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 Using numerical solutions to the quantum field theoretical Dirac equation, we study the 

electron-positron pair creation process from the vacuum due to a spatially localized supercritical 

electric field.  By varying the spatial profile of this external field, we search for optimal field 

configurations that maximize the pair creation rate in the steady state.  We find that for the class of 

pulse shapes with a single maximum and fixed total energy, the rate depends non-monotonically on 

the field's spatial width and it is remarkably insensitive to other characteristics of the pulse shape.  It 

turns out that the Schwinger rate can be corrected such that it can provide analytical estimates for 

the threshold behavior as well as finite pulse effects with surprising accuracy. 
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1. Introduction 

 Even though it has not been experimentally observed yet, the possibility of creating an 

electron-positron pair from the vacuum due a supercritical external electric field is one of the most 

fascinating predictions of the Dirac equation [1].  In fact, there are various laboratories around the 

world that have invested large resources into the development of new laser sources [2] that might 

become sufficiently intense to break down the vacuum state and to confirm the pair creation process 

predicted by Schwinger [3] and others [4,5].  It is therefore important to understand better under 

which field configurations the yield for the pair creation process can be maximized. 

 There are two distinctly different mechanisms that can be responsible for the creation of 

particle pairs.  The first one is temporally induced where the time-dependence of the external field 

can trigger single or multi-photon transitions that excite positive energy eigenstates of the Dirac 

Hamiltonian from the initially occupied states with negative energy (the Dirac sea).  Here the 

energy (frequency) of the associated photons plays a major role that determines the yield.  Recent 

works carried out by Kohlfirst et al. [6] as well as Hebenstreit et al. [7] have examined various 

means of maximizing the final pair creation yield by optimizing the temporal pulse shape of the 

electric field.  They also suggested that optimal control theory could provide unique means for 

maximizing the yield. 

 The second mechanism to break down the vacuum is based on the supercriticality of an 

otherwise time-independent external field.  If here the strength of the associated electric potential 

V0 exceeds twice the rest mass energy of the electron, i.e., V0>2mc2, the states of the lower and 

upper energy continuum of the Dirac equation can become permanently degenerate, leading to a 

linear growth of the created electron-positron pairs in time, which can be characterized by a single 

rate.  Motivated by the pioneering works for the temporal case, it seems to us that it might be 

beneficial for future experiments to examine also the optimal spatial profiles to maximize the pair 

creation yield.  In this context we point out a recent work [8] that has suggested (in contrast to 

common belief) that the electrons and positrons are not necessarily created in those spatial regions 

where the electric field amplitude is maximal.  In fact, this work has provided concrete examples of 

simplified situations where the pair creation rate is maximal at those spatial locations where the 

electric field is minimal.  Equivalently, there are spatial regions within the distribution where the 

electric field takes its largest value but not a single electron is created there.  In this vein we 

examine in this work if, under a fixed field energy, there are optimal spatial shapes that can 

maximize the pair creation yield.  
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 The research area of constrained optimization is an important sub-branch of computational 

mathematics and numerous textbooks have been published on this subject [9-11].  Here typically a 

reward or utility function is maximized with regard to some variables in the presence of some 

constraints on those variables.  The solution techniques are non-trivial and can vary drastically with 

the specific type of constraints (equality or inequality based hard constraints or penalty function 

based soft constraints) and involve possibly linear, quadratic or dynamic programming.  In our case 

the corresponding objective function (the pair creation yield) is a highly nonlinear and even 

non-perturbative function of the parameters that characterize the external electric field 

configuration.  It requires the numerical evaluation of the complete solution set to the Dirac 

equation [12,13].  It is therefore difficult for us to apply these traditional optimization techniques 

directly to pair creation. 

 The current work is organized as follows.  In the second section, we briefly introduce our 

model system and describe the computational framework to predict the rate.  In the third section, we 

examine the class of external field configurations that have a single maximum and show that the 

Schwinger rate can be corrected such that it can provide reliable analytical estimates for the optimal 

width of the spatial distribution.  In the fourth section, we examine if two-peaked shapes can 

increase the pair creation yield even further.  We complete this work in the last section with a brief 

summary and a discussion of future challenges. 

