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I. INTRODUCTION

At sufficiently low energies, the properties of an ultracold gas of atoms are determined by the S-wave scattering
length of the atoms. The scattering length, a, is usually of the size of the range of the interaction `. However,
there exist systems in nature and in the laboratory, such as nucleons, halo nuclei or atoms in an external magnetic
field tuned near a Feshbach resonance, in which |a| � ` [1]. In this case low-energy two-body observables can be
expressed in terms of the a and the associated momentum scale k ∼ 1/a up to corrections proportional to k` and `/a.
Three-body systems of identical bosons with large a exhibit a discrete scaling symmetry characterized by log-periodic
dependence of observables on an additional parameter κ∗. This is commonly referred to as the Efimov effect, after
Vitaly Efimov [2]. Perhaps the most striking manifestation of this effect is the emergence of an infinite sequence of
bound states in the unitary limit where a→ ±∞, with energies1

E(n) = −λ2(n∗−n) κ
2
∗
m

; n = n∗, n∗ ± 1, n∗ ± 2, . . . (1)

Here m can be any quantity with the dimension of mass and κ∗ is the binding momentum of the three-body state
with n = n∗. The scaling factor λ depends on the mass ratio of the particles as well as on whether they are identical
or distinguishable. For identical particles, it is λB ≈ 22.694 [3]. Numerous experiments with ultracold atomic gases
consisting of identical bosons have confirmed the existence of the Efimov effect by measuring rates of loss of trapped
atoms due to various three-body recombination processes [4–7]. The effect was also confirmed in three distinguishable
states of 6Li atoms [8–15]. Overall, these experiments have found excellent agreement with theoretical calculations
on many of the important qualitative and quantitative details of Efimov physics [16].

There has been a recent trend [17–19] towards performing experiments with heteronuclear systems consisting of two
species of atoms with a large interspecies scattering length, where λ can be driven away from λB [3]. Using light-heavy
mixtures thus engenders a more precise and detailed understanding of Efimov physics by making a larger number of
Efimov states experimentally accessible. Theoretical studies of Efimov physics in such systems have been performed
with zero-range interactions for zero [20] and large [21] intraspecies scattering length. Finite-range potential models
were used in Refs. [22, 23]. By extending the effective-field-theory analysis of Ref. [20], model-independent inclusion
of the leading corrections due to finite interaction ranges and intraspecies scattering length was performed in Ref. [24].
All of the above-mentioned theoretical studies have focused on the idealized scenario in which the temperature of the
heteronuclear mixture is exactly zero. However, in real experimental situations the temperature of the gas, though
small, typically ranges from nK to µK. This introduces an additional length scale—the thermal de Broglie wavelengths
in the gas—that leads to additional modifications of the discrete scaling laws. The finite temperature effects can be
taken into account by generalizing the S-matrix formalism developed to calculate loss-rates for three-boson systems
in Refs. [3, 25] to the heteronuclear system. In Ref. [26], this was done for systems that do not support weakly bound
two-body subsystems, i.e. when the interspecies scattering length is negative. The purpose of the present work is
to study the temperature dependence of three-body recombination in two-species mixtures of ultracold atomic gases
when the interspecies scattering length is large and positive, leading to the existence of a shallow diatomic molecule,
while the scattering length between atoms of the same species remains negligible. We perform a detailed analysis of
the contribution of different partial waves to the thermal-averaged recombination rate. We present our results for two
systems of experimental interest, 40K-87Rb and 6Li-87Rb.

The rest of this paper is organized as follows. In Sec. II, we briefly review the calculation of the phase shifts for
the scattering of an atom by a diatomic molecule using the Skorniakov–Ter-Martirosian (STM) integral equation
[27], which was originally applied to the scattering of low-energy neutrons by deuterons and has been widely used
in atomic physics to study the low-energy scattering of atoms by dimers [28, 29]. Section III then details how the
formalism of Refs. [3, 25] can be extended to the heteronuclear case in order to relate the scattering phase shifts
to the universal scaling functions that parameterize the three-body recombination rates. Next, we calculate the
temperature-dependent three-body recombination rate constant as a function of the scattering length and compare
to experimental data in Sec. IV. We present our concluding remarks in Sec. V.

