelity. We suggest improving the fidelity by inducing stronger
dephasing rates along the process. The effects of action noise on the dynamics and its manipulation
is described for a general Hamiltonian and is then studied by examples.

PACS numbers:

I. INTRODUCTION

The aim of quantum control theories is to develop pro-
tocols to prepare entangled states, coherent states, or any
other state possessing novel quantum properties [1–7].
These methods are applicable in a wide variety of fields
including quantum computation [8], cooling [9], quan-
tum transport [10, 11], quantum state preparation [12–
14], cold atoms manipulation [15–18], many-body state
engineering [19, 20] as well as many other applications in
metrology, atomic, molecular and optical physics. The
main hindrance in manipulating quantum systems is the
unavoidable presence of noise during the process.

In this work we show that by inducing strong dephas-
ing we can improve the state-to-state controllability of a
system. Generally, noise hampers the fidelity of the con-
trolled state with respect to its target state [21, 22]. In
such cases, speeding up a process can suppress the influ-
ence of the noise by reducing the time during which the
noise disturbs the system, allowing for high-fidelity exe-
cution of a protocol. Shortcut to adiabaticity protocols
(SP) [1] are examples of such methods in which during
the process the state is not necessarily an eigenstate of
the instantaneous time dependent Hamiltonian, but it
becomes so in the final time.

Here, we focus on SP in the presence of action noise.
The scheme introduced in this paper applies for initial
states that are eigenstates of the Hamiltonian and are
diagonal in this basis, including mixed states such as
thermal states. We show that the noise becomes more in-
fluential in short time operations, implying lower fidelity
in the controled state. We further show that by increas-
ing the dephasing rate along the process, the fidelity is
enhanced, meaning that above a certain threshold in-
tensifying the noise becomes beneficial. The dephasing
rate can be controlled by manipulating the Hamiltonian
during the process, implying that for a given initial and
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final Hamiltonian, one can optimize the fidelity under
influence of the noise within the nonadiabatic regime.

II. GENERAL FORMALISM AND RESULTS

The dynamics of the quantum system is described by:

dρ̂

dt
= − i

~
[Ĥ(t), ρ̂] +Dρ̂, (1)

with

Dρ̂ = − γ

~2
[Ĥ(t), [Ĥ(t), ρ̂]], γ > 0. (2)

Here Ĥ(t) is the total Hamiltonian of the system includ-
ing the control term, and the noise term is described by
Eq. (2). This term may result either from weak and con-
tinuous measuring (monitoring) the Hamiltonian [23, 24]
or from noise in the action, caused for example by an er-
ror in scheduling the control Hamiltonians. Equation (1)
was derived and studied in the past for time independent
Hamiltonians using a Poisson model and is sometimes re-
ferred to as intrinsic decoherence [25]. Here, we give a
sketch of the derivation of Eq. (1) for a time dependent
Hamiltonian. We define the infinitesimal change in the
action as,

∆s = H(t)(dt+
√
γdξ), (3)

where H(t) = −(i/~)[Ĥ(t), ·], and dξ is a stochastic in-
crement satisfying, Mdξ = 0 and (dξ)2 = dt, being M
the stochastic mean and γ the scale of the noise strength
in units of time. Henceforth, we define ~ = 1. The in-
finitesimal change in the stochastic state σ̂ is,

σ̂ + dσ̂ = exp(∆s)σ̂. (4)

Expanding the rhs of Eq. (4) into a series, keeping terms
of order dt and taking the stochastic mean, we obtain Eq.
(1) for the averaged state ρ̂ = Mσ̂.

For a time independent Hamiltonian, the superopera-
tor D leads to pure dephasing. This implies that if the
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initial state ρ̂(0) of the system is an eigenstate of the
Hamiltonian and is diagonal in this basis, then the state
is invariant during the dynamics. Once the Hamiltonian
is time dependent, the state is no longer invariant and
coherence will be created. This coherence will decohere
by the noise leading to dissipation and a decline in the
fidelity.

