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Bât. 505, Campus d’Orsay, 91405 Orsay, France

2JILA, NIST, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
(Dated: August 18, 2017)

We investigate the electric field shielding of ultracold collisions of dipolar rotors, initially in their
first rotational excited state, using an adimensional approach. We establish a map of good and bad
candidates for efficient evaporative cooling based on this shielding mechanism, by presenting the
ratio of elastic over quenching processes as a function of a rescaled rotational constant B̃ = B/sE3

and a rescaled electric field F̃ = dF/B. B, d, F, sE3 are respectively the rotational constant, the
full electric dipole moment of the molecules, the applied electric field and a characteristic dipole-
dipole energy. We identify two groups of bi-alkali dipolar molecules. The first group, including
RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs and LiCs, is favorable with a ratio over 1000 at collision
energies equal (or even higher) to their characteristic dipolar energy. The second group, including
LiNa and KRb, is not favorable. More generally, for molecules well described by Hund’s case b, our
adimensional study provides the conditions of efficient evaporative cooling. The range of appropriate
rescaled rotational constant and rescaled field is approximately B̃ ≥ 108 and 3.25 ≤ F̃ ≤ 3.8, with a
maximum ratio reached for F̃ ' 3.4 for a given B̃. We also discuss the importance of the electronic
van der Waals interaction on the adimensional character of our study.

I. INTRODUCTION

Ultracold dipolar molecules have been the subject of
tremendous experimental and theoretical investigations
these past years. They are promising candidates for
many interesting applications [1] using electromagnetic
fields manipulation [2], from many-body physics [3] to
ultracold controlled chemistry [4–8] from quantum in-
formation [9] to precision measurements [10]. Different
kinds of ultracold dipolar molecules produced from al-
ready cold atoms exist now. They have been produced
in ultracold gases with high enough densities to study
their two-body interactions and collisions [11]. They
can possess an electric or magnetic dipole moment so
that they can be controlled by either an electric or mag-
netic field. These molecules can be fermionic or bosonic,
chemically reactive or not, and produced in the absolute
ground state or in a weakly bound state. Examples of
fermionic molecules are 40K87Rb [12] and 23Na40K [13]
while 87Rb133Cs [14, 15] and 23Na87Rb [16] are examples
of bosonic molecules. They were produced in their abso-
lute ground state in which they possess an electric dipole
moment and can then be controlled by an electric field
[17, 18]. Magnetic dipolar ultracold molecules such as Er2
have also been produced in a weakly bound state. They
possess a magnetic dipole moment and can be controlled
with a magnetic field [19]. Dipolar molecules can also be
cooled directly by laser cooling [20–29], by Sisyphus cool-
ing [30–32] for polyatomic molecules, or by evaporative
cooling [33].

However, all these molecules share the same problem:
they can suffer from two-body collisional losses (quench-
ing) whether it is due to the chemical reactivity of the
molecules [34–36], inelastic collisions to lower molecu-
lar states [19], or possible collisional losses mediated by
long-lived complex [37, 38]. It is then problematic to

reach the quantum degeneracy of an ultracold gas of
dipolar molecules. Quantum degeneracy can be reached
by evaporative cooling, which was succesfully applied
to obtain Bose–Einstein condensates of ultracold neutral
atoms [39, 40] and degenerate Fermi gases [41]. The tech-
nique relies (at least but not only) on large two-body elas-
tic rate coefficients for fast thermalization times and on
small quenching rate coefficients for low collisional losses.
Therefore, shielding the molecules from these unwanted
collisional losses is absolutely essential to reach quantum
degeneracy in ultracold gases.

A somewhat counter-intuitive scheme has been pro-
posed to shield polar molecules from quenching collisions,
by preparing them in their first rotationally excited state.
In this state, if the electric field is tuned just above a crit-
ical value, there results an effective repulsion that keeps
the molecules from changing their internal state or react-
ing. This has been studied for inelastic collisions [42], re-
active collisions of 1Σ molecules [43] or 2Σ molecules [44].
In contrast with these previous works, this paper presents
a systematic study using an adimensional perpective. We
determine adimensional rescaled parameters that govern
the dynamics of the systems, namely a rescaled rotational
constant, a rescaled electric field and a rescaled collision
energy. Then, all molecules are treated on equal foot-
ing with the same rescaled formalism [45–49]. We find
the molecules and the range of the rescaled parameters
for which the collisional loss suppression is low enough
so that evaporative cooling techniques can be used effi-
ciently to reach quantum degeneracy in ultracold gases
of dipolar molecules.

The paper is organized as follows. In Sec. II we briefly
recall the formalism used in the former papers [42–44]
using dimensional quantities. Then we introduce the
adimensional formalism based on the dipolar interaction
which defines a characteristic length and energy. We ob-
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tain adimensional rescaled cross sections, rate coefficients
and scattering length as a function of the rescaled pa-
rameters. We present and discuss our results in Sec. III.
With a single figure, one can determine the good molec-
ular candidates for efficient evaporative cooling based on
the shielding. We also discuss the importance of the
electronic van der Waals interaction on the adimensional
character of our study. Finally, we conclude in Sec. IV.

II. THEORY

A. Presentation of the scattering problem using
dimensional quantities

We consider collisions between two species 1 and 2 of
mass m1 and m2, in the presence of an external electric
field F . The direction of the electric field is chosen as the
space-fixed quantization axis. The species 1 and 2 are
diatomic molecules considered in this study as dipolar
rotors with permanent electric dipole moment d1 = d2 =
d. The scattering Hamiltonian can be written

Ĥ = − ~2

2µ
r−1

d2

dr2
r +

l̂2

2µr2
+ Ĥ1 + Ĥ2 + V̂, (1)

where µ = m1m2/(m1 +m2) is the reduced mass for the
molecule-molecule collision, r is the distance between the

species’ centers of mass, and l̂ is the space-fixed opera-
tor for the orbital angular momentum between the two
species. Ĥ1 and Ĥ2 describe the Hamiltonian of the iso-
lated species 1 and 2, including their interactions with
the applied field. V̂ = V̂el + V̂dip contains all interactions
between the species, with contributions that include the
electronic potential V̂el and the dipole-dipole interaction
V̂dip. In Sec. II B, Sec. II C, and Sec. II D, we will
reduce the formalism to a model that consists in taking
the long-range interaction of the molecules and treating
the short-range interaction using an absorbing potential.
The Hamiltonian for an isolated dipolar rotor is