II. STM EQUATION, SCATTERING AMPLITUDE, AND PHASE SHIFTS

We consider three-body heteronuclear systems (A1A2A2) wherein the interspecies S-wave scattering length a is
large and positive, but the scattering length between any identical atoms is negligible. A diatomic molecule (labelled

1 Throughout this work, we adopt a system of units where ~ = 1.
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D) formed by the two atoms A1 and A2 of masses m1 and m2 respectively, with m1 < m2, then has a weakly bound

state of binding energy ED = 1/(2µa2), where µ = m1m2/(m1 + m2). The elastic scattering phase shift, δ
(J)
A2D

(kE),

for the scattering of atom A2 by the diatomic molecule D at angular momentum J and kE =
√

2µA2D(E + ED),
where E is the three-body energy, is given by

AJ(kE , kE ;E,Λ) =
2π

µA2D

1

kE cot δ
(J)
A2D

(kE)− ikE
. (2)

Here, µA2D = m2(m1+m2)/(2m2+m1) is the reduced mass of the A2D system, and the on-shell scattering amplitude,
AJ(kE , kE ;E,Λ), can be obtained by solving the modified STM equation [20, 30]

AJ(p, k;E,Λ) =
2πm1

aµ2
(−1)nMJ(p, k;E)

+
m1

πµ

∫ Λ

0

dq q2MJ(p, q;E)
(−1)nAJ(q, k;E,Λ)

−1/a+
√
−2µ(E − q2/(2µA2D))− iε

. (3)

The kernel function MJ(p, q;E), which can be interpreted as the potential generated by the exchange of the light
atom in partial wave J , is given by

MJ(p, q;E) =
1

pq
QJ

(
p2 + q2 − 2µE − iε

2pqµ/m1

)
, (4)

where QJ(z) are the Legendre functions of the second kind, which can be written in terms of the Legendre polynomials
of order J as

QJ(z) =
1

2

∫ 1

−1

dx
PJ(x)

z − x
. (5)

The integer n in Eq. (3) is equal to J if the heavy particle is bosonic and J + 1 if it is fermionic. In this work, we
focus on the bosonic case, which is more relevant for current experiments. For J ≥ 1, the solutions of Eq. (3), and
consequently the phase shifts obtained from Eq. (2), are independent of Λ as long as p, k, 1/a� Λ and m2/m1 < 38.63,
beyond which the D-wave Efimov effect enters [31, 32]. We restrict ourselves to these limits in this work.

However, for J = 0, the scattering amplitude in Eq. (3), while finite, does not converge as Λ→∞. In this scenario,
there is a linear relationship between the cutoff Λ and the three-body parameter, κ∗

2, resulting in a log-periodicity
of the amplitude in the cutoff with a period equal to the system-dependent scaling factor λ [28, 33, 34]. By solving
the STM equation for various Λ values in the range 1/a� Λ0 < Λ < λΛ0 for some Λ0, we obtain a set of phase shifts

δ
(0)
A2D

(kE) corresponding to various values of κ∗. As we discuss later in Sec. III, the Efimov radial law is then fit to
these phase shifts in order to obtain universal scaling functions that are cutoff independent.

The kernel of the STM equation has a branch cut in the complex q-plane for energies above the three-atom threshold.
To circumvent it, we rotate the integration path by an angle φ into the fourth quadrant and integrate along a straight
line from the origin to Λe−iφ [35]. Unlike in Ref. [35], though, it is important to include the contribution from the
arc connecting Λe−iφ and Λ to obtain correct values for the cutoff dependent amplitudes.

