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As an extension to powerful Two-Dimensional Coherent Spectroscopy (2DCS), optical Three-
Dimensional Coherent Spectroscopy (3DCS) has been experimentally implemented and found ben-
eficial in studying various systems in physics and chemistry. A critical challenge is how to interpret
3D spectra and extract useful quantitative information, given the richness and complexity of 3D
data. Here, we demonstrate how the information of a system’s optical response is manifested in
3D spectra by theoretical simulations of a few representative examples including a homogeneous
three-level V system, an inhomogeneous three-level V system, and an inhomogeneous three-level
ladder system. These examples show that important parameters of the system can be extracted
from the spectral pattern, peak positions, amplitudes, and line shapes. The method developed here
can be used to analyze 3D spectra of more sophisticated systems which might be a generalization or
combination of the three examples, contributing to develop a general approach for the interpretation
of 3D spectra.

I. INTRODUCTION

Optical Multidimensional Coherent Spectroscopy
(MDCS) [1] has been a major advance in ultrafast spec-
troscopy. The concept of multidimensional spectroscopy
was originally developed in nuclear magnetic resonance
[2]. The idea has been realized in the optical region in the
past two decades. The most common implementation is
Two-Dimensional Coherent Spectroscopy (2DCS) [3] in
which the spectrum is presented with two frequency axes.
By unfolding a spectrum onto a two-dimensional (2D)
plane, 2DCS can better separate different contributions
from various processes in the system. This leads to many
advantages of 2DCS over conventional one-dimensional
(1D) spectroscopy [3, 4]. For example, one can iden-
tify the inhomogeneous broadening and extract both the
homogeneous and inhomogeneous linewidths in a single
2D spectrum [5], and various interactions and couplings
can be identified and characterized in 2D spectra. These
unique capabilities of 2DCS have made it a powerful tool
to study structure and dynamics in various systems. A
few examples include the studies of structural informa-
tion in proteins [6], hydrogen-bond dynamics in water [7],
energy transfer in photosynthetic complex [8–10], dipole-
dipole interactions in atomic vapors [11, 12], and many-
body dynamics in semiconductor quantum wells [13–17]
and dots [18–21].

In many cases, the spectral contributions from differ-
ent processes are not completely separated in a 2D spec-
trum. The next step is to extend the technique into a
third dimension for Three-Dimensional Coherent Spec-
troscopy (3DCS). By further unfolding the spectrum in
a three-dimensional (3D) space, 3DCS improves the ex-
isting capabilities of 2DCS and also introduces new ones
that cannot be realized in 2DCS. It is worthwhile to note
that adding a third dimension is not merely a different
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way to plot 2D spectral data. A 3D coherent spectrum
is different from simply taking a series of 2D spectra as
a function of time and taking a Fourier transform. To
construct a 3D coherent spectrum, the third time delay
is scanned with all excitation pulses phase locked to pre-
serve the coherence and phase information in the third
dimension. This is similar to the argument made for con-
structing a 2D spectrum from phase-stabilized 1D mea-
surements.

A number of different approaches have been imple-
mented to perform 3DCS for different goals [22]. Early
3DCS experiments [23–27] were based on the fifth order
nonlinear response of a sample to five excitation fields.
However, 3DCS on electronic transitions has been mainly
focused on the third order nonlinear response, with the
objective to obtain more complete information about the
electronic transitions. For example, the technique has re-
vealed the double-quantum coherence in a quantum well
[28], the coupling between two adjacent quantum wells
[29], and the Hamiltonian of an atomic vapor [30] and
light harvesting materials [31]. Although these experi-
ments were realized in the time domain with femtosec-
ond lasers, it is also possible to implement 3DCS with
a frequency domain approach [32]. In this article, we
focus our discussion on 3DCS based on a time domain
approach.

A critical challenge in 3DCS is the interpretation of
3D spectra. What kind of information about the sys-
tem’s optical nonlinear response can be extracted from
the spectral pattern, peak positions, peak amplitudes and
lineshapes? How to extract such information from exper-
imental spectra? Which information is difficult or impos-
sible to obtain in 2DCS but accessible or easier to obtain
in 3DCS? The answers to these important questions are
essential for the efficient use of 3DCS and identifying ob-
jectives that can benefit from using 3DCS. Here we are
not trying to provide answers to these questions in all
scenarios, which will be research topics in specific fields
of using 3DCS. Instead, we approach the problem with
a few representative examples to demonstrate how dif-
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ferent 3D spectral features are associated with different
parameters of the system’s optical nonlinear response.
The methods used on these examples can be extended to
interpret 3D spectra of other systems which might be an
extension or combination of the examples here.

This article is organized as the following. Section II
briefly introduces the specific experimental implementa-
tion that the subsequent discussion is based on. Section
III gives a general theoretical description based on the
optical Bloch equation. In Section IV, a 3D spectrum
of a three-level V system is simulated and discussed. In
Section V, the effects of inhomogeneous broadening in
3D spectra are demonstrated and discussed. Section VI
applies the same analysis to a different system, that is
a three-level ladder scheme. A summary is presented at
the end.