Ĥ1,2 ≡ Ĥmol =
n̂2

2I
− d̂ · F̂ =

n̂2

2I
− dF cos θ, (2)

where n̂ is the rotational angular momentum and I the
moment of inertia of the dipolar rotor. The correspond-
ing rotational constant is related to the moment of iner-
tia by B = ~2/2I. The angle θ corresponds to the angle
between the permanent dipole moment and the electric
field. The dipolar interaction is

V̂dip = −
√

6

4πε0
r−3 T2(d̂1, d̂2) · T2(ur), (3)

where Tk represents a spherical tensor of rank k and ur
is a unit vector in the direction of r. We do not consider
the hyperfine structure of the molecules as the hyperfine
coupling constants are much smaller than the rotational
constant [50]. We solve the quantum-mechanical scat-
tering problem using the coupled-channel method. The

total wave function is first expanded in a set of N con-
veniently chosen basis functions |i〉,

|Ψ(r, ξ)〉 = r−1
∑

i

χi(r) |i〉, (4)

where ξ is a collective variable including all coordinates
except r, and i is the set of quantum numbers that la-
bel the basis functions. Each different combination of
quantum numbers i defines a channel. We choose for
the individual species the set of bare basis functions
|α1,2〉 ≡ |α〉 = |nmn〉, so that

〈α|Ĥmol|α′〉 = B n(n+ 1) δα,α′ − dF 〈α| cos θ|α′〉. (5)

The eigenfunctions of the corresponding matrix become
the dressed internal states |α̃1,2〉 ≡ |α̃〉 = |ñmn〉. The
projection quantum number mn remains a good quantum
number while n is not. ñ indicates that the dressed state
|ñmn〉 has a main character in n when F ' 0, but is
in general a linear combination of the bare states |nmn〉.
The corresponding eigenvalues of the dipolar rotors 1 and
2 in the field are Eα̃1

and Eα̃2
. The basis functions are

then symmetrized in terms of |α̃1,2〉, adding the orbital
angular momentum, so that |i〉 is defined in Eq. (4) by

|i〉 ≡ 1√
2(1 + δα̃1α̃2)

(|α̃1〉|α̃2〉+ η|α̃2〉|α̃1〉) |lml〉. (6)

The corresponding energy of the channel |i〉 is Ei = Eα̃1
+

Eα̃2
, the energy of the two separated dipolar rotors 1 and

2 in the field. η = +1 (η = −1) corresponds to a symmet-
ric (anti-symmetric) function with respect to permuta-

tion P̂ of the identical species 1 and 2. The permutation
operator acts on the basis function as P̂ |i〉 = η (−1)l|i〉.
On the other hand, from the symmetrization principle,
P̂ |Ψ〉 = εP |Ψ〉, where εP = +1 for identical bosons and
εP = −1 for identical fermions. This condition implies
from Eq. (4) that P̂ |i〉 = εP |i〉 and imposes the selection
rule η (−1)l = εP . The time-independent Schrödinger

equation Ĥ|Ψ〉 = Etot|Ψ〉, for the scattering wave func-
tion |Ψ〉 expanded over the dummy argument i′ and for
a total energy Etot of the colliding system, provides a set
of N by N coupled differential equations for the channel
functions χi′(r) when projected onto the N possible bra
〈i|,

〈i|(Ĥ − Etot)|Ψ〉 =
∑

i′

〈i|(Ĥ − Etot)|r−1χi′(r)|i′〉

= 0. (7)

Using the form of the Hamiltonian in Eq. (1), we get the
following set of coupled equations,

[
− ~2

2µ

d2

dr2
+

~2l(l + 1)

2µr2
+ Ei − Etot

]
χi(r)

+
∑

i′

Vi,i′(r)χi′(r) = 0, (8)
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FIG. 1. (Color online). Rescaled energies Eα̃i/B of a dipolar

rotor as a function of the rescaled field F̃ = dF/B. Some
dressed states |ñimni〉 are explicitely indicated.

where we used the notation Vi,i′ ≡ 〈i|V̂|i′〉. The total
energy Etot = Einit+Ec is the sum of the initial combined
molecular state and the collision energy Ec. Sometimes,
it is convenient to diagonalize the matrix whose elements
are given by

[
~2l′(l′ + 1)

2µr2
+ Ei′ − Etot

]
δi,i′ + Vi,i′(r). (9)

The corresponding set of eigenvalues for a given r are
called the adiabatic energies, and one can plot the differ-
ent set of energies as a function of r. The resulting curves
are a very good indication of the way the molecules in-
teract when they approach to each other as r decreases.
This is shown later in Sec. III. Each term of Eqs. (8)
has dimensions of energy. We will now get rid of the
dimensional character of the equations.

B. The adimensional scattering problem

The adimensional problem is set up by defining a typi-
cal characteristic length and energy from the form of the
interaction. A Cn/r

n type interaction defines character-
istic length and energy scales [48]

srn ≡
(

2µCn
~2

) 1
n−2

, sEn
≡ ~2

2µ s2rn
. (10)

As the physics of the shielding occurs due to the dipole-
dipole interactions at nonzero applied electric field at a
large r, the dominant and most relevant energy scale of
the theory is the dipolar interaction. The matrix rep-
resentation of this interaction in 〈i|V̂|i′〉 can be written
as

〈i|V̂dip|i′〉 =
C3

r3
ζi,i′(l, l

′,ml,m
′
l;F ), (11)
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FIG. 2. (Color online). Rescaled energies Ei/B of two
combined dipolar rotors as a function of the rescaled field
F̃ = dF/B. Some combined dressed states |ñ1mn1〉|ñ2mn2〉
are explicitely indicated. The field at which the initial state
|1̃0〉|1̃0〉 (red bold dashed line) crosses the |0̃0〉|2̃0〉 one is

F̃ = 3.25. The red bold dashed and red bold solid lines cor-
respond to states with mn1 = mn2 = 0.