This behavior is predicted by looking at the equations
of motion for the density matrix elements in the instanta-
neous eigenbasis of the Hamiltonian, ρkl ≡ 〈k| ρ |l〉, where
{|k〉} ≡ {|k(t)〉}. The coherences given by the off diago-
nal terms satisfy,

ρ̇kl =
(
iε(t)− γ∆E2

kl(t)
)
ρkl + 〈k|∂tl〉 (ρkk − ρll) (5)

+
∑
n 6=k,l

〈∂tk|n〉 ρnl + 〈n|∂tl〉 ρkn for k 6= l,

where ∆Ekn(t) ≡ Ek(t) − En(t) is the gap between the
eigenvalues of the Hamiltonian with n 6= k and the phase
ε(t) is given by the sum of Berry and dynamical phases
[26],

ε(t) = i (〈k|∂tk〉 − 〈l|∂tl〉)−∆Ekl(t), ε(t) ∈ R. (6)

The diagonal terms satisfy

ρ̇kk = 2
∑
n 6=k

< (ρnk 〈∂tk|n〉) . (7)

The change in the population depends on the
coherence ρnk and on the overlap 〈∂tk|n〉 =

〈k| ∂tĤ(t) |n〉 /∆Ekn(t). This term does not depend ex-
plicitly on the noise implying that the noise influence
enters only through the coherence. The dynamics of the
coherence, Eq. (5), is more involved. The first term on
the rhs has both pure imaginary, iε(t), and real, γ∆E2

kl,
contributions. The real part Γ(t) ≡ γ∆E2

kl(t) > 0 is re-
sponsible for dephasing and is the direct consequence of
the noise. The dephasing rate Γ(t) which is now time
dependent is proportional to the square of the instanta-
neous eigenvalue separation and to γ. Thus, changing
the dephasing rate can be achieved by either manipulat-
ing the eigenvalues of the Hamiltonian or by controlling
γ. The second term in the equation indicates that change
in coherence is also proportional to the population differ-
ence between the two connecting levels. The last term in
Eq. (5) accounts for transitions from other off-diagonal
elements. If the protocol changing the Hamiltonian is
done adiabatically, i.e., the change is sufficiently slow,
then neither coherence nor excitation are generated dur-
ing the protocol and the state follows the instantaneous
eigenstate of the Hamiltonian with complete fidelity as
can be observed in Fig. 1. In the nonadiabatic regime,
max {| 〈k|∂tl〉 |, t ∈ [0, tf ]} becomes large, which then cre-
ates coherence and excitation.

A. The harmonic oscillator

Figure 1 shows the fidelity of a particle (or the center of
mass of a particle cluster) with mass (or reduced mass)

Adiabatic Regime!
μ < 0.2

FIG. 1: Fidelity of the harmonic oscillator for different fi-
nal times tf . In red (dark grey) SP and in blue (light grey)
adiabatic protocol. (Dashed lines) fidelity without noise and
(solid lines) noise included in the dynamics. The dark shaded
area indicates the adiabatic regime for both protocols. Here,
ω(0) = 2.5MHz, ω(tf ) = 2.5KHz and γ = 0.8ms.

m in a time dependent harmonic trap for various final
times tf using two different protocols to modify the trap
frequency ω(t). The Hamiltonian of the particle is given
by,

Ĥ(t) =
1

2m
p̂2 +

mω2(t)

2
q̂2, (8)

with [q̂, p̂] = i. The system is initially in the ground
state of the Hamiltonian with frequency ω(0) = 2.5MHz,
and the target state is the corresponding ground state for
ω(tf ) = 2.5KHz. The two different protocols for driving
the Hamiltonian are a shortcut to adiabaticity protocol
(SP) [9] in red and adiabatic with constant µ in blue,
where µ is the adiabatic parameter for closed systems
[27],

µ =
∑
l 6=k

| 〈k| ∂tĤ |l〉 |
∆E2

kl

(9)

For µ � 1 the process is performed in the adiabatic
limit. In [28] the conditions for adiabaticity for open
quantum systems is derived by demanding that the
Hilbert-Schmidt space can be decomposed into decou-
pled Lindblad-Jordan eigenspaces. Since in this work the
Lindblad operator is the Hamiltonian itself and the ini-
tial state is an eigenstate of Ĥ(t), more insight can be
gained by considering Eqs. (5) and (7). In this case adi-
abaticity implies ρ̇kk → 0, which can be achieved either
if µ� 1 or ρnk → 0. We will show that the latter can be
achieved by manipulating Γ(t).