II. IMPLEMENTATION OF 3D COHERENT
SPECTROSCOPY

We consider the implementation of 3D coherent spec-
troscopy based on a three-pulse transient four-wave mix-
ing (TFWM) experiment in the box geometry. As shown
in Fig. 1(a), three phased-locked femtosecond pulses, A,
B, and C, with wave vectors, kA, kB , and kC , respec-
tively, are arranged in the box geometry. The three pulses
mix in the sample to produce a nonlinear TFWM signal
in the phase matching direction, kS = −kA + kB + kC .
The excitation pulses arrive at the sample in a sequence.
The so called rephasing time ordering is shown in Fig.
1(b) where the delay between the first and second pulses
is τ , the delay between the second and third pulses is T ,
and the emission time is t. The TFWM signal is gener-
ated by the third-order polarization

P
(3)
FWM (r, τ, T, t) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

dt′Adt
′
Bdt
′
C ·R

(3)
EAEBEC

EA(r, t′A − t1)EB(r, t′B − t2)EC(r, t′C − t3), (1)

where R(3)
EAEBEC

is the third-order time-dependent re-
sponse function of the system. The electric field of each

pulse is given by Ej(r, t) = Ẽj(t) ·ei(kj ·r−ωjt) +c.c., where

j = A,B,C and the slowly varying amplitude Ẽj defines
the time-domain pulse shape. The three pulses A, B,
and C arrive at the sample at the times t1, t2, and t3,
respectively. The emitted TFWM electric field is

EFWM ∝ iωP (3)
FWM (2)

with ω being the emission frequency. The general expres-
sion of Eq. (1) includes the signals in all phase-matching
directions (±kA ± kB ± kC). Here we consider only one
phase-matching direction kS , thus only the terms con-
tributing to the signal in the direction kS will be ac-
counted for in the calculation.

A
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B

τ T t
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CA*
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FIG. 1: (a) The box geometry in which three excitation pulses
are aligned to three corners of a box and the signal emits at the
forth corner. (b) The time ordering of the excitation pulses
in the so-called rephasing excitation sequence.

During the experiment, the TFWM signal EFWM is
measured through spectra interferometry by using an-
other phase-locked pulse ER as a reference pulse. Specif-
ically, the combined signal of TFWM and reference pulse
is recorded by a spectrometer as an interferogram

ISI = |EFWM + ER|2

= |EFWM |2 + |ER|2 + EFWME
∗
R + E∗FWMER. (3)

The individual spectra of the TFWM signal IFWM =
|EFWM |2 and the reference IR = |ER|2 are also recorded
separately. To extract the TFWM signal field, we first
subtract the background from the interferogram (ISI −
IFWM − IR), leaving only the interference terms. The
term EFWME

∗
R can be isolated in the frequency domain

using a Fourier filter. The magnitude of ER can be de-
termined from the reference spectrum IR. The time de-
lay and relative phase between the TFWM signal and
the reference pulse can be characterized in the exper-
iment [33, 34]. Thus, the TFWM signal field can be
obtained by dividing the interference term with the ref-
erence pulse field ER. The experimentally measured sig-
nal field EFWM is related to the third-order polarization

P
(3)
FWM , which is the calculated quantity in the following

calculations, through Eq. (2). We note that the sample
here is considered optically thin, in which case the spec-
tral distortion due to pulse propagation effects [35, 36] is
negligible.

The measurements are repeated as the delay times τ
and T are scanned systematically. In the time domain,
the recorded signal S(τ, T, t) is a function of three delay
times. A 3D spectrum S(ωτ , ωT , ωt) can be constructed
by Fourier transforming the time-domain signal with re-
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spect to the delay times.

III. THIRD-ORDER NONLINEAR RESPONSE
TO OPTICAL EXCITATIONS

Based on the density matrix formalism, the light-
matter interaction can be described by the equation of
motion [37].

ρ̇ = − i
~

[H, ρ]− 1

2
{Γ, ρ}, (4)

where H = H0 + HI , [H, ρ] = Hρ − ρH and {Γ, ρ} =
Γρ+ ρΓ. The matrix elements of H0 and HI are H0,ij =
~ωiδij and HI,ij = −µijE(t) (HI,ij = 0 for i = j), where
~ωi is the energy of state |i〉, E(t) is the electric field,
µij(i 6= j) is the dipole moment of the transition between
states |i〉 and |j〉, and δij is the Kronecker delta function.
The relaxation operator Γ has matrix elements Γij =
1
2 (γi+γj), where γi and γj are the population decay rates.
In general, coherences can decay due to pure dephasing
processes in addition to population decay. To include
pure dephasing, the equation of motion can be modified
as

ρ̇ij = − i
~
∑
k

(Hikρkj − ρikHkj)− Γijρij . (5)

The relaxation operator Γ is redefined to have matrix

elements Γij = 1
2 (γi + γj) + γphij , where γphij is the pure

coherence dephasing rate (γphij = 0 for i = j).
To calculate the third-order nonlinear response of the

medium, the equation of motion can be solved pertur-

batively for ρ
(3)
ij . The polarization is then given by

P
(3)
ij = Nµijρije

iωt, where N is the number density. In

general, the third-order nonlinear response, ρ
(3)
ij , consists

of multiple terms contributed by different quantum path-
ways. The calculation can be aided with double-sided
Feynman diagrams so that the contribution from each
single pathway is calculated separately.

IV. 3D SPECTRUM OF A THREE-LEVEL V
SYSTEM

To demonstrate 3DCS, we choose a model system with
a three-level V energy scheme, as shown in Fig. 2(a),
which is appropriately simple and yet sufficiently com-
plex to demonstrate the unique capabilities of 3DCS. The
results can be generalized to systems with multiple ex-
cited and/or ground states.

A. Excitation pathways and corresponding
third-order responses

Considering the excitation by the pulse sequence
shown in Fig. 1(b) and assuming that the laser band-

FIG. 2: (a) The energy-level diagram for a three-level V sys-
tem. (b) Double-sided Feynman diagrams representing 8 pos-
sible excitation quantum pathways in the experiment.

TABLE I: The frequency coordinates of each spectral peak in
the 3D spectrum.

