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Abstract

We develop a theoretical framework for the analysis of ultrafast dynamics of photoionization

in solids that treats the electron density buildup resolved within the field cycle jointly with the

propagation dynamics of the laser driver. We show that, while the standard, cycle-averaging

photoionization models predict a monotonic buildup of the electron density within the driver

pulse, the cycle-resolved photoionization model used in this work reveals a subcycle modulation of

optical properties of a solid, giving rise to complex patterns of reflected and transmitted fields and

providing a source for optical harmonic generation. Propagation effects are shown to heavily distort

the spectra of high-order harmonics. Still, the analysis of harmonic spectra and the temporal

structure of the harmonic field reveals physically significant properties of the nonlinear-optical

response, suggesting the existence of attosecond bursts of interband optical-harmonic emission.
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I. INTRODUCTION

Photoionization in solids has been a subject of in-depth research since the invention of

lasers. This process is central to understanding a broad class of laser–solid interaction effects,

including laser-induced breakdown [1–3], laser filamentation [4, 5], laser micromachining

[6, 7], and, since recently, high-order harmonic generation in solids [8–19] and attosecond

spectroscopy of band-gap dynamics [20]. Although many of the fundamental properties

of solids, including, first and foremost, a higher atomic density and the band structure of

electron energy states, are different from those of gases, photoionization in solids has much

in common with the physics of photoionization in gas media. The universal physics behind

photoionization is highlighted by the Keldysh theory of photoionization, which has been

developed simultaneously for gases and solids in the seminal 1964 Keldysh’s paper [21].

Analysis of photoionization effects in solids inevitably starts with a calculation of the

photoionization rate, that is, the rate of electron transitions from the valence to the con-

duction band. The Keldysh theory of photoionization [21] provides the key to understand

the behavior of the photoionization rate of solids as a function of the laser intensity, laser

frequency, and the band gap of a solid. Over five decades, this theory has been pivotal to

the research in laser science, providing a commonly accepted framework for a quantitative

analysis of photoionization in a remarkable diversity of light–matter interaction phenomena,

including laser-induced breakdown [1], high-order harmonic [22] and terahertz [23] genera-

tion, as well as filamentation of ultrashort light pulses [4, 5, 24]. The Keldysh formalism,

however, involves averaging over the field cycle as a part of photoionization rate deriva-

tion. As a result, it offers no recipe for understanding photoionization dynamics within the

field cycle or calculating the rate of photoionization by ultrashort, broadband laser field

waveforms. In a recent work [25], the Keldysh theory of photoionization of solids has been

extended to include photoionization by arbitrarily short driving pulses with an arbitrary

pulse shape.

Analysis of photoionization in the bulk of a solid is, however, in no way reducible to

photoionization rate calculation. Photoionization gives rise to an ultrafast buildup of the

electron density, which translates into a rapid modulation of optical properties through

ionization-induced radiation loss and intensity-dependent changes in the refractive index

[26–28]. As a result, photoionization dynamics becomes strongly coupled to the propagation
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dynamics of the laser driver.

Here, we develop a theoretical framework for the analysis of ultrafast dynamics of pho-

toionization in solids that treats the field-cycle-resolved buildup of the electron density

jointly with the propagation dynamics of the laser driver, which probes the ionization-

induced modulation of the optical properties of the material. Analysis performed with the

use of this model reveals new, often unexpected ultrafast laser–matter interaction effects in

a rapidly ionizing solid. At high field intensities, ionization-induced ultrafast modulation of

the optical properties of a solid is shown to strongly couple the dynamics of photoionization

to the propagation of the laser driver.

II. PHOTOIONIZATION AND ULTRAFAST OPTICAL RESPONSE OF A SOLID:

ANALYTICAL FRAMEWORK

The main goal of this section is to develop an analytical framework for the analysis of

the ultrafast optical response of a rapidly ionizing solid to an ultrashort laser pulse. To this

end, we examine the polarization ~P (t) and the current density ~J(t) induced in a medium by

a laser field ~E(t),

Pi(t) =

∫ t

−∞
χij(t, t

′)Ej(t
′)dt′ (1)

Ji(t) =

∫ t

−∞
σij(t, t

′)Ej(t
′)dt′ (2)

Here, χij(t, t
′) is the optical susceptibility, σij(t, t

′) is the conductivity, and the subscripts

i, j stand for the Cartesian coordinates, i, j = x, y, z.

Since the polarization can be expressed through the current density,

~J(t) =
d~P (t)

dt
(3)

leading to

σij(t, t
′) =

∂χij(t, t
′)

∂t
+ χij(t, t)δ(t− t′) (4)

where δ(τ) is the Dirac delta function, choosing between ~P (t) and ~J(t) is often a matter of

convenience. In a canonical treatment [29, 30], the optical response of bound electrons is

analyzed in terms of polarization ~P (t), while the current density ~J(t) would be a natural

choice for a characterization of the optical response of free, or, for that matter, counduction-

band electrons.
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In our model, we treat the optical response of a solid in a standard two-band approxi-

mation [31, 32], searching for the solution for the electron wave function in the form of a

superposition

|ψ(t)〉 =
∑
~k

V (~k, t)|v,~k〉+ C(~k, t)|c,~k〉 (5)

where |v,~k〉 and |c,~k〉 are the Bloch-wave state vectors with a quasi-momentum ~k in the

valence and conduction bands, respectively.