 

2. Computational quantum field theory in one spatial dimension  

 The pair creation process of the electron-positron pairs can be modeled by the Dirac 

Hamiltonian in one spatial dimension [14] 

 

                                              HD  =  c σ1 p + σ3 c
2 + V(x)  (2.1) 

 

where σ1 and σ3  are the two Pauli matrices and the potential V(x) models the external electric field.  

In our numerical simulations below we use atomic units, where three fundamental constants 

[amount of the electron charge, the electron mass and Planck’s constant h] are all unity by 

definition.  As a result, the speed of light is c=137.036 a.u.  

 The energy eigenstates of the force-free Hamiltonian (denoted by H0) with positive energy 

wp≡[c4+c2p2]1/2 and momentum p in the positive (up) energy continuum are described by H0|u;p〉 = 
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wp|u;p〉, whereas the negative (down) continuum states fulfill H0|d;p〉 = –wp|d;p〉.  Their spatial 

representation of the two-component states is given by 

 

               〈x|u;p〉  ≡  Wp(u;x) = η[1, c p/(c2+wp)] exp[ipx] (2.2a) 

               〈x|d;p〉  ≡  Wp(d;x) = η[-c p/(c2+wp),1] exp[ipx]  (2.2b)  

 

where η ≡ (2π)-1/2 [1+c2p2/(wp+c2)2]-1/2 denotes the normalization factor.    

 The total number of created pairs can be calculated from the space-time evolved quantum 

field operator Ψ(x,t) for the electron-positron as 

 

  N(t)  =  ∑p ∑p’ | ∫dx Wp(u;x)* U(t) Wp’ (d;x) |2    (2.3)  

 

where U(t) = exp (–i HDt) is the time evolution operator.  From this expression, the pair creation rate 

is defined in the long time limit as 

 

                                Γ  ≡  dN(t)/dt   (2.4) 

 

In Eq. (2.3), each state Wp’(d;x) is evolved under the full Dirac-Hamiltonian of Eq. (2.1) and then 

projected on each state Wp(u;x).  These wave function solutions can be obtained on a space-time 

lattice with Nt temporal and Nx spatial grid points using a well-established fast-Fourier 

transformation based split-operator scheme [15-19].  

 Alternatively, we can calculate pair creation rate according to Hund’s rule [20]: 

 

                                Γ  =  ∫ dE T(E) /(2π)  (2.5) 

 

where T(E) is the transmission coefficient for the incoming energy E.  These are two independent 

ways provided by Eqs. (2.4) and (2.5) to calculate the pair creation rate.  Therefore these provide 

reliable tests for the numerical accuracy in each simulation [21,22].  

 

3. Singly-peaked electric field envelopes 



                                                  5            9/11/2017 

 

 

 In this section we compare the pair creation rates for the class of electric field configurations 

that have a single maximum.  One can introduce an intensity-based spatial width such that the pair 

creation rate is remarkably independent of the particular shape of the spatial distribution.  In Sec. 

3.2 we correct the original expression for the Schwinger rate to spatially inhomogeneous fields, 

such that we can have analytical estimates for the optimal width. 

 

3.1 Direct comparison of four field configurations 

 It is obvious that it is in principle not possible to characterize the complete class of singly 

peaked functions by just a single parameter.  In order to nevertheless be able to examine this class of 

envelopes systematically, we categorize the spatial distributions according to their scaling behavior 

around the maximum, ranging from a constant (ER), a linear (ET) to a Gaussian (EG) and squared 

hyperbolic secant distribution (ES) dependence on the position x.  The corresponding four spatial 

profiles are chosen to be centered around x=0 are therefore given by 

 

  ER(x)  =  E0,R  U(x;–wR/2,wR/2)  (3.1a) 

  ET(x)  =  E0,T (1–|x/wT|)  U(x;–wT,wT)  (3.1b) 

  EG(x)  =  E0,G Exp[–(x2/(2wG
2))]  (3.1c) 

  ES(x)  =  E0,S Sech2(x/wS)  (3.1d) 

 

Here U(x;a,b) denotes the generalized unitstep function that is U=1 if a<x<b and U=0 otherwise.  