Group Frequency Coordinates

ωτ ωt ωT

A −ω10 ω10 0

B −ω20 ω20 0

C −ω10 ω20 0

D −ω20 ω10 0

E −ω10 ω20 ω21

F −ω20 ω10 ω12

width covers both excited states |1〉 and |2〉, the third-
order TFWM signal in the phase matching direction kS
includes contributions from eight excitation pathways
that are represented by the double-sided Feynman di-
agrams shown in Fig. 2(b). The eight pathways can be
divided into six different groups labeled A through E.
The two pathways in group A have an absorption fre-
quency of ωτ = −ω10, an emission frequency of ωt = ω10,
and a mixing frequency of ωT = 0, resulting in a spec-
tral peak at (ωτ = −ω10, ωt = ω10, ωT = 0) in the 3D
spectrum. Similarly, the pathways in other groups lead
to spectral peaks at different locations in the 3D spec-
trum. The specific frequency coordinates for the spectral
peak associated with each group of pathways are listed
in Table I. The absorption frequency has negative values
since the excitation pulse A is conjugated in the current
configuration.

The third-order nonlinear response is calculated sep-
arately for each pathway represented by a double-side
Feynman diagram (see the Appendix for details). For
the first diagram in group A, we have
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ρ
(3)
10,A1 =

iµ10

2~
eikC ·r

∫ t

−∞
dt′′′e−i(ω10−iΓ10)(t−t′′′)ẼC(t′′′)e−iωt

′′′

−iµ10

2~
eikB ·r

∫ t3

−∞
dt′′e−Γ00(t3−t′′)ẼB(t′′)e−iωt

′′

−iµ10

2~
e−ikA·r

∫ t2

−∞
dt′e−i(ω01−iΓ10)(t2−t′)Ẽ∗A(t′)eiωt

′
ρ

(0)
00 ,

(6)

where ω is the carrier frequency of all pulses, and t1, t2,
and t3 are the arrival times for pulses A, B, and C, re-
spectively. The system is initially in the ground state,

that is ρ
(0)
00 = 1. For the cases where the pulse dura-

tion is much shorter than the characteristic time scale
of the dynamics, the excitation pulse can be approxi-

mated with a Dirac delta function such that ẼA,B,C =
EA,B,Cδ(t − t1,2,3), where EA,B,C represents the ampli-
tude of the pulse. Then equation (6) can be rewritten
as

ρ
(3)
10,A1 =

−iµ3
10

8~3
ei(−kA+kB+kC)·rE∗AEBEC∫ t

−∞
dt′′′e−i(ω10−iΓ10)(t−t′′′)δ(t′′′ − t3)e−iωt

′′′

∫ t3

−∞
dt′′e−Γ00(t3−t′′)δ(t′′ − t2)e−iωt

′′

∫ t2

−∞
dt′e−i(ω01−iΓ10)(t2−t′)δ(t′ − t1)eiωt

′

=
−iµ3

10

8~3
eikS ·rE∗AEBECe−Γ10(t−t3+t2−t1)

e−Γ00(t3−t2)e−iω10te−i(ω−ω10)(t3+t2−t1)

Θ(t2 − t1)Θ(t3 − t2)Θ(t− t3), (7)

where Θ’s are heaviside step functions. We define the
time intervals as τ = t2 − t1, T = t3 − t2, and t = t− t3,
and assume the excitation is on resonance (ω−ω10 = 0).
The third-order polarization is given by

P
(3)
10,A1(τ, t, T ) = Nµ10ρ

(3)
10,A1e

iωt

=
−iNµ4

10

8~3
eikS ·rE∗AEBECΘ(τ)Θ(T )Θ(t)

e−Γ10(t+τ)−Γ00T . (8)

This is the time-domain solution in the rotating frame.
In general, the spectrum in the time domain can be con-
structed by stepping the time delays τ , T , and t. The
time-domain spectrum can then be numerically Fourier-
transformed to obtain the frequency-domain spectrum.
In the current case, the Fourier transform of Eq. (8) has

an analytical form which is given by

P
(3)
10,A1(ωτ , ωt, ωT ) =

−iNµ4
10

16
√

2π
3
2 ~3

eikS ·rE∗AEBEC

1

Γ10 − i(ωτ + ω10)
· 1

Γ10 − i(ωt − ω10)
· 1

Γ00 − iωT
,

(9)

in the laboratory frame. Similarly, the third-order po-
larization due to the second diagram in group A is given
by

P
(3)
10,A2(ωτ , ωt, ωT ) =

−iNµ4
10

16
√

2π
3
2 ~3

eikS ·rE∗AEBEC

1

Γ10 − i(ωτ + ω10)
· 1

Γ10 − i(ωt − ω10)
· 1

Γ11 − iωT
.

(10)

The sum P
(3)
10,A = P

(3)
10,A1 + P

(3)
10,A2 contributes to the

3D spectral peak that is situated at (ωτ = ω10, ωt =
ω10, ωT = 0). This result shows that the peak amplitude
is proportional to µ4

10, the peak position reveals the tran-
sition frequency, and the peak lineshape profiles in three
frequency dimensions are determined by the relaxation
rates. Therefore, all parameters in the Hamiltonian ma-
trix elements associated with these two pathways can be
extracted from the spectral peak.

The same procedures can be applied to other pathways
to calculate the corresponding third-order polarizations.
For group B,

P
(3)
20,B(ωτ , ωt, ωT ) =

−iNµ4
20

16
√

2π
3
2 ~3

eikS ·rE∗AEBEC

1

Γ20 − i(ωτ + ω20)
· 1

Γ20 − i(ωt − ω20)

(
1

Γ00 − iωT
+

1

Γ22 − iωT
). (11)

For group C,

P
(3)
20,C(ωτ , ωt, ωT ) =

−iNµ2
10µ

2
20

16
√

2π
3
2 ~3

eikS ·rE∗AEBEC

1

Γ10 − i(ωτ + ω10)
· 1

Γ20 − i(ωt − ω20)
· 1

Γ00 − iωT
.