With the expansion coefficients C(~k, t) and V (~k, t) found from the relevant time-

dependent Schrödinger equation, we calculate the photoionization probability ρ(t) and

the photoionization current denisty ~J(t). It is convenient and physically meaningful to

represent the current density ~J(t) as a sum ~J(t) = ~J (i)(t) + ~J (c)(t), where the terms ~J (i)(t)

and ~J (c)(t) relate to the inter- and intraband parts of the overall current density. Physically,

the ~J (c)(t) term describes the current of electrons or holes driven by the field within the

respective bands of a semiconductor, while ~J (i)(t) represents the current induced by inter-

band processes, including transitions of electrons from the valence to the conduction band,

as well as electron–hole recombination [8, 9, 12].

We consider a periodic dispersion profile, consistent with the nearest-neighbor interaction

approximation [33],

E(~p) = Eg + ∆− ∆

D

D∑
j=1

cos(pjdj) (6)

where D is the number of spatial dimensions, ∆ is the band width, and dj is the lattice

constant in the direction j.

The details of calculations are presented in Appendix A. The physical scope of our anal-

ysis and the overall scheme of our calculations are as follows. We present the electron

wave function in the form of Eq. (5) and plug this wave function into the time-dependent

Schrödinger equation with the Hamiltonian as defined by Eq. (A3) in Appendix A. This

Hamiltonian treats a semiconductor or a dielectric in a standard two-band approximation

[31, 32] and includes the external field in the dipole approximation. The time-dependent

Schrödinger equation leads to a set of coupled partial differential equations for the expansion

coefficients C(~k, t) and V (~k, t) in Eq. (5) [Eq. (A5) in Appendix A]. Solving these equations

and defining the pertinent probability amplitudes (A9), we then calculate the field-induced

polarization [Eqs. (A15) and (A17)] and photocurrent [Eqs. (A19), (A20), and (A24)]. In
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the regime where the population of the conduction band remains much smaller than the

population of the valence band, we also derive an explicit expression for the ionization rate

[Eq. (A37)]. With the dispersion profile taken in the form of Eq. (6), this leads us to Eqs.

(A60) – (A64) for ρ(t), ~J (i)(t), and ~J (c)(t), which we reproduce also here for the sake of

convenience,

ρ(t) = |N |2
∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+∆)(t2−t1)

D∏
j=1

J0 (|Φj(t2, t1)|) (7)

J
(i)
j (t) = 2|N |2

∫ t

−∞
dt1Ej(t1)Re ei(Eg+∆)(t−t1)

[ D∏
l=1

J0 (|Φl(t, t1)|) (Eg + ∆)−

− i∆

D

D∑
k=1

J1 (|Φk(t, t1)|) cos (dkAk(t)− arg Φk(t, t1))
∏
l 6=k

J0 (|Φl(t, t1)|)
] (8)

J
(c)
j (t) = |N |2

∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+∆)(t2−t1)×

i∆

D
J1 (|Φj(t2, t1)|) sin (djAj(t)− arg Φj(t2, t1))

∏
k 6=j

J0 (|Φk(t2, t1)|)
(9)

where Eg is the band gap, |N |2 is the normalization factor, J0(z) and J1(z) are the zeroth-

and first-order Bessel functions of the first kind, ~A(t) =
∫ t
−∞

~E(t′)dt′ is the vector potential,

and

Φj(t1, t2) =
∆

D

∫ t2

t1

eidjAj(t′)dt′, (10)

and the system of units where ~ = |e| = 1 is used.

Eq. (7) for the ionization probability is fully consistent with the result of Ref. [25]. It

will be referred to hereinafter as the field-cycle-resolved photoionization theory (FCRPI). In

accordance with their definitions [Eqs. (1) and (2)], the interband optical susceptibility and

the inter- and intraband conductivities are thus given by

χ
(i)
ij (t, t′) = 2δij|N |2

[
sin[(Eg + ∆)(t− t′)]

D∏
k=1

J0 (|Φk(t, t
′)|)
]

(11)

σ
(c)
ij (t, t′) = 2|N |2

∫ t′

−∞
dt1Ej(t1) sin[(Eg + ∆)(t′ − t1)]

∏
k 6=i

J0 (|Φk(t
′, t1)|)×

× ∆

D
J1 (|Φi(t

′, t1)|) sin (diAi(t)− arg Φi(t
′, t1))

(12)
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and

σ
(i)
ij (t, t′) = 2δij|N |2

[
cos[(Eg + ∆)(t− t′)]

D∏
k=1

J0 (|Φk(t, t
′)|) (Eg + ∆)−

− ∆

D
sin[(Eg + ∆)(t− t′)]

D∑
k=1

J1 (|Φk(t, t
′)|) cos (dkAk(t)− arg Φk(t, t

′))
∏
l 6=k

J0 (|Φl(t, t
′)|)
]

(13)

In the limiting case of | ~E| → 0, Eqs. (11) and (12)

σ
(c)
ij (t, t′)→ 0 (14)

χ
(i)
ij (t, t′)→ χ

(i)
ij (t− t′) (15)

where

χ
(i)
ij (τ) = 2δij|N |2 sin[(Eg + ∆)τ ]J0

(
∆

D
τ

)D
(16)

Fourier transform of (16) yields a frequency-domain optical susceptibility,

χ̂
(i)
ij (ω) = δij|N |2

D

∆

[
F0
D (E+) + F0

D (E−)
]
, (17)

where E± = Eg+∆±ω
∆

, and

FnD(x) =

∫ ∞
0

ie−ixzJ0

( z
D

)D−n
J1

( z
D

)n dz
zn

(18)

The functions F0
1 and F0

2 can be found in an analytical form,

F0
1 (x) = (x2 − 1)−1/2 (19)

and

F0
2 (x) =

2

π

K(x−2)

x
(20)

where K(x) is the complete elliptic integral of the first kind.