III. RECOMBINATION RATES AND SCALING FUNCTIONS

A. Rate Constant and Threshold Behavior

A system of three atoms (A1A2A2), consisting of two atoms of species 2 with atomic number density n2 and one
atom of species 1 with number density n1, in a shallow trap can leave the trap as an A2D pair by undergoing a
three-body recombination process. For the A1A2A2 system, the recombination rate constant α is defined by

d

dt
n2 = 2

d

dt
n1 = −2αn1n

2
2 . (6)

2 One may alternatively consider 1/a∗0, the location of a recombination minimum, as a three-body parameter.
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At E = 0, the rate constant, αs, for recombination into a shallow-bound diatomic molecular state with binding
energy ED can be numerically evaluated from the A2D scattering amplitude using [20, 24]

αs = 4µA2D

√
µA2D

µ
a2

∣∣∣∣A0

(
0,

1

a

√
µA2D

µ
; 0

)∣∣∣∣2 . (7)

Its dependence on the scattering length a is given by the analytic expression [20]

αs = C(δ)
sin2 θ∗0 + sinh2 η∗

sinh2(πs0 + η∗) + cos2 θ∗0

a4

m1
. (8)

The explicit dependence on the mass ratio δ = m1/m2 is captured by the coefficient

C(δ) = 64π2
[
(1 + δ2)φ(δ)−

√
δ(2 + δ)

]
, (9)

where the phase φ(δ) = arcsin[(1 + δ)−1], and the scaling factor s0 is the solution of the transcendental equation

s0 cosh[πs0/2] sin[2φ(δ)]− 2 sinh[s0φ(δ)] = 0 . (10)

The angle θ∗0 is given by

θ∗0 = s0 ln(a/a∗0), (11)

where a∗0 is the value of the scattering length a at a recombination minimum, and it follows that Eq. (8) is a log-
periodic function of a with the period λ = eπ/s0 . The inelasticity parameter η∗ is introduced by analytically continuing
the real-valued θ∗0 to the complex value θ∗0 + iη∗, which is formally equivalent to introducing an anti-Hermitian term
in the three-body Hamiltonian [36, 37]. This is done to take into account the modification of αs by the existence of
deeply bound diatomic molecular states, which are frequently present in experimental systems. The value of a∗0 that
corresponds to a particular cutoff is determined by fitting the expression in Eq. (8) to the numerical results obtained
from Eq. (7) for η∗ = 0 over a range of a values. This gives us the proportional relationship between Λ and 1/a∗0 [3]
needed for the extraction of the universal scaling functions.

Additionally, there is a direct contribution to the total three-body recombination rate constant α due to the
formation of deeply bound diatomic molecules in the final state. The threshold expression for this contribution is
given by [20]

αd = C(δ)
coth(πs0) cosh(η∗) sinh(η∗)

sinh2(πs0 + η∗) + cos2 θ∗0

a4

m1
. (12)

The maximum threshold value of the recombination rate constant, αmaxth , is the sum of the maxima of both the shallow
and deep molecule rate constants, which occur at θ∗0 = π/2, and is

αmaxth = C(δ)
1 + sinh2 η∗ + coth(πs0) cosh(η∗) sinh(η∗)

sinh2(πs0 + η∗)

a4

m1
. (13)

Equations (8), (12) and (13) provide a useful check for our three-body recombination rate at non-zero energy, K
(J)
3 (E),

defined below.