(12)

For group D,

P
(3)
10,D(ωτ , ωt, ωT ) =

−iNµ2
10µ

2
20

16
√

2π
3
2 ~3

eikS ·rE∗AEBEC

1

Γ20 − i(ωτ + ω20)
· 1

Γ10 − i(ωt − ω10)
· 1

Γ00 − iωT
.

(13)

For group E,
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F

FIG. 3: Simulated 3D spectra of a three-level V system. (a) The amplitude of the spectrum, where the solid (semi-transparent)
red isosurface has a value of 0.3 (0.1) with the maximum amplitude normalized to 1. (b) The real part of the spectrum, where
the red (blue) isosurface has a value of 0.1 (-0.1) with the spectrum normalized to a range from -1 to 1.

P
(3)
20,E(ωτ , ωt, ωT ) =

−iNµ2
10µ

2
20

16
√

2π
3
2 ~3

eikS ·rE∗AEBEC

1

Γ10 − i(ωτ + ω10)
· 1

Γ20 − i(ωt − ω20)

· 1

Γ21 − i(ωT − ω21)
. (14)

For group F,

P
(3)
10,F (ωτ , ωt, ωT ) =

−iNµ2
10µ

2
20

16
√

2π
3
2 ~3

eikS ·rE∗AEBEC

1

Γ20 − i(ωτ + ω20)
· 1

Γ10 − i(ωt − ω10)

· 1

Γ21 − i(ωT − ω12)
. (15)

Each group results in a spectral peak and there are
six separated peaks in the 3D spectrum. The peaks as-
sociated with groups A through D have a zero mixing
frequency and are located on the plane ωT = 0. The
peaks associated with groups E and F have nonzero mix-
ing frequencies (ωT = ±ω21) and are offset in the ωT
direction.

B. Simulation and interpretation of 3D spectrum

A complete 3D spectrum includes all contributions
from Eqs. (9)-(15). The simulated spectra are shown

in Fig. 3, where (a) and (b) show the magnitude and
the real part, respectively, of the spectrum. The spectra
have three frequency axes ωτ , ωt, and ωT . The spectral
peaks are visualized with 3D isosurfaces which are the 3D
equivalent to 2D contour lines. For the magnitude, the
solid and semi-transparent red surfaces represent the iso-
surfaces with the values of 0.3 and 0.1, respectively, with
the maximum normalized to 1. For the real part, the red
and blue surfaces are the isosurfaces with the values of
0.1 and -0.1, respectively, with the spectrum normalized
to a range from -1 to 1. The following parameters are
used in the simulation: ω10 = 386 THz, ω20 = 388 THz,
Γ00 = Γ11 = Γ22 = 0.1 THz, Γ10 = Γ20 = Γ21 = 0.05
THz, and µ10 = µ20.

The 3D spectrum has six isolated peaks that can be
attributed to the corresponding pathways in Fig. 2(b),
as labelled “A-F”. Compared to 2D spectra, a 3D spec-
trum further unfolds the nonlinear optical response in the
third dimension ωT . The off-diagonal peaks in a rephas-
ing 2D spectrum have contributions from two pathways
[38]. One of them generates a population during T and
does not oscillate, while the other generates a coherence
which oscillates during T . In a 3D spectrum, these two
contributions have difference frequencies in the ωT direc-
tions and thus are separated. As a result, the contri-
butions from different excitation quantum pathways are
well separated in a 3D spectrum. Peaks D-F each corre-
sponds to only a single quantum pathway. Peak A and
B each have contributions from two pathways which de-
scribe the same process for a closed system. This unique
ability to unravel contributions from different excitation
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quantum pathways provides a global picture of the non-
linear response of a complex system. It also allows sepa-
rated analyses on each isolated process.

FIG. 4: A 3D spectrum with its 2D projections onto three
different 2D planes. Various 2D spectra can be retrieved by
projecting a 3D spectrum onto a proper plane.

Various types of 2D spectra can be extracted from a
3D spectrum by projecting it onto the relevant 2D planes.
According to the projection-slice theorem of the Fourier-
transform [2], the projection of a 3D spectrum onto a
2D plane in the frequency domain is equivalent to a 2D
slice in the time domain. As illustrated in Fig. 4, three
different types of 2D spectra are obtained by projecting
a rephasing 3D spectrum onto three planes. The projec-
tion onto the bottom plane (ωτ , ωt) is a rephasing one-
quantum 2D spectrum SI(ωτ , ωt) at T = 0. The 2D spec-
trum at any given T can be calculated by multiplying the
projection with a linear phase term e−iωTT , according to
the Fourier shift theorem [2]. Similarly, zero-quantum 2D
spectra at any given τ can be obtained from the projec-
tion onto the left back plane (ωT , ωt). These 2D spectra
are not unique to 3DCS and can be acquired by 2DCS.
However, the projection on the right back plane (ωT , ωτ )
gives 2D spectra that are not accessible by conventional
2DCS techniques. These 2D spectra reveal the optical
response as a function of ωT and ωτ at an instantaneous
emission time t. In general, a 3D spectrum can be pro-
jected onto any planes other than the three planes made
of three frequency axes. Such skew projections may have
special advantages over standard projections.