For the harmonic oscillator, µ(t) = |ω̇(t)|/ω2(t) [29],
which implies that for constant µ, the Hamiltonian
changes in time according to,

ωµ(t) =
ω(0)ω(tf )tf

ω(tf )tf − (ω(tf )− ω(0)) t
. (10)
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The fidelity,

F ..= tr

√√
ρ̂(tf )ρ̂tar

√
ρ̂(tf ) (11)

measures the overlap between the final state and the tar-
get state ρ̂tar. For Gaussian states the fidelity is calcu-
lated according to [30]. We remark here that although a
Gaussian state is not invariant under the dynamics gener-
ated by D, Eq. (11) of [30] still provides a good measure
for the fidelity of slightly perturbed Gaussian states.

This example demonstrates that noise in the action is
sensitive for short time operations. For both protocols, as
the dynamics become more adiabatic (i.e., small µ), the
fidelity asymptotically approaches one. In the SP µ =
max{µ(t), t ∈ [0, tf ]}, while for the adiabatic protocol µ
is constant in each trajectory in the domain [0, tf ].

The above example illustrates that in order to suppress
the noise it is better to work in the adiabatic regime.
Nevertheless, longer protocols are more sensitive to other
noise sources including thermal and amplitude noises.

B. The two level system

In the next example we concentrate on the nonadia-
batic regime (i.e., large µ) and show how the noise can
be manipulated to improve fidelity. Our study is the full
population transfer of a two level system. This model
has been studied extensively, see [12, 31–34] and refer-
ences therein. It is important to note that the insight
gained from these examples applies to the general con-
trol problems influenced by action noise. We assume a
Hamiltonian of the form

Ĥ(t) =
∆(t)

2
σ̂z +

Ω(t)

2
σ̂x, (12)

where ∆(t) and Ω(t) are real, time-dependent functions
resulting from an interaction with some external field,
and σ̂z and σ̂x are the Pauli matrices. Initially the system
is set to the ground state, ρ̂ = |0〉 〈0|, with the initial
Hamiltonian corresponding to ∆(0) = ∆0 and Ω(0) =
0, and a target of the exited state ρ̂ = |1〉 〈1| with the
final Hamiltonian ∆(tf ) = −∆0 and Ω(tf ) = 0. As in
the previous example, the dynamics is governed by Eq.
(1) and two protocols are considered: adiabatic (with
constant µ) and SP.

The adiabatic parameter is given by,

µ =
|∆(t)Ω̇(t)− Ω(t)∆̇(t)|
2 (∆2(t) + Ω2(t))

3/2
. (13)

It can be easily shown that the protocol for population
inversion with constant µ satisfies,

∆µ(t) = ∆0 cos
(
π+2πn
tf

t
)
, Ωµ(t) = ∆0 sin

(
π+2πn
tf

t
)
,

(14)

Final Time [s]
Final Time [s]
Final Time [s]Final Time [s]

FIG. 2: (a) Fidelity of the two protocols in the nonadiabtic
regime for different final times tf . In red (dark grey) SP and in
blue (light grey) ARP. (Dashed lines) ideal dynamics without
noise and (solid lines) noise included in the dynamics. (b)
Generator distance GD as a function of tf on a logarithmic
scale. In red (dark grey) SP and in blue (light grey) ARP.
Here: ∆0 = 150Hz and γ = 0.01s.

with n ∈ Z. This protocol is also known as the adiabatic
rapid passage (ARP) [35], as full population inversion
can be achieved in specific times within the nonadiabatic
regime, see Fig. 2. In this case µ = π

2∆0tf
. The SP is

calculated according to [36].
As in the example of the harmonic oscillator, we see

that for both protocols the fidelity is increased with
greater tf , see Fig. 2. In order to evaluate the signifi-
cance of the noise as the protocol changes in time without
having knowledge on the state, we define the generator
distance GD as the distance between the generator norm
of the dynamics subject to noise and the ideal dynamics
without noise,

GD ..=
1

tf

∫ tf

0

‖H(t) +D(t)‖ − ‖H(t)‖dt. (15)

Where ‖B‖ ..= max
√

eig (B†B) is the spectral norm which
is the largest singular value of B ∈ CN×N . As GD in-
creases, the noise becomes more significant along the tra-
jectory.