B. Three-body Recombination and Universal Scaling Functions

The three-body recombination rate at energy E, K
(J)
3 (E), is related to the S-matrix for the inelastic A1A2A2 → A2D

scattering process. However, through the unitarity of the total S-matrix that includes both elastic and inelas-
tic contributions, we can write the recombination rate purely in terms of the S-matrix for elastic A2D scattering,

S
(J)
A2D,A2D

(E) = exp[2iδ
(J)
A2D

(E)] [25], as

K
(J)
3 (E) =

128π2µ3/2

µ
3/2
A2D

(2J + 1)

x4

(
1− |S(J)

A2D,A2D
(E)|2

) a4

2µ
, (14)

where the dimensionless scaling variable x is
√
E/ED. This relation is valid in the absence of deeply bound molecules,

the effects of which we take into account later in this subsection. The detailed derivation of Eq. (14) is given in App. A.
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1. J ≥ 1:

For each total orbital angular momentum J ≥ 1, there is one corresponding real-valued scaling function

fJ(x) = 1− e−4Imδ
(J)
A2D(E) , (15)

which allows us to obtain the J th partial-wave contribution to the three-body recombination rate. Generally, only
the first few J values are expected to be necessary before additional contributions to the total rate become negligible.
As we increase the value of J , the numerical method used to calculate the phase shifts with which we find fJ(x) loses
accuracy at small values of x, and we need to use the approximate form

fJ(x) ≈ aJx2λJ+4 + bJx
2λJ+6 , (16)

for small x, where λJ = J [25, 38], and the coefficients aJ and bJ are obtained by fitting Eq. (16) to fJ(x) data at
low x-values with small numerical uncertainties.

The energy-dependent three-body recombination rate K
(J≥1)
3 (E) is then given by

K
(J≥1)
3 (E) =

128π2µ3/2

µ
3/2
A2D

(2J + 1)fJ(x)

x4

a4

2µ
. (17)

2. J = 0:

In the J = 0 channel, the elements of the S-matrix for elastic A2D scattering are related to universal functions sij
of the scaling variable x using Efimov’s Radial Law [3],

S
(J=0)
A2D,A2D

(E) = s22(x) +
s21(x)2e2iθ∗0−2η∗

1− s11(x)e2iθ∗0−2η∗
. (18)

We obtain the complex-valued scaling functions sij(x) by temporarily setting η∗ = 0 and fitting Eq. (18) for each
x to numerical values of phase shifts obtained from Eqs. (2) and (3) for the range of a∗0 generated by varying Λ
as discussed in Sec. II. The S-wave scaling functions of the form |sij |eiθij for 40K-87Rb, 6Li-87Rb, 40K-133Cs, and
6Li-133Cs are shown in Fig. 1. Values for η∗ have been determined or estimated in either experiments or theoretical
calculations for these systems [20, 26, 39, 40] and are included in the S-wave three-body recombination rate for shallow
and deep diatomic molecules.

With the universal functions sij , we can calculate the S-wave heteronuclear three-body recombination rate K
(0)
3 (E)

from

K
(0)
3 (E) =

128π2µ3/2

µ
3/2
A2D

1

x4

(
1−

∣∣∣∣s22(x) +
s12(x)2e2iθ∗0−2η∗

1− s11(x)e2iθ∗0−2η∗

∣∣∣∣2

− (1− e−4η∗) |s12(x)|2

|1− s11(x)e2iθ∗0−2η∗ |2

)
a4

2µ
, (19)

where the third term in parenthesis in Eq. (19) arises from incorporating possible transitions from an A2D scattering
state or three-atom scattering state into an atom and a deeply bound diatomic molecule in the intermediate state.
To obtain results for a given system, we take the position of one of the recombination minima as an experimental or
theoretical input for that system.

There is an additional contribution from the formation of deeply bound molecules in the final state, whose sig-
nificance for a particular system depends on the size of η∗. These effects are subleading in the zero-range limit for
J ≥ 1 [25]. However, for J = 0, the contribution,

Kdeep
3 (E) =

128π2µ3/2(1− e−4η∗)
(

1− |s11(x)|2 − |s12(x)|2
)

µ
3/2
A2D

x4 |1− s11(x)e2iθ∗0−2η∗ |2
a4

2µ
, (20)

appears at leading order and must be added to the rate of recombination into shallow diatomic molecules in order to
obtain the full recombination rate.
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FIG. 1: S-wave universal functions for 40K-87Rb, 40K-133Cs, 6Li-87Rb, and 6Li-133Cs.