By separating contributions from different excitation
quantum pathways into isolated 3D peaks, one can now

analyze each individual peak to extract the information
for single pathways. Here we use peak E in Fig. 3(a)
as an example. The peak is carved out from the 3D
spectrum and replotted in Fig. 5(a). The projections of
this peak onto different 2D planes give 2D spectra of the
corresponding single pathway. Some of these 2D spec-
tra cannot be acquired separately for a single pathway
in conventional 2DCS. Peak E corresponds to pathway E
in Fig. 2(b). The contribution of this pathway is given
by Eq. (14). Important parameters in this equation can
be extracted from the isolated peak. The strength of the
peak is determined by the dipole moments if the num-
ber density N is known. Although it is usually difficult
to measure the absolute strength of a peak, it is fairly
straightforward to compare the peak amplitudes to get
the relative strengths of dipole moments. The peak posi-
tion reveals the transition resonance frequencies ω10 and
ω20. The relaxation rates Γ10, Γ20, and Γ21 are sepa-
rated in frequency axes ωτ , ωt, and ωT , respectively. As
shown in Fig. 5(b-d), slices are taken at the peak in
three frequency directions. The slices can be fit to Eq.
14 in separate directions to retrieve the corresponding
relaxation rates.

V. INHOMOGENEOUS BROADENING

Inhomogeneous broadening is present in the sample
when the resonance frequencies vary within a certain dis-
tribution, such as the Doppler broadening in a thermal-
ized atomic vapor, the width variation in a semiconduc-
tor quantum well, and the size variation in an ensem-
ble of quantum dots. In conventional 1D spectroscopy,
the inhomogeneous broadening often dominates the spec-
tral linewidth, making it challenging to retrieve the ho-
mogeneous linewidth. In 2D spectra, homogeneous and
inhomogeneous linewidths are unambiguously separated
in the cross-diagonal and diagonal directions[5], respec-
tively, providing an easy and robust measurement of both
homogenous and inhomogeneous linewidths simultane-
ously. In this section, we investigate how the inhomo-
geneous broadening affects the lineshapes in 3D spectra.

The three-level V system, as described above, is dis-
cussed here as an example. We assume that both transi-
tion frequencies have an inhomogeneous distribution and
can be described by a 2D Gaussian distribution as

g(ω10, ω20) =

√
a11a22 − a2

12

π
exp{−[a11(ω10 − ωc10)2

−2a12(ω10 − ωc10)(ω20 − ωc20)

+a22(ω20 − ωc20)2]}, (16)

where ωc10 and ωc20 are the central frequencies. We define
the correlation coefficient

R =
a12√
a11a22

(17)
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FIG. 5: (a) An isolated 3D peak with 2D projections. Slices through the peak center along the directions of (b) the absorption
frequency ωτ , (c) the emission frequency ωt, and (d) the mixing frequency ωT .

and the linewidths

δω10 =

√
ln 2

a22

a11a22 − a2
12

, (18)

δω20 =

√
ln 2

a11

a11a22 − a2
12

. (19)

The third-order polarization can be calculated by inte-
grating the third-order density matrix elements over the
2D Gaussian distribution. For the first diagram in group
A in Fig. 2(b), the third-order polarization is given by

P
(3)
10,A1(τ, t, T )

=

∫ ∞
0

dω10

∫ ∞
0

dω20g(ω10, ω20)Nµ10ρ
(3)
10,A1e

iωt. (20)

Plug Eqs. (7,16) into this equation and we have

P
(3)
10,A1(τ, t, T ) =

−iNµ4
10

8~3
eikS ·rE∗AEBECΘ(τ)Θ(T )Θ(t)

e−Γ10(t+τ)−Γ00T e−
1

4 ln 2 δω
2
10(t−τ)2+i(ω−ωc

10)(t−τ). (21)

To understand how this term contributes to the spectral
line shape, we define new variables τ ′ = t − τ and t′ =
t+τ which correspond to the diagonal and cross-diagonal
directions, respectively, in the 2D time-domain spectrum.
Equation (21) can be rewritten as

P
(3)
10,A1(τ, t, T ) =

−iNµ4
10

8~3
eikS ·rE∗AEBECΘ(t′ − τ ′)Θ(T )

Θ(τ ′ + t′)e−Γ10t
′−Γ00T e−

1
4 ln 2 δω

2
10τ

′2+i(ω−ωc
10)τ ′

. (22)

In this form, one can intuitively associate the homo-
geneous linewidths Γ10, Γ00, and the inhomogeneous
linewidth δω10 with the t′, T , and τ ′ directions, respec-
tively. However, the homogeneous linewidth Γ10 and the
inhomogeneous linewidth δω10 are not completely sep-
arated along these axes or the corresponding frequency
axes because the Θ functions involve t′ and τ ′ in an in-
separable way. The Θ functions enforce the causality
due to the pulse time ordering and cause the mixing of

homogeneous and inhomogeneous linewidths in the diag-
onal and cross-diagonal directions. In the strongly ho-
mogeneous (inhomogeneous) limit, the homogeneous (in-
homogeneous) linewidth can be directly measured from
the cross-diagonal (diagonal) slice. However, in the in-
termediate regime where the homogeneous and inhomo-
geneous linewidths are comparable, diagonal and cross-
diagonal linewidths have mixed contributions from both
homogeneous and inhomogeneous broadening. The line-
shape in a 2D spectrum with arbitrary homogeneous and
inhomogeneous broadening has been analyzed in detail
in a previous study [5]. To analyze the lineshape of a 3D
spectrum, the spectral response will be calculated in the
time domain and numerically Fourier transformed into
the frequency domain.