As an important example, we consider zinc oxide (Eg = 3.3 eV, ∆/D = 2.5eV , and

di = 2.8 A) irradiated by pulses with a central wavelength λ0 = 3.25 µm, which corresponds

to a frequency ω0 = 0.12Eg. Electron–hole pairs gain an energy equal to the bandgap over

one lattice period when driven by the field E0 = Eg
edi
≈ 1.14 V/A. At λ0 = 3.25 µm, a linearly

polarized field with such an amplitude corresponds to a field intensity I0 = (E0)2

2n(λ0)

√
µ0

ε0
= 9

TW/cm2, where n(λ0) ≈ 1.9 is the refractive index, µ0 = (4π)−1 × 10−7 H/m and ε0 =

8.85× 10−12 F/m are the vacuum permittivity and the vacuum permeability.
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FIG. 1. The real (a) and imaginary (b) parts of the dielectric function ε(ω) calculated as a function

of the photon energy using Eq. (17) for parameters of ZnO with D = 1 (solid blue line), D = 2

(dashed green line), and D = 3 (dash-dotted red line). The available experimental data [34] are

shown by cyan triangles.

To find the normalization factor |N |2, we compare the results of Eqs. (11) – (20) with

the available experimental data [34] for the dielectric function ε(ω) = 1 + 4πχ̂(ω) (Fig. 1).

Remarkably, when the normalization factor |N |2 defined from this comparison is plugged

into Eq. (7), we achieve a very close agreement between the predictions of our model and

the Keldysh theory of photoionization [21] within its region of applicability [Fig. 2]. Thus,

with a single value of |N |2, Eqs. (11) – (20) provide a reasonably accurate fit for both the

available experimental data for the dielectric function of a representative semiconductor and

the predictions of the Keldysh theory of photoionization.

III. NUMERICAL ANALYSIS

Analytical expressions for the polarization and current density of a rapidly ionizaing

solid derived in the previous section are central to a numerical analysis of spatiotemporal

dynamics of ultrashort pulses in such materials, as they provide closed-form expressions that

can be used to define source terms in numerical schemes integrating Maxwell equations.

Below in the paper, we show how this analytical model can be integrated into a finite-

difference time-domain (FDTD) analysis [35, 36], enabling a depth-resolved study of ultrafast
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FIG. 2. (a) Ionization probability as a function of the laser intensity and (b) time for a peak

intensity of 9 TW/cm2 calculated for parameters of ZnO with the use of 1D FCRPI (solid blue

line), 2D FCRPI (dashed green line), 3D FCRPI (dash-dotted red line) and the Keldysh model

[21] (thin solid black line). The central wavelength of the laser pulse is 3.25 µm and the FWHM

pulse with is 5 field cycles.

photoionization in solids. The FDTD method provides a powerful tool for a direct numerical

integration of Maxwell equations for electric and magnetic fields, helping analyze a broad

class of analytically nonsolvable problems, including those dealing with complex scenarios

of radar signal propagation [37–39], properties of optical fields on the nanoscale [40–43],

plasmonic field enhancement [44–47], and subcycle pulse generation in resonant media [48,

49].

In our version, the standard FDTD scheme is modified to include the polarization and

current density of a fast-ionizing solid, as derived in Section II. We consider a laser pulse

that propagates along the z-axis, in the direction of positive for z, along the normal to the

interface between a solid and a vacuum, located at z = 0. Polarization of the electric field

is chosen along one of the crystallographic directions, with the field-induced photocurrents

driven in the same direction. Propagation of such a pulse inside a solid is analyzed by nu-

merically integrating the coupled equations for the x-component of the electric displacement
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Dx and the y-component of the magnetic field Hy,

1

c

∂Dx

∂t
=
∂Hy

∂z
− 4πJx (21)

1

c

∂Hy

∂t
=
∂Dx

∂z
− 4π

∂Px
∂z

(22)

Here Dx = Ex + 4πPx, Ex is the x-component of the electric field, Px is the x-component of

polarization, Jx is the x-component of the current, c is the speed of light in vacuum. The

vacuum–dielectric interface lies in the xy-plane.

At the nth step of the FDTD procedure along the time variable, the values of Dx and

Hy found at the previous step, Dn
j and Hn

j+1/2, are used to define the current values of these

fields, Dn+1
j and H

n+1/2
j+1/2 , according to the following scheme:

Dn+1
j = Dn

j +
c∆t

∆z

(
H
n+1/2
j+1/2 −H

n+1/2
j−1/2

)
− 4πc∆tJ

(c),n
j (23)

H
n+1/2
j+1/2 = Hn

j+1/2 +
c∆t

∆z

(
Dn
j+1 −Dn

j − 4π
(
P n
j+1 − P

(t),n
j

))
(24)

Here, j is the number of the step in space along the z-coordinate, with Cartesian indices x

and y suppressed for brevity.

Outside the solid, that is, for z < 0, we set J (c)(t) = P (i)(t) = 0. Inside the solid, for

z > 0, Jx and and Px are calculated using the analytical expressions presented in Section

II. Intraband transitions are included through the current density term in Eq. (21), while

interband transitions are included through the polarization term in Eq. (22).