We have chosen two fields with quadratic scaling to examine also the impact of the different 

scalings for large x, i.e. EG(x) ~ Exp[–x2] vs. ES(x) ~ Exp[–x].   

 It turns out that equating the four width parameters wR, wT, wG and wS is not helpful for a 

systematic comparison of the four field configurations.  We therefore propose here to characterize 

the spatial extension of these fields in a better way by introducing an effective intensity-based width 

σ as  

 

                  σ2  ≡ 12 〈(x – 〈x〉)2〉  = 12 { ∫dx x2 ρ(x) –  [∫dx x ρ(x)]2 }   (3.2) 

 

Here the normalized “intensity” probability is  defined from the electric field as ρ(x) ≡ E2(x) / ∫dx 
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E2(x).   The prefactor of 12 was chosen such that σ matches the physical extension wR for the 

rectangular shape ER(x).  To guarantee that all configurations have the same effective intensity 

width σ, the parameters w introduced above need to be scaled according to wR = σ,  wT =(5/6)1/2 σ, 

wG = 6–1/2 σ and wS = (π2-6)–1/2 σ.  

 The corresponding amplitude E0 is determined uniquely by the requirement that the total 

energy, defined as ∫ dx E(x)2 = H2, is the same for each field.  For our four configurations this leads 

to the scaling of the electric field amplitude E0 = s H/σ1/2, where the dimensionless proportionality 

factors are given by sR
2 = 1, sT

2 = 3 (3/10)1/2, sG
2 = (6/π)1/2 and sS

2 = 3 (π2-6)1/2/4.   

 In Figure 1 we have graphed the electron-positron pair creation rate Γ as defined in the prior 

section as a function of the effective width σ for four fixed energies H2.  To set the scale, we have 

graphed the spatial width in the Figure in units of 1/c a.u.  For example, this means that a width of 

σ = 1/c corresponds to 3.86 ×10-13 m in mks units.  The first observation is that the behavior of Γ is 

remarkably robust despite the rather different spatial distributions.  In fact, the rates for the three 

fields ES(x), ET(x) and EG(x) are even hard to distinguish graphically, while the constant field ER(x) 

leads to a smaller rate for small values of H and surprisingly to a larger rate for large values of H.  

The second observation is that there is actually an optimal width in each case for which the 

pair-creation is maximum.  Quite remarkably, the magnitude for this characteristic width σopt is 

rather similar for all four shapes.  We will discuss the non-trivial scaling of σopt with H2 further 

below.  The lack of dependence of the optimal width on spatial distribution of the field also 

confirms that the intensity-based characterization of the spatial extension in Eq. (3.2) above was 

indeed physically meaningful. 

 There are three distinct regions depending on the value of σ.  Even so it is hard to see from the 

Figures, for very small widths 0<σ<σcrit we observe that Γ vanishes even though the electric field 

amplitude E0 grows to infinity for σ→0 in order to maintain the required fixed field energy H2.  In 

this region, Γ=0 is expected as the amplitude V0 of the associated electric potential, defined as V0 ≡ 

∫–∞
∞ dx E(x), has to exceed the well-known threshold value to permit a permanent supercritical 

pair-creation, i.e. V0>2c2.  For example, for ER(x) with E0 = H/σ1/2 this supercritical width σcrit 

amounts to σcrit = 4c4/H2. 
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Figure 1.     The steady state pair-creation rate Γ as a function of the effective width σ of four electric field 
configurations with a singly-peaked spatial envelope.  We also denote the predictions due to the original 
Schwinger formula and its corrected form. (a) H=3.63 c5/2, (b) H=4.5 c5/2, (c) H=7.5 c5/2, (d) H=10 c5/2. 
 

 
 The second region σcrit<σ<σopt is characterized by a monotonic increase of the rate Γ with σ.  

This region marks the onset of the supercritical pair-creation process, for which the rate Γ naturally 

has to increase with σ.   