The third-order polarization for other pathways can
account for the inhomogeneous broadening in a similar
way. For the second pathway in group A, we have

P
(3)
10,A2(τ, t, T ) =

−iNµ4
10

8~3
eikS ·rE∗AEBECΘ(τ)Θ(T )Θ(t)

e−Γ10(t+τ)−Γ11T e−
1

4 ln 2 δω
2
10(t−τ)2+i(ω−ωc

10)(t−τ). (23)

For group B,

P
(3)
20,B(τ, t, T ) =

−iNµ4
20

8~3
eikS ·rE∗AEBECΘ(τ)Θ(T )Θ(t)

e−Γ20(t+τ)(e−Γ00T + e−Γ22T )

e−
1

4 ln 2 δω
2
20(t−τ)2+i(ω−ωc

20)(t−τ). (24)

For group C,

P
(3)
20,C(τ, t, T ) =

−iNµ2
10µ

2
20

8~3
eikS ·rE∗AEBEC

Θ(τ)Θ(T )Θ(t)e−Γ10τ−Γ00T−Γ20t

e−
1

4 ln 2 (δω2
10τ

2−2Rδω10δω20τt+δω
2
20t

2)e−i(ω−ω
c
10)τ+i(ω−ωc

20)t.

(25)
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FIG. 6: Simulated 3D spectra of a three-level V system with different inhomogeneous broadening parameters: (a) R = 1,
δω10 = δω20 = 0.3 THz; (b) R = 0.7, δω10 = δω20 = 0.3 THz; and (c) R = 1, δω10 = 0.4 THz, δω20 = 0.2 THz. The solid
(semi-transparent) red isosurface represents a magnitude of 0.1 (0.07) with the maximum normalized to 1. The corresponding
2D projections on the bottom and back planes are also shown for each case.

For group D,

P
(3)
10,D(τ, t, T ) =

−iNµ2
10µ

2
20

8~3
eikS ·rE∗AEBEC

Θ(τ)Θ(T )Θ(t)e−Γ20τ−Γ00T−Γ10t

e−
1

4 ln 2 (δω2
20τ

2−2Rδω10δω20τt+δω
2
10t

2)e−i(ω−ω
c
20)τ+i(ω−ωc

10)t.

(26)

For group E,

P
(3)
20,E(τ, t, T ) =

−iNµ2
10µ

2
20

8~3
eikS ·rE∗AEBEC

Θ(τ)Θ(T )Θ(t)e−Γ10τ−Γ21T−Γ20t

e−
1

4 ln 2 [δω2
10(τ+T )2−2Rδω10δω20(T+τ)(T+t)+δω2

20(t+T )2]

e−i(ω−ω
c
10)τ+i(ω−ωc

20)t+i(ωc
10−ω

c
20)T . (27)
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For group F,

P
(3)
10,F (τ, t, T ) =

−iNµ2
10µ

2
20

8~3
eikS ·rE∗AEBEC

Θ(τ)Θ(T )Θ(t)e−Γ20τ−Γ21T−Γ10t

e−
1

4 ln 2 [δω2
20(τ+T )2−2Rδω10δω20(T+τ)(T+t)+δω2

10(t+T )2]

e−i(ω−ω
c
20)τ+i(ω−ωc

10)t+i(ωc
20−ω

c
10)T . (28)

The contributions from all pathways are calculated and
summed up in the time domain as a function of the
three time delays SI(τ, T, t). Fourier transforming the
signal in all three dimensions generates a 3D spectrum,
SI(ωτ , ωT , ωt), in the frequency domain. Simulated 3D
spectra of an inhomogeneously broadened three-level V
system, including the contributions from Eqs. (21∼28),
are shown in Fig. 6. The first column shows the 3D spec-
tra with 2D Gaussian distribution parameters: (a)R = 1,
δω10 = δω20 = 0.3 THz; (b) R = 0.7, δω10 = δω20 = 0.3
THz; and (c) R = 1, δω10 = 0.4 THz, δω20 = 0.2 THz.
The spectra are normalized to 1 and the magnitude is
plotted, where the solid red isosurface has a value of
0.1 and the semi-transparent red isosurface represents
0.07. Other parameters used in the simulation include
ω10 = 386 THz, ω20 = 388 THz, Γ00 = Γ11 = Γ22 = 0.1
THz, Γ10 = Γ20 = Γ21 = 0.05 THz, and µ10 = µ20. The
2D spectra corresponding to the projections onto planes
(ωτ , ωt), (ωT , ωt), and (ωT , ωτ ) are also plotted for each
3D spectrum.

If the frequency fluctuations of the two transitions
(|0〉 → |1〉 and |0〉 → |2〉) are perfectly correlated (R =
1), the inhomogeneous broadening results in an elonga-
tion of spectral peak in the diagonal direction (ωτ = ωt)
for the diagonal peaks or in the direction parallel to the
diagonal line for the others. The effect is illustrated
in Fig. 6(a), where the spectral peaks in both the 3D
spectrum and 2D projections are elongated in the corre-
sponding direction. The off-diagonal peaks are associated
with both transitions and thus affected by their correla-
tion. If the frequency fluctuations are not fully corrected
(R < 1), the spectral shape becomes round and the am-
plitude decreases with the correlation coefficient R for
the off-diagonal peaks, as illustrated in the 3D spectrum
and 2D projections in Fig. 6(b). The diagonal peaks are
not affected by R since they are separately determined
by each single transition. In general, the inhomogeneous
linewidths of the two transitions may not be equal. The
effects of non-equal inhomogeneous linewidths are shown
in Fig. 6(c). The diagonal peaks have different linewidths
in the diagonal direction. The off-diagonal peaks are
tilted compared to the spectra shown in Fig. 6(a). The
tilting is more visible in the 2D projections. The projec-
tions of the off-diagonal peaks on the (ωτ , ωt) plane are
tilted with respect to the diagonal direction. The projec-
tions on (ωT , ωt) and (ωT , ωτ ) are also tilted in the ωT
direction.

