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A method for performing a precision measurement of the Rydberg constant, R∞, using cold
circular Rydberg atoms is proposed. These states have long lifetimes, as well as negligible quantum-
electrodynamics (QED) and no nuclear-overlap corrections. Due to these advantages, the measure-
ment can help solve the “proton radius puzzle” [Bernauer, Pohl, Sci. Am. 310, 32 (2014)]. The
atoms are trapped using a Rydberg-atom optical lattice, and transitions are driven using a recently-
demonstrated lattice-modulation technique to perform Doppler-free spectroscopy. The circular-state
transition frequency yields R∞. Laser wavelengths and beam geometries are selected such that the
lattice-induced transition shift is minimized. The selected transitions have no first-order Zeeman
and Stark corrections, leaving only manageable second-order Zeeman and Stark shifts. For Rb, the
projected relative uncertainty of R∞ in a measurement under the presence of the Earth’s gravity
is 10−11, with the main contribution coming from the residual lattice shift. This could be reduced
in a future micro-gravity implementation. The next-important systematic arises from the Rb+

polarizability (relative-uncertainty contribution of ≈ 3× 10−12).

PACS numbers: 06.20.Jr, 32.80.Rm, 42.62.Fi

I. INTRODUCTION

Knowing the value of the Rydberg constant (R∞) accu-
rately has been of interest for decades due to its relation
to other fundamental constants and its role in calcula-
tions of atomic energy levels. More recently, the large
discrepancies in the proton [1, 2] and deuteron [3] radii
that were found using muonic hydrogen and deuterium,
respectively, have reinforced the need to confirm the ac-
curacy of R∞. Previous precision experiments with this
goal have involved low-lying states of hydrogen, limited
typically by statistical uncertainties, AC Stark shifts and
second-order Doppler shifts [4]. These have led to the
current CODATA relative uncertainty for the Rydberg
constant value of 5.9 × 10−12 [5]. There has also been a
study involving circular Rydberg states of hydrogen [6]
(relative uncertainty of 2.1 × 10−11) and a proposal in-
volving circular states of lithium [7] (expected relative
uncertainty of about 10−10). The approaches involving
low-lying states and circular states deal with significantly
different frequency regimes: optical versus microwave.
Therefore, measurements involving low-lying states of hy-
drogen can have a better relative uncertainty δν/ν than
results for circular states (under the assumption of sim-
ilar absolute uncertainty, δν). However, circular states
are insensitive to several systematics that are limiting
in spectroscopy of low-lying states, as discussed in this
paper. It has also been proposed to measure the Ryd-
berg constant using high-angular momentum states of
hydrogen-like ions [8].

We propose an experiment to obtain an indepen-
dent measurement of the Rydberg constant using cold,
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FIG. 1. (color online) Normalized probability density, |ψ|2,
for the circular state (bottom) and near-circular state (top)
of the transition of interest in the proposed experiment. The
kets are labeled in principal, parabolic and magnetic quantum
numbers, n, n1, n2, m [9]. Near the Rb+ core, |ψ|2 = 0 for
both states. The signs refer to the polarity of ψ. It is seen
that the transition requires a quadrupolar interaction.

trapped circular Rydberg atoms. Transitions are driven
using a recently-developed spectroscopic method, which
is based on lattice modulation at microwave frequencies
[10]. The critical advantages of circular states, in com-
parison with low-lying states of hydrogen, are their long
radiative lifetimes (on the order of ms) [11], their small
QED corrections [12], and the absence of any overlap
with the nucleus, hence eliminating nuclear charge dis-
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tribution effects (see Fig. 1).
In contrast with previous efforts to measure R∞ [4, 13],

it is proposed to trap cold Rydberg atoms using a pon-
deromotive potential optical lattice (POL) [14] instead of
using cold atomic beams. Trapping the atoms allows for
increased interaction times. The light shift introduced by
the lattice trap can be addressed by the use of “magic”
conditions under which the trap-induced shifts of upper
and lower states cancel [15]. Residual imperfections in
the magic-lattice trap can be addressed by performing
the experiment under micro-gravity conditions, which al-
low for an overall reduction in the magic-lattice shift.

A key method is ponderomotive spectroscopy [10],
which allows for circular-to-near-circular transitions to
be driven by amplitude-modulating the ponderomotive
optical lattice. The method permits us to drive the
quadrupolar transition needed in our work as a first-order
process and to eliminate Doppler broadening. By driving
transitions between states of the same magnetic quantum
number, we eliminate the first-order Zeeman effect. To
obtain a zero first-order Stark shift, we select states with
parabolic quantum numbers n1 = n2.

In these ways, the proposed experiment addresses im-
portant issues that have been encountered in preceding
Rydberg constant measurements. In addition, due to
the elimination of nuclear charge overlap, the measure-
ment of R∞ is also independent of the radius of the pro-
ton. Overall, a relative uncertainty of 10−11 is expected,
which would already be enough to shed light onto the
proton radius puzzle. An improvement beyond the cur-
rent CODATA uncertainty, δν/ν = 5.9 × 10−12 [5], is
possible by an implementation of the experiment under
micro-gravity conditions.

II. PROPOSED EXPERIMENTAL OUTLINE

A. Atom Preparation and Spectroscopy

We use cold atoms to reduce interaction-time broad-
ening and to limit the interaction volume, thereby reduc-
ing field inhomogeneity effects. We propose to use 85Rb
atoms, pre-cool them in a MOT to ∼ 100 µK, and fur-
ther cool them to ∼ 10 µK and ∼ 1 µK in bright and
gray optical molasses, respectively [16, 17]. Further, the
proposed experiment has to be conducted at very low
density, as one needs to eliminate Rydberg-ground and
Rydberg-Rydberg collisions, as well as radiative effects
such as super-fluorescence, to a sufficient degree. We
anticipate Rydberg-atom densities of ∼ 103 cm−3 and
ground-state atom densities of <∼ 108 cm−3. The com-
bination of low atom temperature and density results in
negligible van-der-Waals shifts, and collision probabilities
over the anticipated atom-field probe time (∼ 10 ms).