IV. RESULTS AND DISCUSSION

Numerical analysis reveals a complex, intensity-dependent picture of nonlinear-optical in-

teraction of an ultrashort laser pulse with a rapidly ionizing solid (Figs. 3–6), in which pho-

toionization is strongly coupled to propagation effects. Unlike the canonical, Keldysh-type

models of photoionization, which enable calculation of only cycle-averaged photoionization

rates, our model of photoionization resolves the ultrafast dynamics of photoelectron currents

within the field cycle. This dynamics, as our analysis shows (Figs. 3–5), gives rise to new,

often unexpected ultrafast laser–matter interaction effects in a rapidly ionizing solid.

While the Keldysh-type models of photoionization predict a monotonic buildup of the

electron density from the leading edge of the pulse to its trailing edge (Fig. 2b), the cycle-

reolved model of photoionization used in this paper reveals an oscillatory dynamics of the
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photoionization rate and photoelectron currents, in which oscillations of ρ(t) and J(t) follow

the cycles of the driver field. This oscillatory dynamics translates into a subcycle modulation

of the reflection, refraction, and ionization-induced loss, giving rise to complex patterns of

reflected and transmitted fields (Figs. 3f, 3c, 4a, 4b) and providing a source for optical

harmonic generation both in reflection (z < 0 in Figs. 3d, 4c, 4d) and transmission (z > 0

in Figs. 3d, 4c, 4d).

For low field intensities (Figs. 3a, 3b), the harmonic spectrum of the nonlinear-optical

response is dominated by the third harmonic. Since the third harmonic is strongly phase-

mismatched relative to the driver field, third-harmonic generation is confined to a short

length on the order of teh driver wavelength (Fig. 3b). Beyond this length, the energy of

the third harmonic transferred back to the driver field. As a result, the intensity of the

driver field displays a well-resolved minimum within ∼ λ0 from the surface, followed by a

local maximum, giving rise to a nonmonotonic behavior of the electron density as a function

of z (Figs. 3a, 3b).

Laser pulses with higher field intensities tend to generate much higher electron densities

and much stronger photoelectron currents (Fig. 3c), which radically enhance ionization-

induced reflection and refraction (Figs. 3c, 4a, 4b). Laser pulses with higher intensities also

give rise to more efficient high-order harmonic generation (Figs. 3d, 4c, 4d, 5a). Reflected

harmonics are clearly seen in Figs. 4c and 4d as well-resolved horizontal stripes, reflecting

their purely linear propagation in the regime of z < 0, that is, in vacuum. Optical harmonics

generated in transmission (z > 0 in Figs. 3d, 4c, 4d) continue to exchange energy with the

driver field, as well as with each other as they propagate inside the solid. This entire cascade

of energy transfer processes is largely controlled by phase matching. However, because of

a rapidly varying refraction and dispersion induced by ultraafst ionization, the buildup of

each individual harmonic is drastically different from the canonical fringe patterns, observed

for optical harmonics generated in a stationary, uniform medium.

Thus, the propagation effects combined with an ultrafast ionization-induced modulation

of dielectric properties of a solid heavily distort the spectra of high-order harmonics (Figs.

3d, 4c, 4d, 5a). The map between harmonic spectra and the electron band structure of a

solid, which is often the goal that high-harmonic generation experiments in solids pursue

[8, 17, 18], is very hard to decipher in this regime. Still, even in this parameter space,

the analysis of harmonic spectra (Fig. 5a) and the temporal structure of the harmonic
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field (Fig. 5b) reveals an important relation between the intra- and interband mechanisms

of optical harmonic generation. The intraband dynamics of electron wave packets driven

by the laser field is seen to dominate low-order harmonic generation (the third and fifth

harmonics in Fig. 5a). Around the seventh harmonic, the contributions of the intra- and

interband mechanisms are comparable.

For harmonics lying above the band gap of the material (shown by the dashed vertical line

in Figs. 3d, 4c, 4d), the interband mechanism dominates over the intraband processes. At

the first stage of interband harmonic generation, an electron is transferred from the valence

band to the conduction band through nonlinear photoionization, leaving behind a hole in the

conduction band. This electron then recombines with the hole, emitting a high-frequency

photon. Since this process involves a transition of an electron from the valence to the

conduction band as its first stage, interband harmonics become especially intense between

the central part of the few-cycle laser driver and its trailing edge (Fig. 5b). Moreover,

as can be readily seen from Fig. 5b, the interband harmonics are mainly emitted within

extremely short, subfemtosecond time intervals around the instants of time when the field is

zero and the magnitude of the vector potential is at its maximum. Such attosecond bursts

of high-harmonic emission are clearly seen in Fig. 5b for t ≈ 5.5T0, 6.0T0, 6.5T0, 7.0T0, and

7.5T0, T0 being the field cycle.

V. CONCLUSION

To summarize, we have developed a theoretical framework for the analysis of ultrafast

dynamics of photoionization in solids that treats the field-cycle-resolved buildup of the elec-

tron density as a result of photoionization jointly with the propagation dynamics of the laser

driver, which probes an ultrafast ionization-induced modulation of optical properties of the

material. Analysis performed with the use of this model reveals new, often unexpected ul-

trafast laser–matter interaction effects in a rapidly ionizing solid. At high field intensities,

refraction and loss induced by ultrafast ionization are shown to strongly couple the dynamics

of photoionization to the propagation of the laser driver. We show that, while the standard,

cycle-averaging photoionization models predict a monotonic buildup of the electron density

within the driver pulse, the cycle-resolved photoionization model used in this work reveals

a subcycle modulation of optical properties of a solid, giving rise to complex patterns of
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reflected and transmitted fields and providing a source for optical harmonic generation.