with C3 ≡ d2

4πε0
, and ζi,i′(l, l

′,ml,m
′
l;F ) being adimen-

sional geometrical coefficients depending on the orbital
angular momentum as well as the rotational angular mo-
mentum via the dressed states i, i′. We also indicated
the implicit dependence of the coefficients on F . Hence,
the length scale for the r−3 dipolar interaction term is

sr3 ≡
2µC3

~2
=

2µ

~2
d2

4πε0

= 2(µ/a.u.)(d/a.u.)2, (12)

and the corresponding energy scale is

sE3
≡ ~2

2µ s2r3
=

~6

(2µ)3 (d2/4πε0)2

=
[
8(µ/a.u.)3(d/a.u.)4

]−1
. (13)

This defines adimensional lengths, r̃ ≡ r/sr3 and energies

Ẽ ≡ E/sE3
. If one includes only V̂dip in V̂, the rescaled

coupled-channel equation for a given channel |i〉 becomes

[
− d2

dr̃2
+
l(l + 1)

r̃2
+

(
Ei − Einit

B

)
B̃ − Ẽc

]
χi(r̃)

+
∑

i′

(
ζi,i′(l, l

′,ml,m
′
l; F̃ )

r̃3

)
χi′(r̃) = 0. (14)

There are as many equations as channels |i〉. The above
adimensional equations display three adimensional quan-
tities relating to the physical parameters of the colliding
system. The first one,

B̃ =
B

sE3

=
8Bµ3

~6

(
d2

4πε0

)2

= 8(B/a.u.)(µ/a.u.)3(d/a.u.)4, (15)
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represents the rotational constant rescaled over the dipo-
lar energy. It depends on the rotational constant, the
reduced mass and the full electric dipole moment of the
system. Therefore the first parameter contains all the in-
formation of an individual dipolar rotor and is fixed for
a given system. The second parameter in Eqs. (14) is

Ei − Einit

B
. (16)

It represents the difference between the energy Ei of two
separated dipolar rotors in channel |i〉 and the energy
Einit of the initial state, rescaled by the rotational con-
stant. The individual rescaled energies Eα̃1,2

/B are ob-
tained directly from Eq. (5) when the equation is divided
on both sides by the rotational constant B [51]. They are
function of a rescaled field defined by

F̃ =
dF

B
, (17)

and plotted in Fig. 1 as a function of F̃ . The rescaled
energies Ei/B are plotted in Fig. 2 as a function of F̃ . In
the following, as the rescaled energies, their differences,
as well as the coefficients ζi,i′ are fixed for a given rescaled
field, the second parameter is monitored implicitely by
the rescaled field F̃ in which the system is colliding. The
third parameter in Eqs. (14),

Ẽc =
Ec
sE3

, (18)

corresponds to the collision energy rescaled over the dipo-
lar energy. In this study, we will consider the ultracold
regime so that Ẽc → 0 and is fixed for a given initial
state of the system. The adimensional equations depend
solely on B̃ and F̃ .

C. Adding the electronic van der Waals interaction

Eqs. (14) are useful to determine which parameters
are the relevant ones using an adimensional perspective.
However, this is possible because we have only used the
dipolar interaction as the typical interaction, which de-
fined the proper length and energy scales sr3 and sE3 .
In practice we also have to include the electronic inter-
action. We use a simple long-range, isotropic description
based on the leading dispersion term. The matrix repre-
sentation of the electronic interaction in 〈i|V̂|i′〉 is then

〈i|V̂el|i′〉 ≈ δi,i′
Cel

6

r6
, (19)

where Cel
6 represents the electronic van der Waals coeffi-

cient between the two dipolar rotors. It must be noted,
however, that this term is not rigorously scale-free in r̃
for it defines a different characteristic length

sr6 ≡
(

2µ

~2
|Cel

6 |
) 1

4

6= sr3 . (20)

Therefore, we cannot end up in general with a strictly
adimensional study. Neglecting the electronic van der
Waals term is also not possible given that in some cases
the geometrical factor ζi,i′ vanishes in the diagonal ele-

ment of 〈i|V̂dip|i′〉, such as for an incoming and outgoing
s-wave l = l′ = 0. However, if the electronic van der
Waals term plays a negligible role in the shielding ef-
fect, the study can be considered adimensional. In prac-
tice, we don’t use the adimensional coupled equations
Eqs. (14) to compute the scatering properties. We in-
stead solve the dimensional coupled equations in Eqs. (8)
for a fixed electronic Cel

6 coefficient and appropriately
come back to adimensional rescaled quantities. At the
end of Sec. III, we discuss in more detail for which sys-
tems the electronic van der Waals interactions play a
negligible part and therefore when the study becomes
adimensional.

D. Cross sections, rate coefficients and scattering
length

The close-coupling equations are solved for each r from
a minimum value rmin to a maximum value rmax using
a log-derivative propagation method [52, 53]. At rmin,
we initialize the propagation by a complex, diagonal log-
derivative matrix Z whose elements are given by [43]

Z(r = rmin) =

kmin(4sc
√

1− pSR − i pSR)

c2
(√

1− pSR − 1
)2

+ s2
(√

1− pSR + 1
)2 , (21)

where

kmin =

√
2µ

~2

[
Etot −

(
Vi,i(rmin) +

~2l(l + 1)

2µrmin
2

)]
,(22)

c = cos (kminrmin + δSR) and s = sin (kminrmin + δSR).
0 ≤ pSR ≤ 1 and 0 ≤ δSR ≤ π are two parameters
that tune the loss probability and the phase shift of the
incoming flux at rmin [54]. This is as if we had approxi-
mated the “chemically-active” internal configuration re-
gion (r ≤ rmin) of each channel |i〉 by a square-well po-
tential from r = 0 to r = rmin, whose depth is given
by

C3

r3min

ζi,i +
Cel

6

r6min

+
~2l(l + 1)

2µr2min

, (23)

and whose corresponding log-derivative is Eq. (21) at
r = rmin. At the end of the propagation, one usually
obtains the scattering matrix S by applying asymptotic
boundary conditions at rmax when Vi,i(r = rmax) → 0.
As we start with an arbitrary complex log-derivative in
Eq. (21) mimicking a phenomenological loss at short-
range, it implies that the S matrix is not necessarily
unitarity. The diagonal element of a given column deter-
mines the magnitude of the elastic process while the sum
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of the off-diagonal terms determines the inelastic pro-
cesses. The (positive) difference of unity with the sum of
the modulus square of the elements of a matrix column
determines the (phenomenological) loss processes. In our
study, we do not distinguish between loss and inelastic
processes, they all contribute to destruction or removal
of the molecules in an experimental trap. Therefore, we
consider only the quenching processes which are the sum
of the inelastic and the loss processes.