We have checked and verified the E → 0 limits of K
(0)
3 (E) and Kdeep

3 (E) given by Eqs. (19) and (20) by comparing
them to the corresponding threshold expressions given by Eqs. (8) and (12) multiplied by a factor of 2 that comes
from the statistics of the system. The total threshold S-wave recombination rate containing the contribution of both

shallow and deep states, K
(0)
3 (0) + Kdeep

3 (0), has a maximum value of Kmax
th at θ∗0 = π/2. This is related to αmaxth

defined in Eq. (13) by the relation Kmax
th = 2αmaxth .

In Fig. 2, we plot the energy dependence of K
(0)
3 (E) and Kdeep

3 (E) at various values of θ∗0 for the 40K-87Rb and
6Li-87Rb systems 3. The rates are expressed in the units of Kmax

th . The variations in the shape of the K
(0)
3 (E)

curves by up to several orders of magnitude as θ∗0 varies show that the energy dependence of S-wave recombination
into a shallow diatomic molecular state has an intricate dependence itself on the scattering length a and the scaling
parameter s0.

Figure 3 shows the energy dependence of K
(J≥1)
3 (E) for the 40K-87Rb and 6Li-87Rb systems. These are expressed

in the units of the threshold S-wave rate maximum, Kmax
th . For the 40K-87Rb system, we observe diminishing

contributions as we go to higher partial waves. This is different from the behavior of a system of three identical
bosons, in which the contribution of the J = 1 partial wave was found to be comparable to that of the J = 4 partial

wave [25]. The near-threshold energy dependence of the recombination rates K
(J)
3 (E) in Figs. 2 and 3 agrees with

the predictions given in Ref. [41]. However, we do not reproduce the dependence on the mass ratio δ suggested by
Ref. [41].

Comparing Figs. 2 and 3 informs us about the temperature scale around and above which the recombination minima
are unlikely to be measured due to large partial wave contributions. In 40K-87Rb, the J = 1 partial wave becomes
larger than the S-wave around ED and the corresponding temperature is TKRb = 0.3ED/kB ≈ 0.1 (a/a0)−2 K, where

3 Numerical data for these and other systems can be provided by the authors on request.
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FIG. 2: Left panel: The J = 0 recombination rate divided by the maximum threshold value, Kmax
th , for a variety of values of

θ∗0 in the 40K-87Rb system with η∗ = 0.05. Right panel: The J = 0 recombination rate divided by the maximum threshold
value, Kmax

th , for a variety of values of θ∗0 in the 6Li-87Rb system with η∗ = 0.2.

FIG. 3: Left panel: K
(J)
3 (E)/Kmax

th for 40K-87Rb. Right panel: K
(J)
3 (E)/Kmax

th for 6Li-87Rb.

a0 is the Bohr radius. On the other hand, in the 6Li-87Rb system it happens at a very low energy ∼ 10−3ED, which
corresponds to the temperature TLiRb = 10−3ED/kB ≈ 0.015 (a/a0)−2 K. These relations either give a maximum
scattering length below which the minima can be observed, provided that the universal region a � ` still exists, or
set a target temperature below which we may begin to observe known minima around the value of a and below.

IV. COMPARISON WITH EXPERIMENT

To make a comparison of our results with experiments we require input values for a∗0 and η∗. We calculate the
contributions from all different scattering sectors and combine them into a total recombination rate,

K3(E) =

∞∑
J=0

K
(J)
3 (E) +Kdeep

3 (E) . (21)

We then perform a thermal average over K3(E) to obtain the recombination rate constant for a specific scattering
length at a finite temperature used in relevant experiments [25],

αT ≈
∫∞

0
dE E2e−E/(kBT )K3(E)

2
∫∞

0
dE E2e−E/(kBT )

, (22)

where the coefficient 2 in the denominator is the symmetry factor.
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FIG. 4: The recombination rate constant αT as a function of the scattering length a for 40K-87Rb with η∗ = 0.05±0.02 [20] and
the three-body parameter adjusted to reproduce a recombination minimum at a∗0 ≈ 5000a0. The dashed red line at 450 nK
corresponds to the average temperature at which the data of Bloom et al. was taken [39].