Propagation effects are shown to heavily distort the spectra of high-order harmonics. Still,

the analysis of harmonic spectra and the temporal structure of the harmonic field reveals

physically significant properties of the nonlinear-optical response, suggesting the existence

of attosecond bursts of interband optical-harmonic emission.
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Appendix A: Optical response of a photoionized solid

We start with a field-free Hamiltonian of an electron in a solid semiconductor treated in

a two-band approximation:

H0 =
∑
~k

Ev(~k)|v,~k〉〈v,~k|+ Ec(~k)|c,~k〉〈c,~k|. (A1)

Here, |v,~k〉 and |v,~k〉 are the electron states in the valence and conduction bands with a

quasimomentum ~k, Ev(~k) and Ec(~k) are the energies of electron states with a momentum ~k

in the valence and conduction bands, the sum is over all ~k in the first Brillouin zone (BZ),

and the system of units where ~ = |e| = 1 is used, e being the electron charge.

To identify the inter- and intraband parts of the optical response, we isolate two terms

in the electron position operator ~R. The first, intraband term is related to the motion of

an electron within a band, i ∂
∂~k

. For the second, interband term, momentum conservation

dictates

~R =
∑
~k

~X(k)
(
|c,~k〉〈v,~k|+ |v,~k〉〈c,~k|

)
+ i

∂

∂~k
(A2)

The time-dependent Hamiltonian of an electron in the presence of the field in the dipole

approximation is then given by

H(t) =
∑
~k

Ev(~k)|v,~k〉〈v,~k|+ Ec(~k)|c,~k〉〈c,~k|+ ~E(t) · ~R (A3)
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The single-electron wave function can be written as

|ψ(t)〉 =
∑
~k

V (~k, t)|v,~k〉+ C(~k, t)|c,~k〉 (A4)

The time-dependent Schrödinger equation leads to the partial differential equations (PDEs)

for the coefficients C(~k, t) and V (~k, t) (we omit ~k, t arguments for brevity).

i
∂V

∂t
= Ev(~k)V + ~E(t) ·

(
~X(~k)C + i

∂V

∂~k

)
i
∂C

∂t
= Ec(~k)C + ~E(t) ·

(
~X(~k)V + i

∂C

∂~k

) (A5)

Since the PDEs are linear in derivatives both over time and momentum, it is possible to turn

them into ordinary differential equations (ODEs) by method of characteristics. Namely, we

introduce variable transformation

~p = ~k + ~A(t)

t̃ = t
(A6)

where ~A(t) =
∫ t
−∞

~E(t′)dt′ is vector potential. The derivative transformation is then

∂

∂~k
=

∂

∂~p
∂

∂t
=

∂

∂t̃
+ ~E(t) · ∂

∂~p

(A7)

Eq. (A5) can be thus rewritten as

i
dV

dt̃
= Ev(~p− ~A(t̃))V + ~E(t̃) · ~X(~p− ~A(t̃))C

i
dC

dt̃
= Ec(~p− ~A(t̃))C + ~E(t̃) · ~X(~p− ~A(t̃))V

(A8)

Here, once again, we omit the ~p and t̃) arguments of V and C for brevity.

We now introduce the probability amplitudes

v(~p, t̃) = V (~p, t̃)ei
∫ t̃
−∞ Ev(~p−A(t′))dt′

c(~p, t̃) = C(~p, t̃)ei
∫ t̃
−∞ Ec(~p−A(t′))dt′

(A9)

which remain time-independent in the absence of the field.

These probability amplitudes can be found from the ODEs

i
dv

dt̃
= ~E(t̃) · ~X(~p− ~A(t̃))ce−i

∫ t̃
−∞ E(~p−A(t′))dt′

i
dc

dt̃
= ~E(t̃) · ~X(~p− ~A(t̃))vei

∫ t̃
−∞ E(~p−A(t′))dt′

(A10)

13



where E(~p) = Ec(~p)− Ev(~p) is electron–hole dispersion relation.

The exact solution of Eq. (A10) can be written as an unwieldy time-ordered product

of unitary evolution operators. Before making any further approximations, let us express

the photoionization probability and the photocurrent density through c(~p, t̃) and v(~p, t̃). In

what follows we omit the tilde above the time argument since t̃ = t.

The quantum-mechanical expectation value of the projection operator,

ρ̂ =
∑
k

|c,~k〉〈c,~k|, (A11)

gives the time-dependent photoionization probability:

ρ(t) = 〈ρ̂〉 =
∑
~k

|~c(~k + ~A(t), t)|2. (A12)

Since the dispersion relation in the first Brillouin zone is periodic, summation in Eq. (A12)

can be performed either in ~k or ~p:

ρ(t) =
∑
~p

|~c(~p, t)|2. (A13)

Polarization per unit volume is then found by averaging the coordinate operator,

~P (t) = −〈~R〉, (A14)

where the minus sign reflects the negative electron charge.