As we are interested in scattering properties that are
independent of the collision energy, it is then more use-
ful to present and compute the scattering length instead
of the cross sections or the rate coefficients. The s-wave
scattering length becomes a constant when the wavevec-
tor k =

√
2µEc/~2 → 0. It is defined as [55]

a = are − i aim
=

1

i k

(
1− S00(k)

1 + S00(k)

) ∣∣∣∣
k→0

, (24)

with aim ≥ 0. S00 represents the diagonal elements of
the S matrix corresponding to the initial collisional state
taken into consideration. The cross sections and rate
coefficients are related to the scattering length by

σel = 4π|a|2 ×∆ σqu =
4π aim
k
×∆ (25)

βel =
4π~k|a|2

µ
×∆ βqu =

4π~ aim
µ

×∆, (26)

where ∆ = 2 if the particles are identical and start in in-
distinguishable states, ∆ = 1 otherwise. Since we are us-
ing the dimensional equations Eqs. (8) we have to rescale
the quantities so that they are adimensional. This is done
by dividing the scattering length with the characteristic
length sr3 , ã = ãre − i ãim = a/sr3 . Similarly, we get the
rescaled cross sections σ̃ = σ/sσ3

using a characteristic
cross section sσ3

= 4πs2r3 . The rescaled rate coefficients

β̃ = β/sβ3
are obtained by using a characteristic rate

coefficient sβ3
= sσ3

× sv3 , where sv3 = ~/µsr3 corre-
sponds to a characteristic velocity. The rescaled scatter-
ing length, cross sections and rate coefficients are now
related by

σ̃el = |ã|2 ×∆ σ̃qu =
ãim

k̃
×∆ (27)

β̃el = k̃ |ã|2 ×∆ β̃qu = ãim ×∆, (28)

where k̃ =
√
Ẽc =

√
Ec/sE3 → 0. Note that k̃ is charac-

terized via sE3
by the full dipole moment of the molecule,

measured in a body-fixed frame (molecular frame). In
reality, what one observes in a space-fixed frame (labo-
ratory frame) is the expectation value of the dipole mo-
ment, namely the induced dipole moment dind, for a given
applied electric field. Therefore, a more apropriate char-
acteristic energy that quantifies the dipolar interaction
between the molecules is the one using the induced dipole
moment instead of the full dipole moment. This energy

depends on the applied electric field F̃ and character-
izes the typical energy at and below which the quan-
tum regime is reached, typically when indistinguishable
bosons collide in the single partial wave l = 0 (s-wave)
or indistinguishable fermions in the single partial wave
l = 1 (p-wave). We note this “quantum regime” energy

EQR(F̃ ), and the limit of validity k̃ → 0 above corre-

sponds to the condition Ec ≤ EQR(F̃ ).
Finally, an important quantity for experiments is the

ratio γ of the elastic over the quenching cross section or
rate coefficient. This ratio is given by

γ =
βel
βqu

=
σel
σqu

=
|a|2
aim

k =
|ã|2
ãim

k̃. (29)

This ratio determines the efficiency of the evaporative
cooling technique in order to reach the quantum degen-
eracy of ultracold gases.

III. RESULTS AND DISCUSSION

We consider ultracold identical bosonic molecules pre-
pared initially in the state |ñ1mn1

〉|ñ2mn2
〉 = |1̃0〉|1̃0〉

(for example in the ground electronic state X1Σ+ and
in the ground vibrational state v = 0). Another state

|0̃0〉|2̃0〉 crosses the initial state at a rescaled field F̃ =
3.25. The energy curves of these states are indicated in
the inset of Fig. 2, where the initial energy Einit is indi-
cated as a red bold dashed line. It has been shown and
explained [42–44] that the quenching processes were sup-
pressed compared to the elastic ones, slightly beyond this
field. We are then interested in the molecule-molecule
scattering properties around this field. We assume the
worst scenario for the molecules: when the two molecules
are sufficiently close to each other they disappear from
the experimental trap. This can be due for example to a
chemically reactive collision [35], inelastic transitions to
other states, collisional losses mediated by a long-lived
complex [37, 38]. In our calculations, this is satisfied
when full loss pSR = 1 is invoked in Eq. (21). Thus
the starting diagonal elements of the log-derivative ma-
trix for a given channel are purely imaginary and given
by Z = −i kmin. Spontaneous emission of molecules in
the first excited rotational state can be neglected here as
the lifetimes are on the order of 104 s, using the for-
mula for the Einstein coefficient of spontaneous emis-
sion. Black-body radiation driving either rotational or
vibrational excitations of the molecules at room temper-
ature can be neglected as the lifetimes are on the or-
der of 102 s or more for heteronuclear alkali molecules
[71]. Both types of lifetime are much longer than any
other timescales of an experiment (mean collision time,
evaporative cooling time, trapping time), which are on
the order of the second. We used n1,2 = [0 − 3] for
the rotational basis set. We used l = [0 − 10] for the
partial wave basis employed in Eq. (6). As we consider
initial molecules in indistinguishable states, only sym-
metric states with η = +1 must be taken into acount
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FIG. 3. (Color online). |ã|2/ãim ≡ γ/k̃ as a function of B̃ and F̃ . The color scale, presented at the right of the picture, goes

from 10−4 to 106. The white area corresponds to values ≥ 106. The B̃ values of some characteristic dipolar molecules are also
included.

in Eq. (6). As we consider identical bosonic molecules,
then εP = +1. The selection rules η (−1)l = εP implies
even partial waves l. The projection quantum number
M = mn1

+mn2
+ml of the total angular momentum on

the quantization axis is conserved during the collision.
We performed calculations for M = 0 since the initial
mn1

= mn2
= 0 and ml = 0 is the dominant projection

at ultralow collision energies. In the following, we em-
ploy an arbitrary fixed rotational constant B∗ = 10−7

a.u. (∼ 0.2 cm−1) and electric dipole moment d∗ = 1
a.u. (∼ 2.54 Debye) while the mass µ∗ is varied in order to

vary the parameter B̃ = 8(B∗/a.u.)(µ∗/a.u.)3(d∗/a.u.)4

in Eq. (15). The star characterizes a hypothetical dipolar
molecule, say XY∗, defined by those values which also de-
fine a characteristic length sr∗3 , energy sE∗3 , cross section

sσ∗3 , and rate coefficient sβ∗3 . Fixing B∗ and d∗ is also

convenient for varying the rescaled field F̃ = d∗F/B∗,
since it is sufficient to vary the electric field F only.
We consider the scattering properties at collision energies
E∗c = 100 nK so that the third parameter Ẽc is fixed. We
used rmin = 5 a0 and rmax is chosen so that k∗ r∗max ∼ 5.