 In the third region σopt<σ<∞, the rate decreases again.  This decrease is expected as a result of 

two competing mechanisms.  If we take ER(x) as an example, we find that the associated height of 

the potential V0 grows only weakly with σ as V0 = H σ1/2.  On the other hand, the spatial extension 

of the region where the potential grows from 0 to V0 increases with σ as well.  As an increasing 

extension is directly associated with a larger tunneling distance, which typically decreases the 

transmission coefficient for an incoming electron [see Eq. (2.5)], this mechanism decreases the pair 

creation [8] and apparently dominates the other effect for large σ.  Additionally, in order to 

maintain the fixed energy, the electric field amplitude E0,R = H σ–1/2 decreases as the pulse gets 

wider, which also suggests a decreasing rate Γ.   
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3.2 The correction of the Schwinger rate for finite narrow static spatial distributions 

 The spatial profile of the pulse for ER(x) characterizes a spatial region where the electric field 

is uniform.  For the limiting case of an infinitely extended electric field Schwinger's well-known 

rate formula [3] should become valid.  In one spatial dimension [23], it predicts that the creation 

rate per unit length is given by (E0/2π) Exp[–πc3/E0].  We should remind the reader that this 

expression is highly-nonperturbative in E0 and can be derived using Borel summation techniques of 

a diverging perturbative expansion [24].  To have an approximate but analytical estimate, we can 

loosely interprete  ΓSchwinger   ≡ σ (E0/2π) Exp[–πc3/E0]  as the prediction of the Schwinger 

formula for a rectangular pulse of extension σ.  This rate increases linearly with the width σ.  To the 

best of our knowledge, with a few exceptions, systematic studies that examine the validity of the 

Schwinger formula for fields with a finite extension are lacking.  As we use the Schwinger formula 

for several approximate scaling estimates below, we therefore need to establish its validity in the 

finite pulse regime first.   
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Figure 2.     (a) Comparison of the prediction of the Schwinger formula for the steady state 
pair-creation rate ΓSchwinger as a function of the width σ of electric field and the exact rate Γexact for 
E0=1.5c3. (b) The percentage error of the original Schwinger rate together with the error associated 
with the corrected Schwinger expression. 
 

 

 In Figure 2 we compare the Schwinger rate  ΓSchwinger   with the exact one ΓR obtained from 

the rectangular pulse ER(x) for a fixed electric field E0 = E0,R =1.5c2.  As expected, we find that the 

two rates become similar for very large widths σ, while the Schwinger rate remains consistently 
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larger than the exact one.  This means that the original Schwinger rate overestimates the true rate for 

any width.  For example, for σ=5/c the relative error between both is 32% and decreases to less than 

2.7% for σ=50/c as shown in Fig. 2b.  However, for small widths σ the Schwinger rate significantly 

overestimates the rate.  In fact, the true rate ΓR is only non-zero once the associated potential 

becomes supercritical, i.e., E0,R σ > 2c2.  This leads to a critical width σcr ≡ 2c2/E0,R below which 

the rate is zero.  In contrast, the (infinite width-based) Schwinger rate would predict  ΓSchwinger =  

c2/π Exp[–πc3/E0] at this particular width instead of the correct value of zero. This nonvanishing 

value of  ΓSchwinger is related to the nearly constant offset between ΓR(σ) and ΓSchwinger(σ) as 

indicated in the Figure 2a.  In order to correct the Schwinger expression for this finite-width effect, 

we can simply subtract this offset and therefore introduce a new rate defined as 

 

   Γcor   ≡  [σ E0/2 – c2]/π  Exp[–πc3/E0]  (3.3) 

 

This new rate becomes positive only if the field is supercritical and also naturally corrects the offset 

shown in Figure 2a.  We had included the original Schwinger prediction as well as the corrected rate 

already in the Figure 1.  We find that the corrected rate Γcor matches the true rate for rectangular 

pulses ER(x) for the entire range of the widths as well as all pulse energies displayed. 

 In order to be more quantitative, we show in Figure 2b that the corrected Schwinger rate can 

approximate the true rate with significantly less relative error (defined as |Γ-Γexact|/Γexact) than the 

one from the original expression.  For example, the corrections to the Schwinger formula are 

significant improvements as they decrease the errors cited above from 32% to only 3.1% (for a 

small width σ=5/c) and from 2.7% to 0.5% (for a large width σ=50/c). 