In order to circularize atoms, we use a modified adia-
batic rapid passage (ARP) method [18, 19]. The modi-
fied ARP adds a weak magnetic field to further lift de-
generacies in ml and hence prevent unwanted transitions
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FIG. 2. (color online). a) Excitation scheme used to pre-
pare atoms before circularization. b) After circularization,
the transition between an initial, circular state and a final,
near-circular state (expressed using parabolic quantum num-
bers |n, n1, n2,ml〉) is driven by ponderomotive spectroscopy,
indicated by the curly arrow. c) Parallel stabilization fields,
F and B, define the quantization axis (z-axis) of the atoms.
The angles between different pairs of counter-propagating lat-
tice beams, αi, can be varied to change the periodicities of the
lattice in the ith direction.

to lower ml states. This method in Rb requires that
the Rydberg atoms are initially prepared in ml=3. We
employ a three-level excitation scheme, 5S1/2 → 5P3/2

(wavelength of 780 nm), 5P3/2 → 5D5/2 (776 nm), and
5D5/2 → nF7/2 (1260 nm) (see Fig. 2a). The mod-
ified ARP circularization method is optimal for states
n <∼ 50 (our case). In a recent implementation of a high-
field variant of the method, fully coherent and repeatable
preparation of circular Rydberg states has been demon-
strated [20]. If much higher principal quantum numbers
were desired, the “E×B” method [21, 22] could be used.

In order to take advantage of the circular atoms’ long
lifetimes (tens of ms at 4 K), it is necessary to trap the
Rydberg atoms. To achieve this, a three-dimensional
standing-wave optical lattice is adiabatically turned on,
and the atoms are trapped via the ponderomotive po-
tential [23] (see Fig. 2c). This ponderomotive poten-
tial emerges from the last term in the minimal-coupling
Hamiltonian (in SI units),

Ĥ =
1

2me
(2|e|A(r̂) · p̂ + e2A(r̂) ·A(r̂)), (1)

which is proportional to laser intensity and arises when
a quasi-free Rydberg electron is placed in a rapidly oscil-
lating field. Here, A(r̂) is the vector potential of the op-
tical field, p̂ is the momentum operator, r̂ is the position
operator, me is the electron mass and e is the electron
charge. For non-degenerate states in a monochromatic
lattice, the adiabatic trapping potential is given by

Vad(R) =
e2

2me

∫
|ψ(r)|2|A(r + R)|2d3r, (2)

where R is the atomic center-of-mass position.
Several experimental parameters such as wavelength,

intensity ratios and angles of each lattice axis can be ad-
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justed to attain a “magic” condition for the desired tran-
sition (equal potentials for lower and upper states). To
illustrate the effects of changing the lattice wavelength
in a simple one-dimensional lattice, in Fig. 3a we show
adiabatic lattice-potential depths obtained from Eq. 2
for the two states of interest, n=51 and n=53, as a func-
tion of wavelength. In the figure it is seen that for the
two states considered there are two options to achieve
magic conditions, 290 nm and 532 nm. For the proposed
experiment we choose a 532-nm lattice.

The same ponderomotive term that traps atoms is
also used to drive transitions between circular and near-
circular states [10]. In ponderomotive spectroscopy, the
optical-field intensity varies substantially within the vol-
ume of the atom, and the lattice amplitude modulation
frequency is resonant with an atomic transition or a sub-
harmonic of it [24]. In the proposed experiment, the spa-
tial variation of the lattice is about the same as the size
of the atom, and the lattice-amplitude modulation fre-
quency (atomic transition frequency) is about 100 GHz.
Finally, the population transfer between initial and fi-
nal states is measured using state-selective field ioniza-
tion [11].

The proposed experiment occurs inside a cryogenic en-
closure that provides a radiation temperature near 4 K.
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FIG. 3. (color online) a) Ponderomotive adiabatic potential
depth (in units of the free electron potential, Vp, the energy
of a free electron in the lattice laser field) as a function of
wavelength for the two states of interest in a one-dimensional
lattice formed by counter-propagating beams (α = 0). The
points at which the two plots cross are the “magic” wave-
lengths for this particular pair of states. The magic wave-
length we choose for this experiment is shown with a white
dashed line, and it occurs at about 532 nm. b) Schematics
of the projection of the wavefunction density onto the lattice,
as the wavelength is varied and the atom size remains fixed.
Labels I, II and III correspond to those in part a). The os-
cillatory behavior and flip in signs in a) are related to how
many lattice periods fall within the volume of the atom [14].

This is done to decrease blackbody radiation effects,
which reduce the Rydberg-state lifetimes [11] but cause
only minor shifts of the transition frequencies of interest
(see section III.G).

B. Stabilization Fields

The <∼2n2-fold degeneracy of the circular and hy-
drogenic states must be lifted using stabilization fields.
To stabilize the circular Rydberg states against state-
mixing, we employ an electric field, F , and a weak, par-
allel magnetic field, B (B/2 < (3/2)nF < n−3, in atomic
units). This stabilization method is suitable for high-
precision spectroscopy [6, 23].

In order to probe the atoms, we trap them in a pon-
deromotive potential. The ponderomotive shift must be
smaller than the shift caused by the stabilizing electric
and magnetic fields [23]. The potential must also be deep
enough to trap atoms at their thermal kinetic energy.
Hence, the laser-cooling temperature sets minimum val-
ues for the fields that we use in both trapping and sta-
bilization of our states. The hierarchy of shifts is shown
in Table I for MOT temperatures (∼ 100µK), tempera-
tures in gray optical molasses (∼ 1µK) [16, 17] and Bose-
Einstein condensate (BEC) temperatures (∼ 10 nK). Ta-
ble II shows the corresponding typical field magnitudes
and provides guidance in designing the circular-state sta-
bilization scheme.

TABLE I. Hierarchy of level shifts in three atomic tempera-
ture regimes.a

T (µK) Thermal Energy b POL Magnetic Electric

100 1000 3100 9400 28000

1 10 31 94 280

0.01 0.1 0.31 0.94 2.8
a All energies are expressed in kHz.
b Thermal Energy = kBT/2.