As the mass µ∗ is changed here to vary the parameter B̃,
k∗ changes accordingly, and so does r∗max. Most of the
systems investigated in experiments are diatomic dipo-
lar molecules of alkali atoms for which the electronic Cel

6

coefficients belongs to the range −20000 ≤ Cel
6 ≤ −3000

a.u. [54, 56, 72, 73]. In this study we use a fixed value

of Cel,∗
6 = −10000 a.u. between two molecules XY∗. We

discuss the effect of the Cel
6 coefficient at the end of this

section. We obtain the rescaled scattering length ã and
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TABLE I. Summary of the different systems’ parameters obtained from the reduced mass µ, the rotational constant B [56], and
the full electric dipole moment d [57] for bosonic 1Σ molecules and bosonic 2Σ molecules [58–70]. sr3 , sE3 , sσ3 , sβ3 are respectively
the characteristic length, energy, cross section and rate coefficient for the dipolar interaction (see text for definitions). EQR '
3500 sE3 is the characteristic quantum regime energy at the field F̃ = 3.4 where the s-wave is predominant. B̃ is the rescaled
rotational constant. FF̃=[3.25−3.8] is the approximate range of the electric field where the ratio γ would be favorable for successful

evaporative cooling. The systems are ordered in increasing values of B̃. We provide useful conversion factors: 1 a.u. ' 1822.88
a.m.u.; 1 a.u. ' 219475 cm−1; 1 a.u. ' 2.5417 D; 1 a0 ' 0.529×10−10 m; 1 a.u. ' 315775 K; 1 a.u. ' 2.80×10−17 cm2; 1 a.u.
' 6.126×10−9 cm3/s; 1 a.u. ' 5.1422×106 kV/cm.

µ(a.u.) B(10−7 a.u.) d (a.u.) sr3(a0) sE3(K) EQR(K) sσ3(cm2) sβ3(cm3/s) B̃ F (kV/cm)

(at F̃ = 3.4) F̃ = [3.25− 3.8]

1Σ
7Li23Na 27349 19.4 0.200 2188 1.2×10−6 4.2×10−3 1.68×10−9 6.16×10−9 5.07×105 [161.8 - 189.2]
41K87Rb 116547 1.67 0.226 11888 9.6×10−9 3.4×10−5 4.97×10−8 7.85×10−9 5.48×106 [12.3 - 14.4]

87Rb133Cs 200349 0.77 0.49 96207 8.5×10−11 3.0×10−7 3.26×10−6 3.70×10−8 2.87×108 [2.64 - 3.08]
23Na41K 58288 4.28 1.12 146234 1.3×10−10 4.4×10−7 7.52×10−6 1.93×10−7 1.07×109 [6.39 - 7.47]
41K133Cs 158470 1.37 0.75 178279 3.1×10−11 1.1×10−7 1.12×10−5 8.66×10−8 1.38×109 [3.05 - 3.56]
7Li41K 43729 13.4 1.39 168978 1.3×10−10 4.4×10−7 1.01×10−5 2.98×10−7 3.33×109 [16.05 - 18.77]

23Na87Rb 100167 3.19 1.35 365108 1.2×10−11 4.1×10−8 4.69×10−5 2.81×10−7 8.52×109 [3.95 - 4.62]
7Li87Rb 85608 11.57 1.63 454902 8.9×10−12 3.1×10−8 7.28×10−5 4.09×10−7 4.10×1010 [11.87 - 13.87]

23Na133Cs 142090 2.64 1.85 972605 1.2×10−12 4.1×10−9 3.33×10−4 5.27×10−7 7.10×1010 [2.39 - 2.79]
7Li133Cs 127531 9.93 2.15 1179020 8.9×10−13 3.1×10−9 4.89×10−4 7.12×10−7 3.52×1011 [7.72 - 9.03]

2Σ
87Rb84Sr 155695 0.82 0.606 114309 7.8×10−11 2.7×10−7 4.60×10−6 5.65×10−8 3.34×108 [2.26 - 2.65]
40Ca19F 53740 15.6 1.21 156797 1.2×10−10 4.2×10−7 8.65×10−6 2.24×10−7 4.12×109 [21.6 - 25.3]
40CaH 37342 192.7 0.99 73996 7.7×10−10 2.7×10−6 1.92×10−6 1.52×10−7 7.88×109 [323.5 - 378.2]
84Sr19F 93798 11.43 1.365 349535 1.4×10−11 4.8×10−8 4.30×10−5 2.87×10−7 2.62×1010 [13.99 - 16.36]

138Ba19F 143009 9.84 1.247 444881 5.6×10−12 2.0×10−8 6.97×10−5 2.40×10−7 5.57×1010 [13.18 - 15.41]
89Y16O 95611 17.68 1.78 605801 4.5×10−12 1.6×10−8 1.29×10−4 4.88×10−7 1.24×1011 [16.60 - 19.41]

all related quantities (see Eq. (28)) by dividing the scat-
tering length a∗ with sr∗3 computed for the hypothetical
molecule XY∗, for different values of µ∗ and F ∗ corre-
ponding to different values of B̃ and F̃ .