 After we have established the accuracy of the corrected Schwinger rate even for electric fields 

with relatively small extensions, we can now use the analytical expression to analyze the scaling 

behavior of the rate as well as the optimal width for the class of pulses with fixed energy.  If we use 

again E0 = H/σ1/2, the analytical rate becomes 

 

  Γcor(σ,H)  ≡  [H σ1/2/2 – c2]/π  Exp[–πc3σ1/2/H]  (3.4) 

 

We can therefore use this reliable but approximate analytical expression to examine the scaling of 
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the optimal width.  From the condition dΓcor(σ,H)/dσ=0, we find  

 

  σopt  = (H2+2c5π)2/(c6H2π2)  (3.5)   

 

This means that the (corrected) Schwinger based approximation suggests that there might not be an 

energy independent universal optimal electric field shape.  The fact that the optimal width does 

depend on the energy of the pulse exemplifies the true nonlinear nature of the pair creation process.  

In fact, for large pulse energies (H2>2c5π) the optimum pulse width increases with the energy, σopt  

= H2/(c6π2), whereas for small pulse energies (H2<2c5π), it decreases as σopt  = 4/(cH2).  It is also 

interesting to note that for any fixed energy H2 the corresponding optimal pulse is supercritical.  

This can be seen if we compute the potential as Vopt = E0 σopt = H σopt
1/2= H 

[(H2+2c5π)2/(c6H2π2)]1/2, which takes the supercritical value Vopt =2c2  for H=0. 

 If we insert the optimum width into the rate, we find that maximum rate itself grows 

monotonically with the energy H2 as one could expect 

 

  Γopt(H) ≡  Γcor(σopt,H)  =   [H2/(2π2c3) Exp[–1 –2πc5/H2]  (3.6) 

 

These findings predict that the maximum pair-creation rate Γopt(H) ~ H2 would increase more 

rapidly with H than the usual (non-perturbative) growth of Γ(H) for a fixed extension, i.e. Γ(H) ~ H 

Exp[–β/H].    

 In order to examine whether this prediction also holds more generally for other 

configurations, we compare in Figure 3 the Schwinger prediction for σopt and Γopt with those 

associated with our pulse shapes introduced in Eq. (3.1).  To obtain these data for the four fields was 

computationally quite involved as it required the computation of the entire width dependence of the 

rate, then finding its optimal width for each graph and then repeating these calculations for each 

energy.  
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Figure 3.     The optimal effective width σopt (a) and the maximal pair creation rate Γopt (b) as a 
function of the total energy H of the external electric field pulse. 

 
 

Despite the fact that the original Schwinger rate is strictly valid only in the (unrealistic) limit of an 

infinitely extended electric field, the quantitative predictions for the optimal spatial width based on 

the corrected Schwinger formula are remarkably accurate and match the data [especially for ER(x)] 

very well.  In agreement with the other three field configurations, the data suggest that in order to 

maximize the yield with a singly peaked electric field configuration, the spatial extension should 

always exceed a minimum width of about σ=2.5/c.  Furthermore, if the experimentally achievable 

energy H2 is not too large, then a significantly larger spatially extended field would be ideal.  In 

fact, the smaller this available field energy, the larger should be the spatial extension to increase the 

efficiency of the pair creation process.  The magnitude of the maximal achievable rate (shown in 

Figure 3b) grows monotonically with H2.  The match of all data suggests that the simple analytical 

expression Eq. (3.6) is even valid for any singly-peaked electric field configuration. 

 

4. Doubly-peaked electric field envelopes 

 In the last section we saw that for the class of singly-peaked envelopes there are two 

competing mechanisms that determine the final rate.  Examining the more general class of electric 

field shapes with two peaks provides us with an additional degree of freedom to control the pair 

creation yield.  Furthermore, it leads to yet another mechanism to affect the particle yield.  This 



                                                  12            9/11/2017 

 

 

mechanism is associated with the observation that the rate seems to decrease universally with 

increasing spatial separation of the two peaks.  As we will discuss below the simultaneous presence 

of all three competing mechanisms can lead to the occurrence of new structures involving new local 

and global maxima for the rate as a function of the effective width σ of these configurations.  

Additionally, the new degree of freedom might also permit us to examine the question whether this 

new class of pulse shapes can enhance the creation rate compared to the single-peaked shapes. 