TABLE II. Magnetic and electric fields suitable for three
temperature regimes. The fields satisfy optical-trap depth
≈ kBT < B/2 < (3/2)nF , for n=51.

T (µK) Magnetic Field (mT) Electric Field (mV/cm)

100 0.67 290

1 6.7× 10−3 2.9

0.01 6.7× 10−5 0.029

Since we are always in the Paschen-Back regime of the
fine structure (see sections III B and E), we use the basis
set {|n, n1, n2,ml,ms〉} [9] throughout this paper, where
n1 and n2 are parabolic quantum numbers.

Parabolic and spherical bases are related by [11]

|n, n1, n2,ml〉 =
∑
l

Cn1,n2

l,ml
|n, l,ml〉, (3)
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where the Clebsch-Gordan coefficients are related
to the Wigner 3J symbols by [11] Cn1n2

lml
=

〈n, n1, n2,ml|n, l,ml〉,

Cn1n2

lml
= (−1)(1−n+ml+n1−n2)/2+l

√
2l + 1

×

(
n−1

2
n−1

2 l
ml+n1−n2

2
ml−n1+n2

2 −ml

)
.

(4)

Note that for the states in Figs. 1, 2 and 3, the sum over
l has at most two non-zero terms.

III. ENERGY SHIFTS

In this section we discuss the various energy-level
shifts; the results are summarized in the discussion (sec-
tion IV).

A. Lattice-Induced Shift

In its interaction with the optical-lattice field, the
Rydberg electron behaves as a quasi-free particle.
For a plane-wave linearly-polarized field of the form
x̂FL(r) sin(ωt) (x̂ is a unit vector), Eq. 1 leads to the
free-electron ponderomotive potential

Vp =
e2|FL(r)|2

4meω2
, (5)

where ω is the angular frequency of the laser electric field
and |FL(r)|2 is proportional to the spatially-varying field
intensity [25]. The ponderomotive potential is the aver-
age kinetic energy of the free electron in the lattice laser
field, and it is polarization- and phase-independent.

The position-dependent ponderomotive potential,
Vp(r̂ + R), is added as a perturbation to the Rydberg
electron’s Hamiltonian. Diagonalization of the Rydberg
Hamiltonian yields the Born-Oppenheimer (BO) adia-
batic potential surfaces, Vp(R), for the atom’s center-
of-mass motion, as well as the associated adiabatic
Rydberg-electron wavefunction, ψ(r;R) [23].

Generally, ψ(r;R) is unknown and must be simulta-
neously solved for along with the BO potentials [26]. In
our regime, where the shifts due to the parallel electric
and magnetic stabilization fields dominate the optical
shifts, the adiabatic states are given by the parabolic ba-
sis states, |n, n1, n2,ml,ms〉. This greatly simplifies the
calculation of the BO adiabatic potential because ψ(r;R)
is no longer dependent on R. Since in our case, the op-
tical lattice is formed by three sets of lattice beams (see
Fig. 2), the three-dimensional BO adiabatic potential fol-
lows from

Vad(R) =

∫
d3r

∑
i

e2|FLi cos(∆ki · (R + r))|2

meω2
i

× |ψn,n1,n2
(r)|2.

(6)

FIG. 4. (color online) Effects of wavefunction projections on
the depth of the BO adiabatic potential for a 532-nm lat-
tice extending along x and z, with single-beam intensities
4 × 109 W/m2 (αi = 0). a) Alignment of the optical-lattice
standing-waves and the circular-state probability distribution.
The amplitude of the z-direction lattice is modulated in time.
b) Projections of |ψ|2 along x and z. The overlap of the pro-
jections with the optical-lattice standing waves determines
the BO adiabatic trapping potentials along the respective co-
ordinate directions (see Eq. 6). c) Trapping potentials (as
a function of the center-of-mass position of the atom) calcu-
lated from Eq. 6; the zero position corresponds to a lattice
field node. The different depths and phases are a result of the
quite distinct wavefunction projections onto x and z.

In the integral in Eq. 6, |ψn,n1,n2
(r)|2 acts as a weight-

ing factor. There, i is the summing index over optical-
lattice directions (for a 3D lattice, i = 1, 2, 3), which need
not be orthogonal to each other; FLi is the field ampli-
tude of a single beam; ψn,n1,n2

(r) is the R-independent
Rydberg electron wavefunction; r is the valence electron
(relative) position, ωi is the angular frequency of the lat-
tice beam; and |∆ki| = |ki1 − ki2| = 2kicos(αi/2), where
ki1 and ki2 are the wavevectors corresponding to the pair
of lattice beams along the ith direction, and αi is the
angle between a pair of counter-propagating beams (see
Fig. 2c).

The ratio of laser intensities of the lattice axes (up
to three) and the aspect ratio between the atom’s size
(defined by its known state) and the optical lattice peri-
odicities (defined by λi and αi) (Fig. 3 and Fig. 4) can
be experimentally controlled. This allows us to vary the
depth and the minimum potential value of Vad(R) (see
Fig. 3) and to realize a “magic”-lattice condition (where
the two states in the transition experience the same en-
ergy shift in the BO potential Vad(R)).

Experimental considerations suggest to use αi = 0 and
to choose common laser wavelengths λi, leaving the in-
tensity ratios and the atomic quantum numbers to at-
tain a magic condition. Here we consider the n = 51 →
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n = 53 transition, which, as seen in Fig. 3, has a magic
wavelength at about 532 nm (the second harmonic of
a ND:YAG laser). Using a magic lattice, most of the
lattice-induced shift in the proposed experiment can be
eliminated (see section IV.A).