The inelasticity parameter for a 40K-87Rb mixture was estimated by Bloom et al. [39] to be η∗ = 0.26 by matching
a threshold formula for the atom-molecule relaxation loss rate coefficient β to experimental data. But, they later gave
η∗ = 0.02 as a good match for their measurements of the rate constant α. The published data, though, is restricted
to a values smaller than the thermal wavelength of the atoms set by the temperature of the gas in the experiment.
Meanwhile, Helfrich, Hammer, and Petrov find η∗ = 0.05±0.02 [20] by fitting their Eq. (20) to the corresponding data
from Ref. [42]. We use the experimental value a∗ = 230± 30a0 obtained in Ref. [39] for 40K-87Rb to determine the
position of the recombination minimum a∗0 ≈ 5000a0. We achieve this by employing the 40K-87Rb universal relation
a∗/a∗0 = 0.51 exp(π/(2s0)) [20], which is exact in the zero-range limit employed in this work. Here, a∗ is the value
of a where the Efimov trimer state reaches the A2D threshold. On the other hand, Wang et al. [22] predicted from
a theoretical calculation that a∗0 = 2800a0. In their procedure to obtain this value, they set the Rb-Rb scattering
length to a22 = 100a0. The relatively large temperatures used in the experiment by Bloom et al. do not allow for
the observation of this feature. Therefore, the discrepancy between the universal prediction obtained from the value
of a∗ and the result presented in Ref. [22] cannot be addressed. We find that a temperature of approximately 10 nK
would be necessary to clearly observe recombination minima in this experiment.

Bloom et al. also gave evidence that we can neglect the 87Rb-87Rb-87Rb recombination channel due to the small
scattering length a22, with an observed ratio of 87Rb loss to 40K loss of 2.1(1) indicating that the dominant loss channel
is 40K-87Rb-87Rb recombination. We also note that the uncertainty introduced by neglecting the small scattering
length a22 in the calculation of 40K-87Rb-87Rb recombination rate is of the order of a22/a. The perturbative approach
introduced in Ref. [24] could be employed to account for such corrections as long as a22 < a.

Further, though we use the value of a∗0 ≈ 5000a0 for the position of a recombination minimum, this minimum was
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FIG. 5: The recombination rate constant αT as a function of the scattering length a for 6Li-87Rb for η∗ = 0.2 [26] with a
recombination minimum at a∗0 ≈ 610a0.

not probed in Ref. [39], since they were limited by their experimental temperature of T ∼ 300 nK to a <∼ 3000a0.4

Experimental uncertainties become quite large near and beyond this value. This means that for 40K-87Rb no Efimov
features were definitively observed for three-body recombination in currently accessed positive scattering lengths. In
Fig. 4, we show the data of Ref. [39] and our numerically obtained curves for rate constant αT , with one curve
showing the J = 0 contribution to the rate constant and another showing the total rate after summing over J . We
also include the zero temperature result obtained by summing Eqs. (8) and (12) for comparison. In each of our curves
in the figure we have selected a∗0 = 5000a0 and η∗ = 0.05. The agreement of the 450 nK curve with the experimental
data is excellent in the large a region where the neglected contributions due to finite range and finite a22 corrections
become small [24]. The size of the discrepancy at a <∼ 200a0 suggests that the latter might perhaps be more important
for this experiment than the former, since, with a quoted value of the van der Waals’ range RvdW = 72a0 [39], range
corrections are expected to be about 35%-70% in this region. Our results at lower temperatures indicate the minima
at 5000a0 can only be observed at temperatures well below 10 nK, which may not be experimentally feasible.