Figure 2(b) presents the generator distance for the two
protocols, SP and ARP. Shorter protocol times generate
larger values of GD for the SP (red line), indicating that
operations become less sensitive to noise as the tf grows
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within the nonadiabatic regime. For long times, in the
adiabatic regime (not shown in the figure), GD will begin
to grow again. Nevertheless, in this regime no coher-
ence will be created, thus the noise will not influence the
dynamics. This implies that the amount of coherence
generated is crucial in determining the sensitivity of the
control protocol to noise. For shorter times, more coher-
ence is generated, amplifying the sensitivity to noise. In
the ARP, GD is constant for different final times tf as
indicated by the blue line of Fig. 2(b). This results from
the fact that the instantaneous eigenvalues of the ARP
Hamiltonian are time independent.

As discussed above, merely analyzing the generator
distance does not provide sufficient information about the
effect of the noise on the dynamics. To obtain the com-
plementary picture, we evaluate the relative dissipated
coherence along a certain process. We define the average
coherence generated along a trajectory as

C̄ =
1

tf

∫ tf

0

C(t)dt, (16)

where C(t) = 2
∑
i 6=j |ρ̂i,j(t)| is the l1 norm [37] of the

off diagonal terms of the density operator in the instan-
taneous eigenbasis of the Hamiltonian. The average dis-
sipated coherence is evaluated as the difference between
the average coherence of dynamics not including noise
(ideal) C̄id, and including noise C̄n. We can then define
the relative decoherence as the ratio between the dissi-
pated and the ideal coherence

CR =
C̄id − C̄n
C̄id

. (17)

This magnitude is bounded between zero and one. When
CR = 1 it implies that all the coherence generated is on
average decohered due to the noise. In Fig. 3 we observe
how the fidelity and the relative decoherence behave by
varying γ for fixed tf . Since D is linear in γ the generator
distance GD monotonically increases with γ. The final
time is fixed at tf = 3.464π

2∆0
which corresponds to the

first peak of the ARP oscillation. For the protocol Eq.
(14), we find that the first peak is solely determined by
∆0. The figure shows a transition point that as the noise
gets stronger, the relative decoherence and the fidelity
increase.

This behavior can be understood in the following way:
to complete the control protocol accurately in the nona-
diabatic regime, a specific amount of coherence is gener-
ated along the trajectory. When γ = 0, no coherence is
dissipated, i.e. CR = 0. As γ slightly deviates from zero,
the relative decoherence CR grows significantly and the fi-
delity declines. The SP can be executed in a shorter time
than presented in Fig. 3 without changing ∆0. Yet, for
shorter protocols, the change in both CR and the fidelity
will be more pronounced.

In Fig. 3 when CR ' 0.6, the fidelity begins to grow
with γ. As γ → ∞ the noise projects the state of the
system on the instantaneous eigenstate of the Hamilto-
nian to match the target state with a fidelity of one. In

0.00 0.05 0.10 0.15 0.20

0.85

0.90

0.95

1.00

0.
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

�

Fi
de
lit
y

R
el
at
iv
e
D
ec
oh
er
en
ce

0.00 0.05 0.10 0.15 0.20

0.85

0.90

0.95

1.00

0.
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

�

Fi
de
lit
y

R
el
at
iv
e
D
ec
oh
er
en
ce

0.00 0.05 0.10 0.15 0.20

0.85

0.90

0.95

1.00

0.
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

�

Fi
de
lit
y

R
el
at
iv
e
D
ec
oh
er
en
ce

FIG. 3: (Solid lines) Fidelity of the two protocols as function
of γ. (Dashed lines) Relative decoherence CR. In red (dark
grey) SP and in blue (light grey) ARP, the (dashed-green
line) indicates the transition point. Here: ∆0 = 150Hz and
tf = 3.464π/(2∆0) corresponding to the first oscillation pick
in the fidelity of the ARP.

this limit the process can be thought as a quantum Zeno
effect where the instantaneous Hamiltonian is strongly
monitored.