B. First-Order Zeeman and Stark Shifts

To avoid undesired state-mixing due to minute stray
electric and magnetic fields, stabilization fields must be
applied to the atoms. The most suitable stabilization
scheme is one where (3/2)nF > B/2, in atomic units
(see section II.B). The Stark Hamiltonian for an electric
field, F, pointing along z is

ĤS = Feẑ, (7)

where ẑ is the z-component of the position operator. In
the basis of parabolic states, |n, n1, n2,ml〉, with quan-
tization axis along z, the first-order eigenvalues of the
Stark Hamiltonian are

ES =
3

2
Fea0n(n1 − n2). (8)

The states and transitions in this work are of the type
|n, 0, 0, n− 1〉 ↔ |n+ 2, 1, 1, n− 1〉; in this case the linear
Stark shifts for both levels, as well as for the transition,
are identical zero.

We apply a weak magnetic field, B, in the z-direction
that removes the remaining degeneracies between states
of interest and other Stark levels. This results in a Zee-
man Hamiltonian

ĤZ =
Be

2me
(gLL̂z + geŜz), (9)

where ge is the electron spin g-factor, gL is the electron’s
orbital g-factor (gL = 1) and L̂z and Ŝz are the orbital an-
gular momentum and spin angular momentum operators,
respectively. In the Paschen-Back regime, the parabolic
states with spin, |n, n1, n2,ml,ms〉, are eigenstates of the
Zeeman Hamiltonian. This shift is given by

EZ =
Bh̄e

2me
(ml + gems), (10)

where h̄ is the reduced Planck’s constant. Since ml and
ms are equal for both states involved in the transition
considered, the linear Zeeman shift of the transition is
zero.

It is critical that the angle between the electric and
magnetic field be close to zero for this to hold, since any
departure from zero would introduce x- or y-components
of the fields, leading to the appearance of additional
second-order shifts. These can be estimated using Eq.
2.15 in [6], which yields an upper limit for the allowed
angular misalignment between the fields of about one
degree. In experimental implementations, this angle can

be minimized by performing spectroscopy of very-high-
n Rydberg levels in near-parallel electric and magnetic
fields as a function of the angle between the fields. Zero
angle corresponds to extrema of the spectral-line posi-
tions.

C. Second-Order Stark and Diamagnetic Shifts

Second-order perturbation theory for the Stark effect
Hamiltonian yields an energy shift of [6, 11]

ESS =
−4πε0a

3
0F

2n4

16

×
[
17n2 − 3(n1 − n2)2 − 9m2

l + 19
]
,

(11)

which is small (see Table III). The diamagnetic Hamil-
tonian is

ĤD =
e2B2

8me
(x̂2 + ŷ2), (12)

where x̂ and ŷ are the x and y-direction position opera-
tors. This Hamiltonian can be rewritten in the spherical
basis as

ĤD =
e2B2

8me
(r̂2 sin2 θ̂), (13)

where the operator θ̂ is the angle with respect to the z-
axis. Using Eq. 13, we obtain a diamagnetic energy shift
of

ED =
∑
l

e2B2

8me
|Cn1n2

lml
|2
〈
nlml|r̂2 sin2 θ̂|nlml

〉
, (14)

where the angular matrix elements are given in [9] and
the radial matrix elements can be computed numerically.
As shown in Table III, these second-order shifts lead to
uncertainty contributions below the current uncertainty
goal.

D. Quantum Defects

In alkali atoms, polarization and penetration quantum
defects are introduced as corrections to the hydrogenic
eigenvalue [11, 27]

E = −hcRRb
1

(n− δl)2
, (15)

where c is the speed of light, n is the principal quantum
number, RRb = M

me+M R∞ (M is the mass of Rb+) and
δl is the quantum defect. This δl can be expressed as the
sum of the polarization and penetration quantum defects,
δl = δpol + δpen, which is commonly expanded by using
the Rydberg-Ritz formula [11].
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This δl decreases significantly with increasing l. In
the proposed experiment, where transitions from circular
to near-circular states are driven, δpen = 0 because the
probability density of circular Rydberg states is zero in
the ionic core region (Fig. 1). Core polarization, how-
ever, must still be considered, with the shift due to the
effective dipole polarizability, α′d, being the leading term,
followed by an almost negligible shift due to the effective
quadrupole polarizability, α′q. The effective polarizabili-
ties consist of the DC polarizability and a non-adiabatic
correction. The polarization potential is given by [28]

V̂pol =
−e2

16π2ε20

[
1

2

α′d
r̂4

+
1

2

α′q
r̂6

+ ...

]
, (16)

where the values of α′d and α′q are obtained from [29] and
can be converted to SI units [30]. For l � n, δpol cor-
responding to this potential is approximately (in atomic
units)

δpol ≈
3

4

α′d
l5

[
1−Od

(
l2

n2

)]
+

35

16

α′q
l9

[
1−Oq

(
l2

n2

)]
,

(17)

where the O(l2/n2) terms are corrections that can be ex-
actly resolved by using the analytically known expres-
sions for

〈
r−4
〉

and
〈
r−6
〉

(see appendix of reference
[27]). Since in the proposed experiment high-angular-
momentum states are employed, the exact analytic ex-
pressions for

〈
r−4
〉

and
〈
r−6
〉

need to be used.
The quadrupole term in Eq. 16 becomes negligible at

large r values such as the ones found in circular Rydberg
states. The dipole polarizability term needs to be care-
fully considered as it leads to corrections of the order of
several kHz.

1. Polarizabilities

The polarizabilities in the polarization quantum defect
are not well known. The most recent experimental limits
are α′d = 9.12 and α′q = 14 (in atomic units) [29], which
are not consistent with previous theory work [31, 32] for
the dipole and quadrupole polarizabilities, respectively.
The current uncertainties in the experimental values of
polarizabilities are of order 10−3, which lead to a relative
uncertainty of the order of 10−12 in the proposed Ryd-
berg constant measurement, making this one of the main
sources of uncertainty.

2. Non-adiabatic Effects

The quantum defect theory discussed so far assumes
that the Rb+ response to the Rydberg electron’s field is
adiabatic. However, this is not necessarily the case. The

non-adiabaticity of the electron’s motion makes it neces-
sary to redefine V̂pol [33] and hence the polarizabilities
as

V̂pol =
−e2

16π2ε20

[
1

2

αd y
d
0

r̂4
+

1

2

αq y
q
0 + αd y

d
1

r̂6
+ ...