The quantity |ã|2/ãim ≡ γ/k̃ is plotted in Fig. 3 as a

function of B̃ and F̃ . Different contour plots are drawn
from dark blue for low values of this quantity (10−4)
to dark red for high values (106). White contour plots
correspond to value ≥ 106. When multiplying |ã|2/ãim
by the rescaled wavevector k̃, this provides the ratio γ
for the collision energy Ẽc, see Eq.(28). Therefore, this

plot gives directly the ratio γ for k̃ = 1 that is when
Ec = sE3

. For efficient evaporative cooling to occur, a
ratio γ ≥ 100 [39], and perhaps a safer value of γ ≥ 1000,
is required. The latter condition corresponds in the fig-
ure to the orange, red, dark red, and white contour plots.
Therefore, the condition for favorable evaporative cool-
ing is delimited approximately by the region B̃ ≥ 108

and 3.25 ≤ F̃ ≤ 3.8, with a maximum ratio reached for
F̃ ' 3.4 for a given B̃. Any other position in the plot

is likely to be unfavorable. This universal feature is due
to the shielding mechanism [42–45] when the incident
collisional channel becomes repulsive enough so that the
quenching rate coefficient is supressed.

The characteristic values of the dipolar bi-alkali
molecules are reported in Tab. I. The B̃ values are
reported on the right of Fig. 3 as yellow dashed lines.
This distinguishes two groups of molecules for evapora-
tive cooling, the good candidates from the bad. Group
1 (RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs, LiCs) for

which B̃ > 108 has favorable candidates, while group 2
(LiNa, KRb) has unfavorable ones since B̃ � 108. This
holds at collision energies Ec = sE3

(see Tab. I for the

values), when k̃ = 1. As mentionned in Sec. II D, a more
appropriate value is when the collision energy is on the
order of the quantum regime energy (Ec = EQR) since
it better reflects the magnitude of the interaction and
the collision for the given applied field. Let’s take the
example of F̃ = 3.4. At this field, dind ' 0.13 d (this
can be directly calculated from Fig. 1 using the slope
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FIG. 4. (Color online). Absolute value of the real part |ãre| (left panel) and imaginary part ãim (right panel) of the rescaled

scattering length as a function of F̃ for different values of B̃. The order of the curves at F̃ = 6 corresponds to the order of the
B̃ values displayed in the legend from top to bottom.

of the |1̃0〉 curve at F̃ = 3.4). Then EQR(F̃ = 3.4) '
sE3/0.134 ' 3500 sE3 . The corresponding values for each
molecule are reported in Tab. I. If now Ec = EQR, the

ratio should become γ(F̃ = 3.4) = k̃QR × |ã|2/ãim with

k̃QR =
√
EQR/sE3

'
√

3500 ' 60. The ratio should
increase by a factor of 60 for this example compared to
the one for Ec = sE3

. The precedent conclusions remain
unchanged since for the first group, the ratio γ will be
bigger than 1000 while for the second group, the ratio
increases by the factor of 60 but is not enough to reach
the ratio of 1000.

The white contour plots in Fig. 3 correspond to val-
ues of the ratio bigger than 106 at k̃ = 1. This area is
not shown in more detail since we encounter numerical is-
sues leading to unphysical oscillations in the values of the
scattering quantities. In this region, the quenching pro-
cesses are so strongly suppressed that the values of ãim
compared to the ones of |ãre| are very tiny, about 10−10

smaller (see Fig. 4 below). We believe the log-derivative
method cannot achieve higher precision and produces nu-
merical errors. One can use for example more appropri-
ate methods for better numerical precision [74] to fulfill
the plot in the white area. From an experimental point of
view though, the ratio presented in the figure is already
more than sufficient. When ãim � ãre, |ã|2 ' |ãre|2
so that |ã|2/ãim ' |ãre|2/ãim. Since |are|/ãim ∼ 1010 and
|are| ≥ 10−4 (see Fig. 4), then the white area corresponds
to |ãre|2/ãim ≥ 106.

The results in Fig. 3 are promising for bosonic dipo-
lar molecules under current experimental interest, such
as 87Rb133Cs [14, 15] and 23Na87Rb [16] since they be-
long to the first group as defined above. For NaRb,
at F̃ ' 3.4, the ratio γ reach values above 106 for
the collision energy range from sE3

= 1.2 × 10−11 K

(k̃ = 1) to EQR = 4.1× 10−8 K. This is then well appro-
priate to reach quantum degeneracy of ultracold dipo-
lar gases and form Bose-Einstein condensates of dipolar

molecules. To compare with, the typical critical temper-
ature Tc ∼ 3.3125 ~2 n2/3/mkB where condensation takes
place (though for a ideal non-interacting Bose gas) with
a typical density of 1012 molecules/cm3 is Tc ∼ 10 nK
for NaRb, which belongs to the energy range where the
ratio is favorable for evaporative cooling. It should be
noted that EQR is not an upper limit of the collision
energy above which the evaporative cooling technique
would become unfavorable. The ratio can still remain
big (above 1000) for even higher collision energies. It
just means that one cannot strictly use Eq.(29) to con-

vert the quantity |ã|2/ãim to the ratio γ using k̃. For
instance for NaRb, the ratio is above 106 at Ec = EQR,
but it can take a high collision energy for the ratio to get
down to 1000 (see Ref. [44]), so that at the Ec ∼ µK
regime the ratio is still favorable. To answer up to which
collision energy for each system, one has then to repeat
the calculation presented in Fig. 3 as a function of the
collision energies. This is not shown here but can be cal-
culated upon request (and for a specific system to save
computational time). For RbCs, the ratio γ can reach
values of 1000 or above for the collision energy range
from sE3

= 8.5×10−11 K to EQR = 3×10−7 K, but at a
somewhat more limited range of electric fields as shown
in Fig. 3, around F̃ ' 3.4. Above or below this field, the
ratio can decrease and could become unfavorable.

The results of this paper are not necessarily con-
strained to bosonic molecules. Earlier studies [42, 43]
showed that fermionic molecules also experience quench-
ing suppression. In addition, the adimensional study
and parameters remain valid, so that similar outcomes
are expected for identical fermionic molecules. Exam-
ples of fermionic dipolar molecules of current experimen-
tal interest are 40K87Rb [12] and 23Na40K [13]. While
fermionic KRb are not good candidates (this was shown
already in Ref. [43]), we can expect that NaK will be
a good candidate for quenching suppression. In contrast
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with fermionic neutral particles (alkali atoms, homonu-
clear molecules) which interact via the van der Waals
interaction at long-range, fermionic dipolar particles in
an electric field interact via the dipolar interaction. This
modifies the p-wave threshold laws of the elastic process
[46, 75]. The elastic cross section tends to a constant
at vanishing collision energies, in contrast with the van
der Waals interaction where the elastic cross section van-
ishes as Ec

2. Since the quenching cross section behaves
as
√
Ec, the ratio γ increases at ever lower collision ener-

gies. Therefore successful evaporative cooling can also be
used to reach quantum degeneracy and form degenerate
Fermi gases of dipolar molecules.