The similar 39K-87Rb and 41K-87Rb systems were studied by Wacker et al. [43]. For a > 0, no signatures of Efimov
resonances were seen in either mixture for accessible scattering lengths and temperatures, further demonstrating how
a large scaling factor makes the observation of universality difficult and giving a compelling argument in favor of using
systems with a larger mass imbalance such as 6Li-87Rb or 6Li-133Cs. We therefore study the effects of temperature on
the recombination rate constant for the 6Li-87Rb system in Fig. 5. We examine a couple of different sources to obtain
inputs for a∗0 and η∗. First, the 7Li-87Rb system was studied by Maier et al. in Ref. [44], and they found a value of
|a−| = 1870±121a0. They further suggest a value of a− of −1600a0 for 6Li-87Rb, which, with |a−| /a∗0 = exp(π/2s0),
gives a recombination minimum position of a∗0 ≈ 610a0. Additionally, for 6Li-87Rb, Petrov and Werner, in the
absence of any known experimental results, give η∗ = 0.2 [26]. We adopt the use of η∗ = 0.2 and a∗0 = 610a0 in

4 Although the average temperature for their experiment was around 450 nK, the data at the largest a values was taken near 300 nK.
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Fig. 5. We find that the recombination minima are obscured by the finite temperature effects, particularly by the ones
that enter in partial waves J ≥ 1, though even for the J = 0 (dot-dashed) line the second minimum is obscured. The
effects of higher partial waves begin to be suppressed below ∼ 10 nK, and the minimum at 610a0 becomes accessible
in experiments. We have perfomed the partial wave analysis shown earlier in Fig. 3 for several systems and found
that higher partial wave contributions become increasingly dominant at smaller m1/m2. Therefore, in order to see
the detailed universal behavior, it appears that one must prepare the system at very low temperatures for small mass
ratios. Illustrative plots of the recombination rate constant for two additional systems beyond those shown above are
given in App. B.

This trend stands in contrast to the suggestion of D’Incao and Esry [41] that the dominant contribution to recom-
bination in systems in which A2 is bosonic comes from the J = 0 channel. While this is certainly true when E = 0,
it does not appear to be true at all values of E, particularly for systems with small m1/m2.

V. CONCLUSION

In this work, we considered three-body recombination in heteronuclear systems with positive interspecies scattering
length at finite temperature. Using the STM equation, we obtained sets of universal scaling functions that can be
used to calculate the temperature dependent recombination rate for arbitrary values of the three-body paramater and
inelasticity parameter η∗. Every mass ratio requires a new set of scaling functions and we calculated these for various
systems of interest. We also calculated the universal scaling functions for higher partial waves that do not display
the Efimov effect but contribute to the total loss rate. Our results show that observing the Efimov effect becomes
difficult due to relatively large recombination rate contributions from higher partial wave scattering channels at
experimentally feasible temperatures. This obfuscation of S-wave universality becomes particularly acute for systems
with small m1/m2, and reduces their favorability for the experimental observation of Efimov features when a > 0. We
have compared our results with experimental results for three-body combination in an ultracold mixture of 40K-87Rb
atoms and found good agreement with the data.

In future work, we will address the impact of corrections due to the finite range of the interactions. These effects
were studied in the framework of effective field theory for identical bosons in Refs. [29, 45] and for heteronuclear
systems in Ref. [24]. Including range corrections to the temperature-dependent three-body recombination process will
enable us to understand Efimov physics even when a is not particularly large and might help us avoid the range of a
values where higher partial wave contributions are dominant. The effects of a finite intraspecies scattering length a22

have been incorporated perturbatively [24] for |a22| � |a| and T = 0 K and nonperturbatively [26] for |a22| ∼ |a| at
finite T for a < 0. But, this remains to be done for finite T when a > 0. Major extensions to the existing formalism
will be required to accomodate additional scattering channels if a22 > 0.
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Appendix A: Phase Space Factors