]
, (18)

where yd0 , yd1 , and yq0 vary slowly with n and l. Compar-
ing this expression to Eq. 16, we see that the corrected
and the adiabatic polarizabilities are related as follows:
α′d = yd0αd, α

′
q = yq0αq + yd1αd [27]. Using Ref. [34] the

corrected dipolar and quadrupolar polarizabilities can be
calculated for 85Rb. The experimental values of the po-
larizability used for this work already include the non-
adiabatic correction.

E. Fine Structure Correction

For Rydberg atoms with large l, the form of the fine-
structure shift is the same as for the hydrogen atom.
It has two contributions, the relativistic mass correction
and the spin-orbit coupling [35]. The spin-orbit Hamil-
tonian is

ĤSO =
αh̄

2m2
ec

1

r̂3
L̂ · Ŝ, (19)

where α is the fine-structure constant. In the Paschen-
Back regime (our case) the fine-structure-induced correc-
tion to the energy levels is

ESO =
α4mec

2

2

∑
l

|Cn1n2

lml
|2 mlms

n3l(l + 1)(l + 1
2 )
. (20)

The relativistic contribution to the fine-structure shift
results from expanding the expression for the relativis-
tic kinetic energy of a particle. This yields a correction
Hamiltonian of [35]

Ĥrel = − p̂4

8m3
ec

2
. (21)

Following the same procedure presented in [35], in first-
order perturbation theory the relativistic shift is

Erel = −α
4mec

2

2

∑
l

|Cn1n2

lml
|2

×
[

1

n3(l + 1
2 )
− 3

4n4

]
.

(22)

Putting both terms together we obtain the fine-
structure energy shift

EFS = −α
4mec

2

2n3

∑
l

|Cn1n2

lml
|2

×
[

−mlms

l(l + 1)(l + 1
2 )

+

(
1

(l + 1
2 )
− 3

4n

)]
.

(23)

For our states of interest, the relativistic correction is
around 6 kHz while the spin-orbit correction is around
200 Hz.
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F. Quantum Electrodynamic Corrections

Quantum electrodynamics (QED) introduces the self-
energy and the vacuum polarization QED corrections,
which together form the Lamb shift. For circular Ryd-
berg states, a first-order account of QED corrections is
sufficient; the result is

ELamb =
8Z4α3

3πn3
hcR∞

∑
l

|Cn1n2

lml
|2

×
[
L(n, l) +

3

8

clj
2l + 1

]
,

(24)

where

clj =

{
(l + 1)−1 for j = l + 1/2

−l−1 for j = l − 1/2
(25)

The Bethe logarithm is L(n, l) [36], which can be extrap-
olated for n ≥ 4, l ≥ 3 as

L(n, l) =
0.1623834

2l + 1

[(
1

l

)3/2

−
(

1

n

)3/2
]

×

[
1±

(
1

2
− 1

4

(
l + 1

n

)3/2
)]

.

(26)

The first term in Eq. 24 corresponds to vacuum polar-
ization and the second term to the self energy. The latter
gives rise to the anomalous magnetic moment of the elec-
tron. The electron’s g-factor is 2+α/π (to lowest order).
This changes the electron’s magnetic moment, leading to
the second term in squared brackets in Eq. 24, which is
equivalent to accounting for the lowest-order correction
of the electron’s g-factor in Eqs. 19 and 20.

In Eq. 24, the self-energy term is typically two orders
of magnitude higher than the vacuum polarization term,
with the values of the circular state of interest being
0.59 Hz and 1.1 mHz, respectively, and values for the
near-circular state being 0.31 Hz and 0.89 mHz. These
corrections are small and lead to a small transition energy
shift due to the Lamb shift as shown in Table III.

G. Blackbody Shift

Blackbody radiation has two effects on Rydberg atoms:
the on-resonant portion affects their lifetime and the off-
resonant portion can cause an energy shift [37]. Since
Rydberg-Rydberg transition frequencies are in the range
of thermal blackbody radiation, thermal transitions lead
to a lifetime reduction. For instance, the lifetime of the
n = 50 circular state is reduced from 30 ms at 0 K to
10 ms at 4 K. Since both states in the transition of in-
terest (Fig. 1) are affected by this lifetime reduction, we
expect a linewidth in the range of 30 Hz, which is suffi-
ciently narrow for the current purpose.

The blackbody shift caused by the off-resonant portion
is potentially of greater concern. The blackbody energy
shift is given by

EnlBBR =
e2

h̄

∑
n′,l′

∫ ∞
0

|Rn′l′

nl |2|Fb|2∆ω

2(∆ω2 − ω2
b)

dωb, (27)

where ωb is the angular frequency of the blackbody ra-
diation, |Fb|2 is the blackbody field-amplitude squared

per frequency unit, Rn
′l′

nl is the radial matrix element,
and ∆ω is the transition angular frequency difference be-
tween the final and initial states being considered. The
field amplitude, |Fb|2, can be obtained using the spectral
energy density form of the Planck radiation law

|Fb|2 =
2h̄ω3

b

ε0π2c3(eh̄ωb/kBT − 1)
, (28)

where kB is Boltzmann’s constant and T is the temper-
ature. Eq. 27 has an implicit dependency on the states
being considered since ∆ω is defined by the transition in
question.

Approximations for the limiting cases of Eq. 27 are
given in [11]. In our case, the transition frequency of
interest is about 100 GHz, which is on the order of the
peak of the radiation spectrum at 4 K. As a result, in
order to calculate the blackbody shift, Eq. 27 has to be
explicitly evaluated. For treating parabolic states, Eq. 3
can be used.