Another important experimental issue is the range of
fields at which the suppression takes place, reported as
FF̃=[3.25−3.8] in the last column of Tab. I. For example

the LiNa system would require too high electric fields,
above 100 kV/cm, to implement the already weak sup-
pression. Generally in an experiment, electric fields up to
∼ 5 kV/cm can be created when the electrodes stand out-
side the vacuum chamber [17]. Therefore, the suppres-
sion can be implemented in such circumstances for the
RbCs, KCs, NaRb, NaCs systems, which require electric
fields smaller than 5 kV/cm. For the remaining systems
KRb, NaK, LiK, LiRb, LiCs, higher fields are required,
and the electrodes must be included inside the vacuum
chamber [76].

The characteristic values of representative 2Σ dipolar
molecules such as CaH, SrF, RbSr, CaF, YO, BaF, which
are also of experimental interest [20–29, 77–79] are re-
ported in Tab. I, for indication. These molecules are not
perfect Hund’s case b type of molecules since they have
an additional fine and hyperfine structure that should
be included in the Hamiltonian. Nevertheless, around
the electric field F̃ = 3.25, the electronic and nuclear
spins can mainly act as spectators [44], and to same ex-
tent the formalism for 1Σ molecules can be applied to 2Σ
molecules. The corresponding B̃ values, reported as red
solid lines on the left of Fig. 3, show that for CaF, SrF,
BaF and YO, the quantity |ã|2/ãim is well above 103,
making them potential candidates for successful evapo-
rative cooling under the asumption that the spins are
spectators. For CaH, the electric field range is too high
as for the LiNa system. For RbSr, this is like RbCs as
discussed above since they share a similar value of B̃. γ
can reach 1000 but at a restricted range of electric fields.

One cannot tell from Fig. 3 whether high ratios are due
to high values of ã, low values of ãim, or a combination
of both. This can be seen in Fig. 4 which shows the
absolute value of the real part |ãre| (left) and imaginary
part ãim (right) of the rescaled scattering length as a

function of F̃ , for different values of B̃, from 8 × 103 to
8×1013. |ãre| does not vary much with F̃ while ãim does.

When the field crosses the value F̃ ∗ = 3.25 it strongly
suppresses the quenching processes while the elastic ones
remain relatively steady. The reason for the high ratio
comes then from a suppressed value of ãim rather than an
enhanced value of |ãre|. These two plots are also useful to

have a direct magnitude of the quenching rate coefficients
and elastic cross sections. ãim gives the quenching rate
coefficients when multiplied by sβ3

×∆ (see the values in
Tab. I) while |ãre|2, when ãim � ãre, does the same for
the elastic cross sections when multiplied by sσ3

×∆ (see
Eq. (28)).
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Fig. 5 confirms a useful information on the mechanism
of the quenching suppression. As mentioned in Ref. [44],

a useful approximation nearby F̃ = 3.25 consists in tak-
ing only the mn = 0 projection of the molecules in the
calculation (mn1

= mn2
= 0). This will correspond in

Fig. 2 to select only the combined molecular states indi-
cated as red bold dashed and red bold solid lines, while
a full calculation employs all the curves (red and black).
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Fig. 5 shows the ratio |ãre|/ãim as a function of F̃ for two

values of B̃ = 8×105 and 8×109. The solid curves result
from the full calculation, as also shown in the previous
figures, while the dashed curves result from the approx-
imation mn1

= mn2
= 0 for the rotational states of the

molecules. As one can see, the approximation is valid for
fields in the range 3.25 ≤ F̃ ≤ 3.3. For higher fields, the
approximation becomes less and less valid. It strongly
overestimates the results at larger fields. The approxi-
mated calculation is much faster than the full calculation
as it takes much less molecular states and channels into
account in the scattering, decreasing the size of the cou-
pled equations. This can be clearly seen in Fig. 6 where
the rescaled adiabatic energies have been plotted as a
function of r̃ for the case B̃ = 8× 109 and F̃ = 3.3. The
black thin curves corresponds to the channels used in the
full calculation while the red bold curves to the channels
used in the approximation. There are much less curves
involved in the approximation case, yet they reproduce
quite well the long-range behaviour of the fully coupled
calculation, especially for the channels corresponding to
the |1̃0〉|1̃0〉 and |0̃0〉|2̃0〉 combined molecular states (see
inset). Therefore the approximation is really worth us-

ing at fields in the range 3.25 ≤ F̃ ≤ 3.3 especially due
to its numerical simplicity. This range is somewhat re-
stricted in field but even at F̃ = 3.3 it can indicate with
not much numerical effort that the suppression can be
already quite strong.

Effect of the electronic van der Waals coefficient

Finally, we discuss the effect of the Cel
6 coefficient. As

mentioned previously in Sec. II C, the study is in general
not strictly adimensional because of the van der Waals
Cel

6 /r
6 interaction term. But to which extent this is true?

TABLE II. Van der Waals C6 coefficients for different systems.
Crot

6 ' (d/a.u.)4/(B/a.u.) is the repulsive “rotational” van
der Waals coefficient responsible for the repulsive interaction
[43]. Cel

6 is the “electronic” van der Waals coefficient, taken
from [72]. The two last columns are the rescaling factor and

the rescaled electronic van der Waals coefficient Cel,resc.
6 from

the fixed coefficient Cel,∗
6 = −10000 a.u. used in our study

(see text for details). 1 a.u. of C6 = 1 Eh.a
6
0 where Eh is a

Hartree and a0 the Bohr radius.

Crot
6 (a.u.) Cel

6 (a.u.)
sE3

s6r3
sE∗3

s6
r∗3

Cel,resc.
6 (a.u.)