The lineshape of spectral peaks in a 3D spectrum re-
veals important qualitative information about the inho-
mogeneous broadening in a system. The presence of inho-

mogeneous broadening is indicated by the elongation of
diagonal peaks. The relative inhomogeneous linewidths
of two transitions are revealed by the diagonal linewidth
of corresponding diagonal peaks or by the tilting of off-
diagonal peaks. The correlation coefficient R is reflected
by the roundness of off-diagonal peaks. These param-
eters R, δω10, and δω20 associated with inhomogeneous
broadening can also be quantitatively identified by fitting
slices of 3D spectral peaks in proper directions, similar
to the approach to fit slices in a 2D spectrum [5].

VI. 3D SPECTRUM OF A THREE-LEVEL
LADDER SYSTEM

So far we have discussed 3DCS and its interpreta-
tion for a three-level V system with a single ground
state and two excited states. The experimental tech-
nique and theoretical method can be extended to other
systems with different energy-level schemes. Although
it works on simpler systems such as isolated homoge-
neous, inhomogeneous, and heterogenous two-level sys-
tems, 3DCS does not have particular advantages in deter-
mining the system’s nonlinear optical response compared
to less sophisticated methods such as 1D linear/nonlinear
spectroscopy and 2DCS. However, isolating all quantum
pathways in a three-level V system requires 3DCS. A
simple extension of a three-level V system is an energy
scheme with more than two excited states. A more
complicated system may include multiple manifolds of
excited states and the transitions of each manifold are
dipole allowed. For simplicity, here we consider a three-
level ladder system with a ground state, a singly excited
state, and a doubly excited state, as shown in Fig. 7(a).
The results on this ladder scheme can be generalized to
a system with multiple excited states for each manifold.

FIG. 7: (a) A three-level ladder system with a singly excited
state |1〉 and a doubly excited state |2〉. The dash line denotes
the double energy of the singly excited state. (b) Double-
sided Feynman diagrams representing 3 possible excitation
quantum pathways in the experiment.

The excitation pulse sequence in Fig. 1(b) is used to
perform 3DCS on a ladder system, as shown in Fig. 7(a),
with three states |0〉, |1〉, and |2〉. The transition fre-
quency ω21 is slightly lower than the transition frequency
ω10 by ∆ω = ω21 − ω10. The laser wavelength is tuned
to be on resonance with the |1〉 → |0〉 and the double
frequency covers the state |2〉. The TFWM signal in
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FIG. 8: Simulated 3D spectra of a three-level ladder system with different inhomogeneous broadening parameters: (a) R = 1,
δω10 = δω21 = 0.3 THz; (b) R = 0.7, δω10 = δω21 = 0.3 THz; and (c) R = 1, δω10 = 0.4 THz, δω21 = 0.2 THz. The solid red
isosurface represents a magnitude of 0.2 with the maximum normalized to 1. The corresponding 2D projections on the bottom
and back planes are also shown for each case.

the phase matched direction, ks = −kA + kB + kC , has
contributions from three excitation pathways shown in
Fig. 7(b). The pathways in group A are the same as
the ones in Fig. 2(b), involving only states |0〉 and |1〉.
This group gives rise to a diagonal peak. The pathway
in group B involves the doubly excited state |2〉, result-
ing in a peak with an absorption frequency ω10 and an
emission frequency ω21. To account for the inhomoge-
neous broadening, we use a 2D Gaussian distribution to
describe the inhomogeneous broadening of the two tran-

sitions and their correlation,

g(ω10, ω21) =

√
a11a22 − a2

12

π
exp{−[a11(ω10 − ωc10)2

−2a12(ω10 − ωc10)(ω21 − ωc21)

+a22(ω21 − ωc21)2]}, (29)

where ωc10 and ωc21 are the central frequencies. The cor-
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relation coefficient is defined as

R =
a12√
a11a22

. (30)

The linewidths are defined as

δω10 =

√
ln 2

a22

a11a22 − a2
12

, (31)

δω21 =

√
ln 2

a11

a11a22 − a2
12

. (32)

The third-order polarization due to the pathways in
group A can be calculated as Eqs. (21, 23). The contri-
bution by group B is

P
(3)
21,B(τ, t, T ) =

iNµ2
10µ

2
21

8~3
eikS ·rE∗AEBECΘ(τ)Θ(T )Θ(t)

e−Γ10τ−Γ11T−Γ21te−
1

4 ln 2 (δω2
10τ

2−2Rδω10δω21τt+δω
2
21t

2)

e−i(ω−ω
c
10)τ+i(ω−ωc

21)t. (33)

The overall TFWM signal can be calculated in the time
domain using Eqs. (21, 23, 33). Fourier transforming
the time-domain signal generates a 3D spectrum in the
frequency domain. Simulated 3D spectra of the ladder
system are shown in Fig. 8. The first column shows the
3D spectra with the 2D Gaussian distribution parame-
ters: (a) R = 1, δω10 = δω21 = 0.3 THz; (b) R = 0.7,
δω10 = δω21 = 0.3 THz; and (c) R = 1, δω10 = 0.4 THz,
δω21 = 0.2 THz. The magnitude of the spetra is plotted.
The shown isosurface has a value of 0.2 with the maxi-
mum amplitude normlized to 1. The corresponding 2D
projections onto three planes are also shown for each 3D
spectrum. Other parameters used in the simulation are
ω10 = 387 THz, ω21 = 386 THz, Γ00 = Γ11 = 0.1 THz,
Γ10 = Γ21 = 0.05 THz, and µ10 = µ21.