H. Hyperfine Structure Correction

The interaction of the nuclear magnetic moment with
the magnetic field caused by the valence electron gives
rise to the hyperfine-structure Hamiltonian [38]

ĤHFS =
µ0gIe

2

4πmemp

(
L̂ · Î
2r3
− ge

4r3
Ŝ · Î

+
ge

4r3
3(Ŝ · r̂)(Î · r̂) +

ge

3

δ(r)

r2
Ŝ · Î

)
,

(29)

which acts on the space {|n, n1, n2,ml,ms,mi〉}, where
mi is the nuclear magnetic quantum number. Above, µ0

is the permeability of free space, gI is the g-factor of the
nucleus, mp is the mass of the proton, Î is the nuclear
spin operator and δ(r) is the Dirac delta function. The
last term in the Hamiltonian is a contact term, where
the energy depends on the wavefunction density at the
position of the nucleus, which is zero for the states we
consider in this experiment (Fig. 1).

Noting that the hyperfine structure is in the Paschen-
Back regime and using first-order perturbation theory
and the analytic expression given in [9] for the r−3 matrix
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elements, we obtain a hyperfine energy shift of

EHFS = mi

∑
l

|Cn1n2

lml
|2

a3
0n

3(l + 1)(l + 1
2 )l

× µ0gIh̄
2e2

8πmemp

(
ml −

gems

2

×
[
1− 3

2l2 + 2l − 2m2
l − 1

(2l + 3)(2l − 1)

])
,

(30)

which leads to a negligible energy shift (see Table III).

I. Doppler Effect

To drive transitions, one of the components of the
optical lattice is amplitude-modulated (see Fig. 4; opti-
cal carrier angular frequency ω and modulation angular
frequency Ω). Ponderomotive spectroscopy involves the
inelastic scattering of two counter-propagating optical-
lattice photons of angular-frequency difference Ω [39],
which is at the atomic transition frequency. In tra-
ditional Raman spectroscopy with counter-propagating
beams, the Doppler shift between the drive frequency
experienced by the atoms, Ω′, and Ω would follow the
expression

Ω′ − Ω ≈ −2ωk̂ · v
c

+
Ω

2

v2

c2
, (31)

where v is the center-of-mass velocity of an atom and the

unit vector k̂ marks the direction of propagation of the
beams. While the second-order Doppler effect is entirely
negligible at MOT temperatures, the first-order Doppler
effect would lead to a shift of about 20 kHz (for temper-
ature of 1 µK). In ponderomotive spectroscopy Eq. 31
does not apply. While it approximately accounts for
the overall widths of the spectra (indicated by the ar-
rows in Fig. 5), it fails to describe the central, narrow
peak observed in ponderomotive spectroscopy. There,
the cooling and trapping of the atoms in a magic lat-
tice [24], combined with the fact that the phase of the
Rabi frequency is constant within a potential well, allow
us to achieve Doppler-free, Fourier-limited line-widths of
the central peak (see Fig. 5). This has already been
seen in a simulation in [24]. The underlying effect that
gives rise to the Doppler-free characteristics is somewhat
akin to Doppler-free two-photon spectroscopy, where the
spatially-varying phase of the atom-field interaction is
canceled when the two photons effecting the transition
are from counter-propagating beams.

In order to model the spectra, we employ a simula-
tion program that treats the center-of-mass dynamics
of the atoms (due to lattice-induced forces) classically
and the internal, modulation-driven dynamics quantum-
mechanically [10, 24, 40]. The effects of temperature on
the population fraction that becomes excited into the
upper state are shown in Fig. 5 for a potential depth
of 35 kHz in a one-dimensional lattice. The central,

- 1 0 0 - 5 0 0 5 0 1 0 0
0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 3

0 . 4

0 . 5

3 0 0  k H z

P e

D e t u n i n g  ( k H z )

2 0  k H z

FIG. 5. (color online) Simulation of the excited-state pop-
ulation, Pe, as a function of detuning for two temperature
regimes: 100 µK (red dashed line) and 1 µK (blue solid line)
for a potential depth of 35 kHz (motivated by Table I) and
an interaction time of 5 ms. The inset shows that the widths
of the narrow features at the center are Fourier-limited. The
arrows indicate the approximate half widths of the Doppler-
broadened background signals.

Fourier-limited features shown correspond to trapped
atoms (no Doppler effect). As the temperature is low-
ered, the fraction of atoms trapped in the optical-lattice
wells increases, leading to a corresponding increase of the
area under the central peaks in Fig. 5. For a substan-
tial number of atoms to be captured, molasses tempera-
tures are required, as shown in Fig. 5. At 100 µK, only
about 6% of the population is trapped, whereas 1 µK
yields 51% trapped population. When temperatures are
lowered, the full width of the Doppler-broadened back-
ground signal is ≈ 4vω/πc, where the thermal velocity

v =
√
kBT/Matom (see Eq. 31). The gaps between the

central peak and the onset of the Doppler background
reflect the fact that atoms within a range of velocities
are trapped. The trapped atoms experience no Doppler
shift and generate the Fourier-limited feature at the cen-
ter of the spectrum. They essentially undergo recoil-free
absorption within the lattice wells. A more complete dis-
cussion of this topic will be given in a future paper.

IV. DISCUSSION

In Table III, we summarize the sources of frequency
shifts and their respective relative uncertainties for the
sample atomic transition |51, 0, 0, 50〉 → |53, 1, 1, 50〉 con-
sidered in this paper. These lead to an expected relative
uncertainty in the proposed measurement of the Rydberg
constant in the low 10−11 range. In the following, we dis-
cuss the leading sources of uncertainty and how these can
be improved in order to attain a state-of-the-art uncer-
tainty. In contrast with measurements performed with
low-lying states of hydrogen (from which the best cur-
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TABLE III. Transition frequency shifts, relative transition shifts and relative uncertainties for ground-based experiment under
conditions suitable for a kinetic temperature of 1 µK. Reduced shifts and uncertainties, which may be achieved under micro-
gravity conditions, are shown in square brackets for a temperature of 10 nK. The second-order Stark and diamagnetic shifts
are lowered under these conditions since the field values are determined based on the kinetic temperature of the atoms (see
section II.B). Here, we use ms = 1/2.