7Li23Na 826 -3342 0.00008 -0.8

41K87Rb 15623 -12636 0.0016 -16

87Rb133Cs 744251 -17760 0.074 -744

23Na41K 3673910 -7532 0.37 -3674

41K133Cs 2314772 -16230 0.23 -2315

7Li41K 2796249 -6689 0.28 -2796

23Na87Rb 10414091 -9046 1.04 -10414

7Li87Rb 6099595 -8114 0.61 -6100

23Na133Cs 44324439 -11998 4.43 -44324

7Li133Cs 21512044 -11007 2.15 -21512

This is what Fig. 7 answers, where the ratio |ãre|/ãim is

plotted as a function of F̃ for different values of B̃ and

different values of Cel,∗
6 . The ratio does not change for

the different Cel,∗
6 employed. The reason can be under-

stood as follows. There are two competing effects for
the dispersion term between two XY molecules: (i) an
attractive “electronic” van der Waals interaction with a
negative coefficient Cel

6 ; (ii) a “rotational” van der Waals
interaction with a coefficient Crot

6 that can be tuned pos-
itive or negative depending on the electric field [43]. The
former coefficients are taken from [72] between two |0̃0〉
molecules and are negative since the interaction is attrac-
tive. These coefficients constitute an upper value in mag-
nitude for the coefficient between two |1̃0〉molecules. The
latter coefficient can be estimated semi-quantitatively by
second order perturbation theory where the correction
behaves as ' W 2/∆E. The dipolar interaction scales
as W ' (d2/4πε0)/r3. An upper value of the difference
in energy between the states |1̃0〉|1̃0〉 and |0̃0〉|2̃0〉 is ap-

proximately ∆E ' B for F̃ ≥ 3.25 (see Fig. 2). This
provides an order of magnitude of the repulsive van der
Waals interaction ' (d2/4πε0)2/(Br6) with a positive
Crot

6 ' (d/a.u.)4/(B/a.u.) for the initial state |1̃0〉|1̃0〉.
Both values are reported in Tab. II. The value we use is

actually not Cel
6 but Cel,∗

6 = −10000 a.u. as mentioned
above for the hypothetical system XY∗. This is a fixed

value. However, to obtain the rescaled Cel,resc.
6 coefficient

for the real bi-alkali dipolar molecules, we have to rescale
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Cel,∗
6 with a rescaling factor so that

Cel,resc.
6 = Cel,∗

6 × sE3
s6r3

sE∗3 s
6
r∗3

, (30)

which depends on the system. This is due to the fact
that we use a characteristic length and energy relative
to the dipolar interaction instead of the van der Waals
interaction. The values of the rescaling factor and the

resulting Cel,resc.
6 from Cel,∗

6 = −10000 a.u. are reported

in Tab. II. One can see that the Cel,resc.
6 coefficients are

always much smaller than the Crot
6 ones so it will not

affect the scattering quantities, as seen in Fig. 7. In that
sense, the study can be considered as independent of this

coefficient and then adimensional for this specific Cel,∗
6 .

But is it appropriate to use the value Cel,∗
6 = −10000

a.u. to describe the real molecules XY? And does it quan-
titatively affect the results? For the systems of group 1,

although the values of |Cel,resc.
6 | do not reproduce exactly

the values of the real |Cel
6 |, this is still acceptable since

they are much smaller than |Crot
6 |. In other words, as

far as |Cel
6 | remains small compared to |Crot

6 |, the value
of the scattering quantities are not going to be affected

with this value of Cel,∗
6 employed, and the study is con-

sidered adimensional for this group. This is questionable
for group 2 though, where |Cel

6 | is comparable or bigger
than |Crot

6 |, and one has to be careful with the value of

Cel,∗
6 used. One can see that the |Cel,resc.

6 | coefficients are
much smaller than the real ones |Cel

6 | so that we strongly
underestimate their values in our calculation. In contrast
with group 1, this is not acceptable since we cannot ne-
glect the value of |Cel

6 | compared to the value of |Crot
6 |.

Therefore, the scattering quantities and the ratio γ are
certainly affected and the study cannot be considered as
adimensional for group 2. A systematic study is then
recommended including the proper Cel

6 coefficient. But
when doing so, for KRb for instance [43], the order of
magnitude of the ratio γ still remains far below 1000.
Then the definition of group 1 and 2 determined above
remains unchanged.

IV. CONCLUSION

In conclusion, we performed a general study on shield-
ing ultracold dipolar rotors using an adimensional per-
spective, in order to identify which systems are good

candidates for efficient evaporative cooling based on
two-body collisions. We showed that, among the bi-
alkali dipolar molecules, two groups can be distinguished.
Group 1, including the molecules RbCs, NaK, KCs, LiK,
NaRb, LiRb, NaCs, LiCs, is favorable for efficient evap-
orative cooling using the shielding mechanism as they
have a ratio elastic/quenching processes over 1000 at
a collision energy equal to and even higher than their
characteristic dipolar energy. Group 2, including LiNa
and KRb, is not favorable. In general, the study is not
strictly adimensional since it contains two competing in-
teractions, the electronic van der Waals interaction and
the dipolar interaction, from which different characteris-
tic length and energy can be defined. As we rescale the
Schrödinger equation with the dipolar length and energy,
the rescaled expression of the electronic van der Waals in-
teraction breaks the adimensionality. However, the study
can be considered adimensional for the first group since
the electronic van der Waals coefficient is small in mag-
nitude compared to the rotational one, responsible for
the shielding. For group 2, it can not be considered adi-
mensional as the electronic van der Waals coefficient is
comparable or even bigger in magnitude compared to the
rotational one, so that the electronic van der Waals co-
efficient we used is underestimated. A systematic study
is then recommended for group 2. Despite that, the con-
clusions of the paper remained qualitatively unchanged.

For some molecules of group 1, large static electric
fields are required to reach the shielding regime. An al-
ternative method would consist in using electromagnetic
waves such as microwaves [80, 81] to perform the suppres-
sion of quenching collisions. This will be investigated in
a future work using the same time-independent quantum
formalism presented here including a Floquet formalism
[82, 83]. Finally, further studies could be investigated
to see if a similar shielding scheme is possible for cold
polyatomic molecules [30–32].
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