Eq. (A14) yields

~P (t) =
∑
~k

~X(k)
(
C(~k, t)∗V (~k, t) + V (~k, t)∗C(~k, t)

)
+

+ i
∑
~k

(
C(~k, t)∗

∂

∂~k
C(~k, t) + V (~k, t)∗

∂

∂~k
V (~k, t)

)
=

=
∑
~p

2Re ~X(~p− ~A(t))c(~p, t)∗v(~p, t)ei
∫ t
−∞ E(~p− ~A(t′)dt′+

+
∑
~p

(
c(~p, t)∗

∂c(~p, t)

∂~p
+ v(~p, t)∗

∂v(~p, t)

∂~p

)

+
∑
~p

(
|c(~p, t)|2

∫ t

−∞

∂Ec(~p− ~A(t′))

∂~p
dt′ + |v(~p, t)|2

∫ t

−∞

∂Ev(~p− ~A(t′))

∂~p
dt′

)
(A15)
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Since |v(~p, t)|2 = 1−|c(~p, t)|2 and the energy–momentum dispersion relations are periodic,

we find
∑

p
∂Ev
∂~p

= 0. Eq. (A15) then leads to

~P (t) =
∑
~p

2Re ~X(~p− ~A(t))c(~p, t)∗v(~p, t)ei
∫ t
−∞ E(~p− ~A(t′)dt′+

+
∑
~p

(
c(~p, t)∗

∂c(~p, t)

∂~p
+ v(~p, t)∗

∂v(~p, t)

∂~p
+ |c(~p, t)|2

∫ t

−∞

∂E(~p− ~A(t′))

∂~p
dt′

) (A16)

The photocurrent density is

~J(t) =
d~P (t)

dt
(A17)

Since the expectation values of Hermitian quantum-mechanical operators, representing ob-

servable physical parameters, are independent of whether time evolution is described in the

Schrödinger or the Heisenberg picture, we have

~J = −d〈R〉
dt

= −
〈
dR

dt

〉
= i
〈[
H(t), ~R

]〉
= i
〈[
H0, ~R

]〉
(A18)

Here, the last equality reflects the fact that ~R commutes with the ~E(t) · ~R term in the

Hamiltonian H(t).

The photocurrent density is thus given by

~J(t) = i

〈∑
~k

E(~k) ~X(~k)
(
|c,~k〉〈v,~k| − |v,~k〉〈c,~k|

)〉
+ i

〈[
H0, i

∂

∂~k

]〉
(A19)

The second term in this expression,〈[
H0, i

∂

∂~k

]〉
=
∑
~k

〈ψ(t)|
(
Ev(~k)|v,~k〉〈v,~k|+ Ec(~k)|c,~k〉〈c,~k|

)
i
∂

∂~k
|ψ(t)〉−

−
∑
~k

〈ψ(t)|i ∂
∂~k

(
Ev(~k)|v,~k〉〈v,~k|+ Ec(~k)|c,~k〉〈c,~k|

)
|ψ(t)〉

(A20)

can be calculated with the use of Eq. (A4):〈[
H0, i

∂

∂~k

]〉
=∑

~k

(
Ev(~k)V ∗(~k, t)〈v,~k|+ Ec(~k)C∗(~k, t)〈c,~k|

)
i
∂

∂~k

(
C(~k, t)|c,~k〉+ V (~k, t)|v,~k〉

)
−

∑
~k

(
C∗(~k, t)〈c,~k|+ V ∗(~k, t)〈v,~k′|

)
i

(
Ev(~k)

∂

∂~k
V (~k, t)|v,~k〉+ Ec(~k)

∂

∂~k
C(~k, t)|c,~k〉

)
+

+
∑
~k

|C(~k, t)|2∂Ec(
~k)

∂~k
+ |V (~k, t)|2∂Ev(

~k)

∂~k

(A21)
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With 〈v,~k| ∂
∂~k
|c,~k〉 = 〈c,~k| ∂

∂~k
|v,~k〉 = 0, the first two terms in Eq. (A21) cancel out. Since

|V (~k, t)|2 = 1− |C(~k, t)|2, we find that〈[
H0, i

∂

∂~k

]〉
= i
∑
~k

|C(~k, t)|2∂E(~k)

∂~k
= i
∑
~p

|c(~p, t)|2∂E(~p− ~A(t))

∂~p
(A22)

The expression for the photocurrent density then becomes

~J(t) =
∑
~p

2 ~X(~p− ~A(t))E(~p− ~A(t))Imc(~p, t)v∗(~p, t)e−i
∫ t
−∞ E(~p− ~A(t′))dt′−

−
∑
~p

|c(~p, t)|2∂E(~p− ~A(t))

∂~p

(A23)

Both the polarization and the current density can be represented as a sum of inter- and

intraband components,

~P (t) = ~P (i)(t) + ~P (c)(t) (A24)

~J(t) = ~J (i)(t) + ~J (c)(t) (A25)

~J (i)(t) =
dP (i)

dt
(A26)

~J (c)(t) =
dP (c)

dt
(A27)

where the superscripts (i) and (c) denote inter- and intraband parts, respectively, and

P (i)(t) =
∑
~p

2Re ~X(~p− ~A(t))c(~p, t)∗v(~p, t)ei
∫ t
−∞ E(~p− ~A(t′)dt′ (A28)

P (c)(t) =
∑
~p

(
c(~p, t)∗

∂c(~p, t)

∂~p
+ v(~p, t)∗

∂v(~p, t)

∂~p
+ |c(~p, t)|2

∫ t

−∞

∂E(~p− ~A(t′))

∂~p
dt′

)
(A29)

~J (i)(t) =
∑
~p

2 ~X(~p− ~A(t))E(~p− ~A(t))Imc(~p, t)v∗(~p, t)e−i
∫ t
−∞ E(~p− ~A(t′))dt′ (A30)

~J (c)(t) = −
∑
~p

|c(~p, t)|2∂E(~p− A(t))

∂~p
(A31)