Source ∆ν ∆ν/ν δ∆ν/ν (×10−12)

Residual Lattice Shift 0 (3) Hz 0 32

[0 (0.1)] Hz [1.0]

Dipolar Polarization Quantum Defect 120.1(3) Hz 1.283× 10−9 2.8

2nd order Stark -6.8 (1) Hz −7.3× 10−11 1.5

[-0.73 (1) mHz] [1.6× 10−4]

Diamagnetic 0.94 (4) Hz 1.0× 10−11 0.4

[94 (4) µHz] [4.0× 10−5]

Mass Correction -605.08747 (3) kHz 6.4606271× 10−6 0.3

Lamb Shift -84.1 (5) mHz −8.98× 10−13 5.0× 10−3

Blackbody a 0.64 (6) mHz 6.8× 10−15 6.2× 10−4

Quadrupolar Polarization Quantum Defect 26 (5) µHz 2.8× 10−10 6.0× 10−5

2nd order Doppler 0.05 (7)nHz 5× 10−22 7.3× 10−10

Fine Structure 488.0332466612(5)Hz 5.210818188587× 10−9 1.6× 10−9

Hyperfine Structure 32.89402(7) µHz 3.512153× 10−16 7.2× 10−12

1st order Stark 0 0 0

and Zeeman 0 0 0

1st order Doppler 0 0 0
a at 4 K.

rent uncertainty of 5.9 × 10−12 is obtained), our mea-
surement is independent of nuclear effects and therefore
could contribute to solving the proton radius puzzle [41].

A. Main sources of uncertainty

The main source of uncertainty on the proposed
ground-based experiment is the residual lattice-induced
shift. The residual lattice shift amounts to a differen-
tial ponderomotive shift between upper and lower Ryd-
berg states in our ponderomotive-optical-lattice trap. Af-
ter minimizing this shift by choosing magic-lattice con-
ditions, we estimate a remaining relative uncertainty
of 3.2×10−11, due to laser intensity fluctuations. This
uncertainty value is obtained assuming a 1% lattice-
intensity uncertainty (better stabilities are likely possi-
ble). The lattice shift results presented in Table III are
obtained through simulations based on Eq. 6 where we
specify the two atomic states of interest, arbitrary laser-
beam geometry, wavelengths and intensities of the beams
that form the lattice. For these calculations, it is as-
sumed that the alignment between the normal vectors of
the lattice planes and the quantization axis is perfect.
As suggested by Fig. 4, conditions can be chosen such
that one pair of lattice beams causes a transition shift
with a different polarity than that due to another pair
of lattice beams, such that the induced shifts can cancel
each other out. To achieve this type of magic lattice, the

intensity of one of the beams is adjusted until the calcu-
lated transition lattice shift reaches zero. In Table III,
the corresponding uncertainties are generated by the as-
sumption that the intensities can be controlled with a 1%
relative uncertainty.

Smaller uncertainties are possible through the use of
shallower lattices and fewer laser beams. To achieve this,
lower atomic temperatures are needed, for which other
well-known cooling methods can be employed [42]. More-
over, for a similar experiment in micro-gravity conditions,
the depth of the lattice could be further decreased or
even only used for driving transitions. This reduction
of the lattice-induced uncertainty may be the only im-
provement necessary to achieve a competitive Rydberg-
constant measurement. In Table III, lattice-shift esti-
mates are presented for two cases of the lattice depth,
one suitable for ground-based experiments and the other
for micro-gravity experiments. Table III also shows that
the lattice-induced shift represents the by far dominant
source of systematic uncertainty and needs to be ad-
dressed first in any incremental improvement of the ex-
periment.

The next-significant systematic shift arises from the
dipole polarizability of the ionic core (see Table III),
which currently stands at 9.12(2) [29], with experiments
underway to improve the uncertainty in this value [39].
The uncertainty due to the quadrupolar energy level shift
is negligible in the overall uncertainty budget, because of
the 1/r6 dependence of that shift [43, 44].

The quantum defect corrections are due to deviations
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from the hydrogenic 1/r potential. This applies to both
the penetration [11] (zero for the case of circular states)
and the polarization quantum defects. This issue could
be avoided in the first place by using hydrogen instead
of rubidium. However, experimental obstacles due to the
large recoil energy of hydrogen and laser-cooling on the
Lyman-α line are prohibitive at this time, leaving rubid-
ium as an attractive option.

The uncertainties in the second-order Stark and Zee-
man shifts arise from the electric and magnetic fields
not being precisely known. The hierarchy of first-order
energy-level shifts has been explained in Table I. The
electric and magnetic fields that correspond to these
shifts are listed in Table II. Then, Eq. 11 and Eq. 14 are
used to compute the corresponding second-order Stark
and Zeeman shifts. The second-order shifts, their uncer-
tainties and the known transition frequencies are used to
compute the numbers in Table III.

For the values displayed in Table III, we assume an
electric-field uncertainty of 1% of the field magnitudes
provided in Table II. The resulting uncertainty is the
third-largest in Table III. It is seen in Table III that
by performing the experiment under micro-gravity con-
ditions the second-order Stark shift uncertainty can be
decreased by four orders of magnitude (because the elec-
tric field can be dropped by two orders of magnitude)
and hence the shift goes from border-line significant to
insignificant.

The uncertainty displayed for the second-order Zeeman
shift in Table III assumes the magnetic field is known to
2% of its value that is dictated by the kinetic tempera-
ture of the atoms (see Table II). This precision can be
achieved by monitoring the atomic Larmor precession of
cold-atom samples using the Faraday rotation technique.

B. Other sources of uncertainty

The following discussion shows that the remaining
shifts listed in Table III present negligible uncertain-
ties at the current level of precision (5.9 × 10−12), but
these are discussed here for completeness.

The finite-mass correction, which accounts for the non-
infinite mass of the nucleus, consists of a dominant first-
order term and several higher-order terms. The first
order can be considered by multiplying the Rydberg
constant by a factor of µ/me (µ = meM/(me + M))
[9], where M is the Rb+ mass. The correction is
−605.08747 kHz, as shown in Table III. The mass correc-
tion introduces an insignificant uncertainty to our mea-
surement since the mass of Rb+ (84.911 245 324 a.u.)
and that of the electron are well known (relative uncer-
tainties of 4.4 × 10−8 [45] and 1.2 × 10−8 [5], respec-
tively). The higher-order terms show up as factors of the
form (µ/me)η in the fine structure (η = 1), second-order
Stark effect (η = 3), diamagnetic shift (η = 1), Lamb
shift (η = 2) and hyperfine structure (η = 1) corrections.
When the mass correction factor is considered for these,

the shifts decrease by 3 mHz, 0.1 mHz, 6 µHz, 1 µHz, and
212 pHz, respectively. Since these differences are negligi-
ble, we do not carry out these corrections in the results
shown in Table III.