We calculate the three-body recombination rate by relating it to the cross section for inelastic A2D scattering,

σ
(inelastic)
A2D

. This cross section is defined as

σ
(inelastic)
A2D

=
1

2vA2D
|AA2D,A1A2A2

|2 Φ3 , (A1)

where AA2D,A1A2A2
denotes the amplitude for a transition from an A2D state to three atoms, the relative velocity

of the atom A2 and molecule D is vA2D = kE/µA2D and kE =
√

2µA2D(E + ED), and the flux factor Φ3 is the
three-body phasespace. We also include a symmetry factor of 2 into the expression for the total cross section since
we have 2 identical particles in the final state.
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Further, one can write the three-body recombination rate K3 as

K3 = |AA1A2A2,A2D|2Φ2 = 2vA2D
Φ2

Φ3
σ

(inelastic)
A2D

. (A2)

The inelastic cross section can be rewritten in terms of total and elastic ones as

σ
(inelastic)
A2D

= σ
(tot)
A2D
− σ(elastic)

A2D

= (2J + 1)

[
2µA2D

kE
ImAJ(kE , kE , E)−

µ2
A2D

π
|AJ(kE , kE , E)|2

]
= (2J + 1)

π

k2
E

[
1−

∣∣∣e2iδ
(J)
A2D(E)

∣∣∣2] , (A3)

where we used Eq. (2) to arrive at the last line. This relates the recombination rate to the phase shift (i.e. the
S-matrix element) given in Eq. (14) with a normalization factor determined by the ratio Φ2/Φ3.

The two-body phasespace Φ2 is given by

Φ2 =

∫
d3pA
(2π)3

d3pD
(2π)3

(2π)3δ(3)(pA + pD) 2πδ

(
E − p2

A

2m2
− p2

D

2(m1 +m2)
+ ED

)
=

µA2D kE
π

. (A4)

The three-atom final state phasespace factor is

Φ3 =

∫ 3∏
i=1

d3pi
(2π)3

(2π)3δ(3)(p1 + p2 + p3) 2πδ

(
E − p2

1

2m1
− p2

2

2m2
− p2

3

2m2

)
=

(µµA2D)3/2

8π2
E2 , (A5)

where the pi’s, with i = 1, 2, 3, denote the momenta of the three final state atoms. Using these phasespace factors in
Eq. (A2) leads to the final result

K3 =
16π2

(µµA2D)3/2E2
(2J + 1)

[
1− |e2iδJA2D |2

]
. (A6)

Making the substitution E = x2/(2µa2) leads to Eq. (14) .

Appendix B: Additional Systems

A few additional systems have been studied in order to facilitate a broader understanding of the significance of
higher partial wave contributions to the three-body recombination rate across a range of A1-A2 mass ratios, and the
rates for two of these are presented in Fig. 6. Lacking known values for the three-body and inelasticity parameters in
the 40K-133Cs system, we set a∗0 = 500a0 and η∗ = 0.2. For 6Li-133Cs, we use the three-body parameter a∗0 ≈ 805a0

obtained from the value a− = −1777a0 [40] via the universal relation between the two parameters. In Ref. [40],

values for η∗ were estimated at 120 nK and 450 nK and are given by η
(120)
∗ = 0.61 and η

(450)
∗ = 0.86, respectively.

For our purposes, we set η∗ = 0.2 for this system in order to clearly show locations of minima and the effects of finite
temperature and higher partial wave contributions. The two plots in Fig. 6 further illustrate the trend that systems
with more extreme mass ratios experience larger J ≥ 1 recombination rate contributions.
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FIG. 6: Left panel: Rate constant αT (a) for 40K-133Cs, with a∗0 = 500a0 and η∗ = 0.2. Right panel: Rate constant αT (a) for
6Li-133Cs, with a∗0 = 805a0 [40] and η∗ = 0.2.
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