A given experimental setup will not necessarily be able
to fully control the parameter γ. To achieve control over
the action noise, the SP offer additional degrees of free-
dom which are absent in the ARP. That is, for a given
initial and final Hamiltonian we can optimize the proto-
col of the SP [38, 39], unlike the fully determined nature
of the ARP. To control the dephasing rate Γ(t) we define
the parameter

M =
∑
k 6=l

1

tf

∫ tf

0

∆E2
kl(t)dt. (18)

Optimization of the protocol is carried out by construct-
ing the Hamiltonian under a constraint onM. One way
to achieve this is by adopting the dynamical invariant
method in which there are many possible Hamiltonians
leading to the SP [9]. By imposing constraints on the
protocol, the space of possible Hamiltonians is reduced.
A large parameter M should be chosen in order to in-
crease the relaxation rate, which projects the state onto
the instantaneous eigenstates of the noise operator. In
other words, increasing the gap between the instanta-
neous eigenvalues of the Hamiltonian will intensify the
noise and eventually lead to higher fidelity.

In Fig. 4 we plot the fidelity (solid lines) while modify-
ingM for the dynamical invariant for the SPs. For each
of these protocols the initial and final Hamiltonians are
common. In the intermediate times the protocols are con-
structed with an additional degree of freedom which en-
ables control over the parameterM. ModifyingM also
modifies the instantaneous eigenstates and thus changes
µ and the amount of coherence and excitation along the
trajectory. In the figure we observe two different behav-
iors, plotted in green and purple lines. The green line
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FIG. 4: The green (dark grey) and yellow (light grey) lines
correspond to two behaviors of the shortcut protocols. Each
point on these branches corresponds to a different protocol
with different M. The solid lines corresponds to the fidelity
and the dashed line to the parameter µ. Here: ∆0 = 150Hz,
tf = 0.1s and γ = 0.01s.

corresponds to increasing M while making the protocol
more adiabatic, i.e. decreasing µ. In this case Eq. (9) is
governed by the denominator. The fidelity is improved
as a consequence of less coherence and excitation being
generated and the increase of the dephasing rate Γ(t).

Since M is an averaged quantity, a certain M may
correspond to several different realizations of the SPs.
The purple line represents a behavior where increasingM
causes the process to be less adiabatic, i.e. grater µ. In
this case the numerator in Eq. (9) grows faster than the
denominator. Although µ increases along this branch,
the large rate Γ(t) guarantees that the state will closely
follow the instantaneous eigenstate of the Hamiltonian.
The fidelity plotted in the purple solid line will continue
to grow asM grows (although this regime is not plotted
in the figure).

III. DISCUSSION

A recent publication by Kiely et al. on the effect of
Poisson noise on adiabatic quantum control [40] supports
our claim that noise can improve the adiabatic following
for initial diagonal states ρ̂(0), also in the weak noise
limit (i.e. small γ). While in their study the authors
concentrated on adiabatic protocols, in the present study

we focused on SP which are preferable for suppressing
thermal noise.

We find that in the presence of action noise there is a
trade-off between completing the SP in shorter times and
the fidelity. Unlike noise induced by the environment, ac-
tion noise becomes more disturbing as the protocol time
is reduced. This effect can be traced to a larger amount
of coherence generated and bigger GD for shorter proto-
cols. We expect a similar result for the Poisson model
studied in [40]. We further showed that the SP admits
higher controlability over the noise compared to ARP,
as the Hamiltonian’s eigenvalues and eigenvectors can be
manipulated along the process. By doing so, both µ and
the relaxation rate Γ(t) are controlled. That is, for a
given γ, finite time tf and initial and final Hamiltonians,
we can manipulate the effect of the noise in the interme-
diate times and achieve higher fidelity with respect to the
target state. To attain control over initial states that are
in a superposition in the basis of the initial Hamiltonian,
contrary to the scheme introduced above, we suggest to
minimizeM and thus minimize the rate Γ(t). This will
be considered in a future study.

In [41] it was suggested that noise can be used as a
resource for constructing a quantum absorption refrig-
erator, and a recent experimental work on trapped ions
have supported this claim [42]. In [43] back-flow of am-
plitude and phase from the environment into the system
was exploited to carry out quantum control tasks that
couldn’t be realized solely by unitary protocols. An ex-
periment using the quantum Zeno effect to control a qubit
was recently reported [44]. Thus, for some applications
it is interesting to exploit rather than suppress the noise
in order to manipulate quantum systems in experimental
designs.
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