 In Figure 4 we have graphed the rate Γ as a function of the separation d between two 

rectangular fields of width w each.  In the inset the corresponding electric field ETP(x)  =  ER(x) + 

ER(x–w–d) is depicted.  
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Figure 4.     The steady state pair-creation rate Γ as a function of the separation d of the two electric 
field with the width w each.  In the inset we sketch this spatial profile.  The graphs correspond to the 
widths w1=0.48/c, w2=0.6/c and w3=18√3/c and H=3.63 c5/2 and total energy H=3.63 c5/2. 
 

 

The monotonic decrease of the rate Γ with d shows that, even though an overall extension increases 

the effective width σ, the rate decreases.  However, the width of each single pulse w still determines 

the overall magnitude of the rate as the comparison of the three curves for w1=0.48/c, w2=0.6c and 

w3=31.2/c shows.  In fact, if we choose the optimum width σopt (as predicted in the prior section for 

a singly-peaked field) the yield is also maximum for the two-peaked configuration.  The data in 
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Figure 4 were obtained for the same energy as those in Figure 1a, for which the yield for w2=0.6c 

was also consistently larger than that for the smaller and large widths, w1=0.46c and w3=31.2/c, 

respectively.  The monotonic decrease of the data with d gives us also a first indication that a 

singly-peaked electric field (d=0) might be more efficient for pair creation than any doubly peaked 

one (d≠0).   
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Figure 5.     The steady state pair-creation rate Γ as a function of the separation d of the two electric 
field with a Gaussian spatial envelope and width w each.  In the inset we sketch this spatial profile.  
The graphs correspond to width w1=0.15/c, w2=4.65/c and H=4.5 c5/2.     

 

 One could conjecture that this monotonic decrease of Γ with d may not be generally true and 

only occurred for our particular field ETP(x), where the gap between the peaks vanished identically 

for any d≠0.  To generalize this finding we have repeated the same simulation for two Gaussians, 

where a minimum occurs between the two pulses only if d is larger than d=2.  While the electric 

field at this minimum decreases with d, it is never equal to zero.  As we show in Figure 5, the 

monotonicity of the rate with d seems indeed to be rather universal.  This suggests that the 

additional freedom of choosing electric fields with two peaks does not necessarily lead to enhanced 

pair creation rates.  Therefore, the optimal electric field configuration is likely to be singly peaked. 

 Finally, we will demonstrate how the simultaneous action of the three different competing 

mechanisms, which are (1) the increase of Γ with σ for small σ, (2) the decrease of Γ with σ  for 
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large σ and finally (3) the general decrease of Γ with d can lead to interesting substructures in the 

rate.  To illustrate this we have chosen the two-peaked configuration 

 

  ETP(x)  =  E0,R  U(x;-s/2,s/2) + E0,R  U(x–2s;-s/2,s/2)  (4.1) 

 

where the spacing s between the two fields was chosen to be equal to the extension of each peak. 
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circles are the locations of the maxima according to sn=33.3c–1(n+1/2)–1 for n=4,5,6,7 and 8. 
[H=4.5c5/2] 

 

 As the strength of each mechanism depends on s, there are four interesting regions.  In 

agreement with Figure 1, there is the zero-production regime which is followed by the small-s 

growth domain.  The interesting new regime is the third one where after a local maximum the rate Γ 

decreases and then continues to increase again.  This domain of s between the local maximum and 

minimum of Γ is due the mechanism illustrated above in Figure 4 where any increase of the 

extension d of the interpulse gap region always leads to a decrease of Γ.  In this region, this 

decreasing mechanism (3) is dominant over the "Γ increase mechanism for small-σ" (1).   

 The data allow us also some insight into the length scale on which the particles created by 
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each field pulse can affect each other.  For a comparison, we have also included in the Figure twice 

of the rate obtained from just one of the two pulses.  This would correspond to the true rate if the 

two pulses were infinitely apart, such that the creation of the particles in one pulse would not 

interfere with the generation of the pairs in the other neighboring pulse.  For separations that exceed 

s=2/c the two graphs are indeed very similar.  For small separations s, however, we observe that the 

rate of the two-field configuration exceeds that rate 2Γ (associated with just one pulse).  Also, this 

difference is expected as the single pulse was chosen to have only half of the pulse energy [H2=(4.5 

c5/2)2/2] of the two-pulse combination.  As a result, the corresponding threshold width s for 

pair-creation for the single pulse requires a larger width as observed in the Figure.  This therefore 

explains that for smaller width the two-pulse combination actually leads to a larger rate. 