The 3D spectra have a peak on the diagonal line. This
peak is contributed only by the |1〉 → |0〉 transition and
not related to the doubly excited state |2〉. The off-
diagonal peak is contributed by pathway B in Fig. 7(b)
and involves the doubly excited state |2〉. This peak has
an absoprtion frequency of ω10 and an emission frequency
of ω21. The energy difference between the upper and
lower transitions can be easily measured in a 3D spec-
trum or its projection on the bottom plane, while it may
be difficult in 1D spectra with the presense of inhomoge-
neous broadening. This energy difference can reveal im-
portant information about the system, for example, the
binding energy of biexcitons if the doubly excited state
represents a biexciton state. The lineshape of the diag-
onal peak is affected by the inhomogeneous broadening
of the lower transition alone. However, the off-diagonal
peak is affected by the inhomogeneous broadenings of
both transitions and their correlation. As shown in Fig.
8(a), when the correlation coeficient R is 1 and both in-
homogeneous linewidths are the same, the off-diagonal
and diagonal peaks are elongated similarly in a direction

that is parallel to the diagonal direction. As the correla-
tion coeficientR decreases, the off-diagonal peak becomes
round in lineshape and weaker in relative amplitude, as
shown in Fig. 8(b). If the inhomogeneous linewidths of
the two transitions are not equal while R = 1, the long
axis of the off-diagonal peak is tilted relative to the diag-
onal line, as shown in Fig. 8(c). The effects of different
2D Gaussian distribution parameters are clearly shown
in the 2D projection on the bottom plane (ωτ , ωt), while
the differences are not visible in the projections on the
two back planes (ωT , ωt) and (ωT , ωτ ).

Quantitative information about the ladder system can
be retrieved by analyzing 3D spectra. The peak positions
reveal the central frequencies of the upper and lower tran-
sitions. The lineshape analysis can provide information
of homogeneous linewidths, as well as the parameters in
the 2D Gaussian distribution of inhomogeneous broaden-
ing.

VII. SUMMARY

Based on the optical Bloch equations, we calculated
the third-order nonlinear optical responses to a given
excitation pulse sequence in a particular phase match-
ing direction, and generated 3D spectra of three differ-
ent systems including a three-level V system with and
without inhomogeneous broadening, and an inhomoge-
neous three-level ladder system. The simulated 3D spec-
tra have features that can be related to specific aspects
of the system’s nonlinear optical response. Quantitative
values of important parameters can be extracted from
the spectral pattern, peak positions, amplitudes, and line
shapes. Following a similar strategy, 3D spectra of more
sophisticated systems, some of which may be considered
as a generalization or combination of the three exam-
ples, can be analyzed by using an optical Bloch equa-
tion based model to extract quantitative information of
interest. Understanding how different properties of the
system are manifested in 3D spectra helps to develop a
general approach to interpret 3D spectra, and to iden-
tify more systems/problems where 3DCS has advantages
over 2D/1D techniques.
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Appendix: Double-sided Feynman diagrams

The perturbative solution of optical Bloch equations
may consist of multiple terms corresponding to different
excitation quantum pathways. Each term can be repre-
sented conveniently by using the so-called double-sided
Feynman diagram. In this appendix, we introduce the
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conventions used in this article regarding double-sided
Feynman diagrams.

A double-sided Feynman diagram tracks the time evo-
lution of the density matrix elements. The diagrams use
two vertical lines with two symbols in between to repre-
sent the “bra” and “ket” of the density matrix operator,
where the left (right) line represents the “ket” (“bra”).
The time increases upward. The interaction with a field
is described by the vertex of an arrow with a vertical line.
An arrow represents a field that can change one side of
the density matrix element. An arrow pointing to the
right indicates the field has the form Ênexp(ikn ·r−iωnt),
while an arrow pointing to the left implies the field is
conjugated, with the form Ê∗nexp(−ikn · r + iωnt). If
the arrow points towards (away from) the vertical lines,
a photon is absorbed (emitted) and drives the density
matrix element from a lower (higher) energy state to a
higher (lower) energy state.

FIG. 9: Four possible types of vertices in double-sided Feyn-
man diagrams.

There are four possible vertices, as shown in Fig. 9(a-
d). Each one describes the time evolution from the

(n − 1)th order density matrix element ρ
(n−1)
ik to the

nth order density matrix element ρ
(n−1)
jk or ρ

(n−1)
il . The

nth order density matrix element is determined by the
(n− 1)th order density matrix element, the energy sepa-
ration and the dipole moment of the transition, the de-

cay and dephasing rates, and the excitation field. For the
four vertices, the nth order density matrix element can
be calculated using the following integrals accordingly,

(a) ρ
(n)
jk =

iµij
2~

eikn·r
∫ t

−∞
Ên(t′)e−iωnt

′

e−iΩjk(t−t′)ρ
(n−1)
ik (t′)dt′, (A.1)

(b) ρ
(n)
jk =

iµij
2~

e−ikn·r
∫ t

−∞
Ê∗n(t′)eiωnt

′

e−iΩjk(t−t′)ρ
(n−1)
ik (t′)dt′, (A.2)

(c) ρ
(n)
il = − iµkl

2~
e−ikn·r

∫ t

−∞
Ê∗n(t′)eiωnt

′

e−iΩil(t−t′)ρ
(n−1)
ik (t′)dt′, (A.3)

(d) ρ
(n)
il = − iµkl

2~
eikn·r

∫ t

−∞
Ên(t′)e−iωnt

′

e−iΩil(t−t′)ρ
(n−1)
ik (t′)dt′, (A.4)

where Ωij = ωi − ωj − iΓij .
Each doubled-sided Feynman diagram containing one

vertex describes one order in the perturbation expansion.
The nth order perturbation solution of a density matrix
element can be represented by a diagram with n vertices
stacked up vertically. Using the above integrals, the nth

order density matrix element can be calculated from the
(n − 1)th order which can in turn be calculated from a
lower order component. This process is repeated until
the lower order density matrix element is given by the
initial condition. This method is used in this article to
calculate the high order component for each double-sided
Feynman diagram.
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