In contrast to measurements on low-lying states of hy-
drogen [4], through the use of circular states, we obtain
low QED corrections, since the valence electron has zero
probability of being in the vicinity of the nucleus, and
the size of the Rydberg function becomes very large.
The main source of uncertainty in the Lamb shift is the
Bethe logarithm (relative uncertainty of 3.3 × 10−8 and
1.0×10−7 or less for the circular and near-circular states,
respectively [36]), leading to a negligible uncertainty for
our measurement.

The blackbody shift is lowered three orders of mag-
nitude by placing our system in thermal contact with
liquid helium, which has a temperature of 4 K. Even so,
at 300 K the blackbody radiation shift for the transition
of interest is just −21 mHz, making this shift negligible
for a wide range of typical experimental temperatures.
The results of numerical calculations shown in Table III
follow a similar procedure to that presented in [37]. How-
ever, we consider only bound states up to about n=300.
This truncation of the basis set does not affect the re-
sults significantly. By leaving out the last 250 states in
the calculation, at worst, the calculated shift for the in-
dividual states (about 2.4 kHz at 300 K and 0.42 Hz at
4 K) changes only by about 0.1 mHz at a temperature
of 300 K and by nano-Hertz at a temperature of 4 K.
This leads us to the conclusion that it is not necessary to
include the continuum states in our calculations, which
is also reaffirmed in [37]. We treat the near-circular state
as a sum of spherical states multiplied by their respec-
tive 3J symbols squared. The radiation field is taken to
be isotropic inside our spectroscopy enclosure, since at
the frequencies considered, the cavity density of states
approaches that of free space. With this treatment, we
obtain results comparable to those obtained in [37] for
temperatures of 300 K. The radial matrix elements used
in the calculations are correct to four significant figures.
The main source of uncertainty for the shift presented in
Table III is dictated by how well we know the tempera-
ture inside the spectroscopy enclosure. When calculating
the blackbody shift uncertainty, it is assumed that the
temperature is known to ±0.5 K.

The main effect caused by the blackbody radiation is
the broadening it induces on the spectral line due to
thermally-induced decays and excitations, leading to the
anticipated linewidth of about 30 Hz for the transition
studied here (see Section III.G). The broadening due to
blackbody radiation and the limited atom-field interac-
tion time is expected to be symmetric, hence it does not
entail additional systematic shifts.

Despite producing a relatively large shift, the fine-
structure correction can be calculated very accurately
since the fine-structure constant is well known (relative
uncertainty of 2.3 × 10−10 [5]). As a result, the relative
uncertainty introduced by the fine-structure shift is only
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1.6× 10−21.
Even though the hyperfine-structure shift in itself is

negligible, its uncertainty is nevertheless estimated. The
main sources of this uncertainty are the electron mass,
proton mass and Planck’s constant (all of them with rel-
ative uncertainties of 1.2×10−8) and the electron charge
(relative uncertainty of 6.1× 10−9) [5]. The g-factors for
the nucleus ( 0.000 293 640 0) and the electron (2.002 319
304 361 53) are also well known (relative uncertainties of
6.0× 10−10 [38] and 2.6× 10−13 [5], respectively).

Effective trapping of atoms in the lattice leads to zero
first-order and negligible second-order Doppler effects
(Fig. 5). As discussed in section III.B, the first-order
Stark and Zeeman shifts are zero for our transition. This
is possible by choosing the lower and upper state so that
either the shift on each individual state is zero (first-
order Stark shift) or both states experience the same shift
(first-order Zeeman shift).

Finally, a precise determination of the spectroscopic
line center is essential in obtaining a successful measure-
ment of R∞. To achieve a relative uncertainty of the
transition frequency of 3×10−12, the line center of the
transition studied here needs to be located to within a
statistical uncertainty of 0.3 Hz, corresponding to about
1/100 of the net radiative linewidth anticipated at a
4 K radiation temperature. Noting that micro-channel
plate particle detectors are virtually background-free, the
statistics are expected to be dominated by shot noise in
the counting gates. Initial estimates indicate required
data acquisition times of several hours; however, any ex-
perimental realization will be accompanied by its own
analysis of anticipated statistics.

V. CONCLUSION

We have discussed an experimental method to help
solve the proton radius puzzle using a cold-atom-based

measurement of the Rydberg constant (R∞), which uti-
lizes (near-)circular Rydberg states and is free of QED
shifts and sensitivity to nuclear charge overlap. Previ-
ous efforts to measure R∞ with Rydberg atoms have en-
countered several experimental challenges which are ad-
dressed in this proposed measurement. The first-order
Zeeman and Stark shifts are both zero, owing to appro-
priate selection of parabolic atomic states involved in the
transition. By applying cooling and trapping techniques,
the interaction times are increased, leading to a reduc-
tion of the Fourier width. By using a new method of
spectroscopy in modulated optical lattices, the Doppler
broadening is eliminated. An implementation of the pro-
posed experiment at atomic temperatures of 1 µK is pro-
jected to yield a Rydberg constant value with an uncer-
tainty in the low 10−11 range, limited almost exclusively
by lattice-trap-induced shifts. Since the proposed ex-
periment differs from spectroscopy on low-lying atomic
states, in that it is entirely insensitive to the proton ra-
dius, this level of precision would be sufficient to make
a statement about the proton radius puzzle. The trap-
induced shifts could be very well addressed by perform-
ing the experiment under micro-gravity conditions, which
could lead to an uncertainty in the ≈ 3 × 10−12 range,
almost a factor of two improvement over the current un-
certainty.
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