 As a side issue, we note some oscillatory structures [25] in the graph for σ>6/c.  As an 

interplay of several length scales such as the spacing s and the de Broglie wave length of the created 

particles can play a role to determine the total rate, these oscillations might be the result of some 

destructive and constructive quantum interferences.  While we have not been able to derive a 

phenomenological model that can predict the locations of the maxima and minima, we found that 

the numerical expression sn (n+1/2) = 33.3/c describes the actual locations of the maxima sn 

remarkably well.  In the graph we have indicated these predicted locations for n=4,5,6,7 and 8 by 

the open circles.   

 

5.  Estimation of optimal pulse shapes based on physical mechanisms 

 All of the estimates had to be restricted to only specific subclasses of electric field envelopes.  

They were optimized with regard to only a single parameter such as the width or the peak to peak 

spacing.  This restriction was unfortunately required for computational reasons.  In this section we 

will examine if two physical mechanisms can be used to predict a more general optimal pulse 

shape.  We will test the Schwinger rate expression and show that it predicts ER(x) as the optimum 

field.  Remarkably, the same pulse shape is also predicted by a classical mechanical mechanism that 

is based on the minimization of the particles' occupation time of the pair creation zone. 

 

5.1 Schwinger mechanism 

 Despite the fact that Schwinger's special case is strictly valid only for infinitely extended 

configurations we have suggested above that it can provide us with some qualitative predictions 
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about the scaling of the optimum width.  It is therefore tempting to examine whether we can apply 

the usual variational calculus techniques directly to find an optimum shape based on Schwinger's 

rate based formula.   We could assume that the electric field in the rate formula is actually spatially 

dependent and attempt to construct the pulse shape E(x) that optimizes the spatially integrated rate 

given by Γ ≡ ∫–w/2
w/2 dx E(x)/(2π) Exp[–πc3/E(x)] under the constraint Η2≡ ∫–w/2

w/2 dx E(x)2.  

 It turns out that any functional of the general form Γ[E(x)] ≡ ∫–w/2
w/2 dx f[E(x)] for arbitrary 

functions f is always optimized by a homogeneous field E(x)=const.  Due to the absence of any 

derivative terms (such as dE/dx) the corresponding Euler-Lagrange equation is simply an algebraic 

equation for E(x), such as ∂f/∂E – λ 2E(x) = 0, where λ is the Lagrangian multiplier.  Therefore this 

approach does not predict any non-trivial envelope E(x) and the optimum field is given by ER(x) 

defined in Eq. (3.1a).  This is consistent with the case for very large field energies H2 (compare 

Figure 1d), where we also observed that for large σ the constant-field pulse ER led to a larger pair 

creation rate than the other three inhomogeneous fields EG, ES and ET.  

 The same conclusion also follows from the commutativity of the summation terms of the 

finite Rieman sum representation of the integral Γ = Δx Σ f[E(xn)].  Here the summation is 

unchanged if we exchange the values of the function at arbitrary locations xN and xM, i.e. E'(xN) = 

E(xM) and E'(xM) = E(xN).  This leads to the new function E'(xn) ≡ E(xn) (1-δnN) (1-δnM) + E(xM) 

δnN + E(xN) δnM for which  ∫–w/2
w/2 dx f[E'(x)] = ∫–w/2

w/2 dx f[E(x)].  If we assume that the function 

Eopt(x) that extremalizes the integral ∫–w/2
w/2 dx f[Eopt(x)] is unique, then this 

"swapping-symmetry" would permit us to construct an infinite set of equivalent functions all of 

which would lead to the precisely the same extremal integral, in direct contradiction to the assumed 

uniqueness of Eopt(x).  Therefore the optimizing function must be invariant under any swapping 

operation, which is true only for homogeneous fields Eopt(x)=const.  