Eq. (A31) is very transparent and physically insightful. It describes the total intraband

current as a sum over all electron momenta ~p, with each term in this sum being a product

of the electron velocity ∂E(~p− ~A(t))
∂~p

, conduction-band population, and the electron charge (the

minus sign in front of the sum).
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To verify energy conservation, we represent the Ohmic loss of the field energy per unit

volume at the moment of time t as

w(t) =

∫ t

−∞

~E(t′) · ~J(t′)dt′ = −
∫ t

−∞

〈
~E(t′) · d

~R(t′)

dt′

〉
dt′ (A32)

The Heisenberg equation of motion for ~R,

i
d~R

dt
=
[
H, ~R

]
, (A33)

gives

w(t) = i

∫ t

−∞

〈[
H(t′), ~E(t′) · ~R

]〉
dt′ (A34)

Using Eqs. (A1) and (A3), we find that

w(t) = i

∫ t

−∞

〈[
H0, ~E(t′) · ~R

]〉
dt′ =

= i

∫ t

−∞
〈[H0, H(t)]〉 dt′ =

=

∫ t

−∞

d〈H0〉
dt′

dt′ =

= 〈H0〉 |t − 〈H0〉 |−∞

(A35)

We now assume that the ionization probability is low, |c(~p, t̃)| � |v(~p, t̃)|, which is a

standard approximation for the analysis of photoionization in solids and gases [13, 21, 50–

54]. In this regime, v(~p, t̃) ≈ 1 and the solution of Eq. (A10) gives

c(~p, t̃) ≈ −i
∫ t̃

−∞

~E(t′) · ~X(~p− ~A(t′))ei
∫ t′
−∞ E(~p− ~A(t′′))dt′′dt′ (A36)

A standard textbook approach [55, 56] is to treat ~E ·X(~p) as a quantity independent of

~p. Since ~X(~p) is defined by intrinsic properties of a solid, it should be field-independent.

Three simplest vector covariant and contravariant functions [57] that can be composed out

of the crystal momentum and a scalar momentum-dependent dispersion relation are

~X(~p) = N~x0 = const (A37)

~X(~p) = N ~p (A38)

~X(~p) = N ∂E(~p)

∂~p
= N~v(~p) (A39)

17



Here, N is a normalization factor and the velocity ~v(~p) is defined as ~v(~p) = ∂E(~p)
∂~p

with an

effective electron mass as dictated by the dispersion relation E(~p).

Eq. (A39) allows a closed-form integration over the momentum space. Introducing

I(~p, t, t′) = I(~p, t)− I(~p, t′) with

I(~p, t) =

∫ t

−∞
E(~p− ~A(t′))dt′ (A40)

and using Eq. (A36) for c(~p, t), we can write the ionization probability (A12) and photocur-

rents (A31), (A30) as

ρ(t) =

∫ t

−∞

∫ t

−∞
Ej(t1)Ek(t2)G

(ρ)
jk (t1, t2)dt1dt2 (A41)

where

G
(ρ)
jk (t1, t2) = |N |2

∑
~p

vj(~p− ~A(t1))vk(~p− ~A(t2))eiI(~p,t1)−iI(~p,t2) (A42)

is the photoionization cross-section tensor, vs is the sth component of the velocity ~v(~p) =

∂E(~p)
∂~p

, and summation over repeated subscripts is implied.

It is straightforward to see that

G
(ρ)
jk (t1, t2) = (G

(ρ)
kj (t2, t1))∗. (A43)

This leads us to

ρ(t) = 2

∫ t

−∞
dt1

∫ t1

−∞
dt2Ej(t1)Ek(t2) ReG

(ρ)
jk (t1, t2) (A44)

.

In a similarly manner, we find that

J
(c)
l (t) = −2

∫ t

−∞
dt1

∫ t1

−∞
dt2Ej(t1)Ek(t2) ReG

(c)
jkl(t1, t2, t) (A45)

and

J
(i)
l (t) = −2

∫ t

−∞
dt1Ej(t1)ReG

(i)
jl (t, t1), (A46)

where

G
(c)
jkl(t1, t2, t) = |N |2

∑
~p

eiI(p,t2,t1)vj(~p− ~A(t1))vk(~p− ~A(t2))vl(~p− ~A(t)) (A47)

and

G
(i)
jl (t, t1) = |N |2

∑
~p

eiI(p,t,t1)E(~p− ~A(t))vj(~p− ~A(t1))vl(~p− ~A(t)) (A48)
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with I(~p, t2, t1) = I(~p, t2)− I(~p, t1).

The interband polarization is then given by

P
(i)
l (t) = −2

∫ t

−∞
dt1Ej(t1)ImG

(ρ)
jl (t, t1) (A49)

We choose to work in the nearest-neighbor approximation, which gives a periodic disper-

sion of the form

E(~p) = Eg + ∆− ∆

D

D∑
j=1

cos(pjdj), (A50)

where D is the number of spatial dimensions, and dj is the lattice constant in the direction

j.

The integral in Eq. (A40) can be taken analytically,

I(~p, t) = (Eg + ∆)t−
D∑
j=1

ReΦj(t) cos pjdj−

−
D∑
j=1

ImΦj(t) sin pj + const =

= (Eg + ∆)t−
D∑
j=1

|Φj(t)| cos(pjdj − arg Φj(t)) + const,

(A51)

where

Φj(t) =
∆

D

∫ t

−∞
eiAj(t′)djdt′ (A52)

and Φk(t1, t2) = Φk(t1)− Φk(t2).

The constant term in Eq. (A51) depends on the choice of the zero time point and shows

up only in the global phase of the wave function.

For crystals of macroscopic sizes, we have∑
~p

≈ 1

(2π)D

∫
dD~p. (A53)

Since
1

2π

∫ π

−π
eix cos z cosnzdz = inJn(z) (A54)

and
1

2π

∫ π

−π
eix cos z sinnzdz = 0 (A55)

for integer n, we find
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∑
~p

vj(~p− ~A(t1))vk(~p− ~A(t2))eiI(~p,t1)−iI(~p,t2) =
∆2

2
ei(Eg+∆)(t1−t2)

∏
l 6=j,k

J0 (|Φl(t1, t2)|)×

×

J0 (|Φj(t1, t2)|) cos(Aj(t1)− Aj(t2))− J2 (|Φj(t1, t2)|) cos(Aj(t1) + Aj(t2)), j = k

−J1 (|Φj(t1, t2)|) J1 (|Φk(t1, t2)|) sin(Aj(t1)) sin(Ak(t2)), j 6= k

(A56)

where Jn(z) is the Bessel function of the nth order.

Applying a similar procedure, we derive∑
~p

eiI(~p,t,t1)E(~p− ~A(t)) =

= ei(Eg+∆)(t−t1)

D∏
j=1

J0 (|Φj(t2, t1)|) (Eg + ∆)−

− i∆

D

D∑
j=1

ei(Eg+∆)(t−t1)J1 (|Φj(t, t1)|) cos (djAj(t)− arg Φj(t, t1))×

×
∏
i 6=j

J0 (|Φi(t, t1)|)

(A57)

and ∑
~p

eiI(~p,t2,t1)∂E(~p− ~A(t))

∂pj
=

= −∆

D
ei(Eg+ ∆

D
)(t2−t1)J1 (|Φi(t2, t1)|) sin (djAj(t)− arg Φj(t2, t1))×

×
∏
i 6=j

J0 (|Φi(t2, t1)|)

(A58)

We can now write the photoionization probability and the photocurrents as

ρ(t) = |N |2
∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+∆)(t2−t1)

D∏
j=1

J0 (|Φj(t2, t1)|) (A59)

J
(i)
j (t) = 2|N |2

∫ t

−∞
dt1Ej(t1)Re ei(Eg+∆)(t−t1)

[ D∏
l=1

J0 (|Φl(t, t1)|) (Eg + ∆)−

− i∆

D

D∑
k=1

J1 (|Φk(t, t1)|) cos (dkAk(t)− arg Φk(t, t1))
∏
l 6=k

J0 (|Φl(t, t1)|)
] (A60)

20



and

J
(c)
j (t) = |N |2

∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+∆)(t2−t1)×

i∆

D
J1 (|Φj(t2, t1)|) sin (djAj(t)− arg Φj(t2, t1))

∏
k 6=j

J0 (|Φk(t2, t1)|)
(A61)

This leads us to

σ
(c)
ij (t, t′) = 2|N |2

∫ t′

−∞
dt1Ej(t1) sin[(Eg + ∆)(t′ − t1)]

∏
k 6=i

J0 (|Φk(t
′, t1)|)×

× ∆

D
J1 (|Φi(t

′, t1)|) sin (diAi(t)− arg Φi(t
′, t1))

(A62)

and

σ
(i)
ij (t, t′) = 2δij|N |2

[
cos[(Eg + ∆)(t− t′)]

D∏
k=1

J0 (|Φk(t, t
′)|) (Eg + ∆)−

− ∆

D
sin[(Eg + ∆)(t− t′)]

D∑
k=1

J1 (|Φk(t, t
′)|) cos (dkAk(t)− arg Φk(t, t

′))
∏
l 6=k

J0 (|Φl(t, t
′)|)
]

(A63)
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FIG. 3. (a, c) The field as a function of time t (in field cycles) and propagation coordinate z (in

units of λ0) near the vacuum–solid interface. The laser pulse propagates toward positive z. The

vacuum–solid interface is located at z = 0. The dashed black line shows the electron density at the

surface as a function of time. The solid black line is the plasma density in the wake of the laser

pulse. (b) The maximum field amplitude (blue curve), the electron density in the wake of the pulse

(dashed green curve), and the third-harmonic intensity (red dash-dotted curve) as functions of z.

(d) The spectrum of the field as a function of z and the harmonic number. The black dash–dotted

line shows the band-gap frequency. The input laser intensity is 1 TW/cm2 (a, b) and 12 TW/cm2

(c, d). The central wavelength of the laser pulse is 3.25 µm. Material parameters are those of ZnO.
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FIG. 4. (a, b) The field as a function of time t (in field cycles) and propagation coordinate z (in

units of λ0) near the vacuum–solid interface with the plasma density in the wake of the laser pulse

shown by the solid black line. (c, d) The spectra of the field as a function of z and the harmonic

number. The input laser intensity is 20 TW/cm2 (a, c) and 25 TW/cm2 (b, d). The central

wavelength of the laser pulse is 3.25 µm. Material parameters are those of ZnO.
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FIG. 5. (a) The spectrum of the reflected field (solid blue line), the intraband current (dashed

green line), and the interband current (dash–dotted red line). (b) The total field (dashed blue line)

and the field of high harmonics with frequencies above the band gap (solid green line) at z = 0.1λ0.

The input laser intensity is 20 TW/cm2. The central wavelength of the laser pulse is 3.25 µm.

Material parameters are those of ZnO.
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