 

5.2 Classical mechanical occupation time  

 In several studies it was suggested that those electron-positron pairs that cannot leave the 

creation region decrease the overall pair creation process due to Pauli blocking [26-32].  Other 

studies [33] have suggested that some aspects of the quantum field theoretical pair creation 

processes such as energy spectra can be understood in terms of classical mechanics.  We therefore 

examine here whether the time a created electron would require to accelerate out of the pair creation 
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zone is related to the production rate.  In other words, we assume here that those electric field pulses 

that minimize the average occupation time of the particles in the pair creation zone can also 

maximize the yield. 

 We assume the electric field pulse localized x=0 and x=1 is modeled by an unknown potential 

V(x).  For simplicity we assume that the particle is created at location x=0 with a total particle’s 

total energy V(0)=V0.  In other words, the particle is assumed to start with zero speed and 

accelerates downward to the bottom of the potential at x=1, where V(x=1)=0.   The total time the 

particle requires to travel from x=0 to x=1 is given by 

 

  T = ∫0
1 dx / [ 2 (V0–V(x) ) ]1/2  (5.1) 

 

where the potential V(x) is subject to the same constraint as used above to fix the pulse energy: 

 

 H2 = ∫0
1 dx [dV(x)/dx]2  (5.2) 

 

Note that this is not the same as the famous brachistochrone problem where the force is constant 

and points strictly downward but the particle accelerates in another direction.  If we use a Lagrange 

multiplier λ and apply the first variational derivative we obtain 

 

 δ { ∫0
1 dx / [ 2 (V0–V(x) ) ]1/2 – λ ∫0

1 dx [dV(x)/dx]2} = 0  (5.3) 

 

We arrive at the Euler–Lagrange equations for the optimum potential, 

 

 ∂/∂V {1/[ 2(V0–V(x) ) ]1/2 } + 2λ d2/dx2 V(x) = 0  (5.4) 

 

When this equation is solved numerically together with the constraint of Eq. (5.2), we find that the 

potential that minimizes the time of travel in this interval is very closely approximated by 

V(x)≈V0(1–x), corresponding to an electric field that is constant.  Note that this conclusion is in 

agreement with the optimum field discussed in the previous section.  The maximization of the 

Schwinger rate seems to be equivalent to the minimization of the occupation time of a classical 

particle accelerating in a constant electric field.  One could have expected that those electric force 
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fields that are largest close to the starting point x=0 (and therefore can accelerate the particle at 

early times) would minimize the passage time.  However, it also seems to be important that the time 

(and therefore the distance) over which the particle can accelerate has to be as large as possible as 

well in order to minimize the total passage time from x=0 to x=1.  Apparently a spatially constant 

force field is the best compromise for these two competing requirements.  

 

6. Summary and outlook 

 In this work we have shown that for the class of supercritical electric field distributions with a 

single peak the electron-positron pair rate is rather insensitive to the particular spatial profile.  For 

spatial distributions with a fixed electric field energy the pair creation yield does not vary as a 

monotonic function of the width of the electric field.  In fact, there is an optimum spatial width for 

each energy for which the pair creation rate is maximum.  For small energies this optimal width 

decreases first and then increases again as the field energy is increased.  We have also corrected the 

original Schwinger rate to account for effects due to finitely extended fields.  This corrected rate 

provides fully analytical estimates for the optimum width as well as for the obtainable maximum 

pair creation yield.  These analytical predictions are surprisingly accurate for a wide class of electric 

field configurations with a single maximum.  A generalization of the simulations for spatial profiles 

with two maxima did not lead to an enhancement of the pair creation yield.  In fact, our studies 

suggest that a remarkably simple spatial distribution with a structureless constant electric field is 

actually rather close to the optimal configuration.  This surprising finding is also consistent with 

results based on variational principle with suitable constraints.  The current work is just an initial 

attempt to a conceptually and also computationally difficult problem and we hope that it can 

stimulate further more detailed investigations.   

 In this work we reported mainly on field configurations that are spatially symmetric.  For 

asymmetric electric field distributions our preliminary computations reveal that they mostly 

produce fewer pairs than the corresponding symmetric distributions even though they add yet 

another degree of freedom in searching for optimal field configurations. 

 Even though the pair creation process can happen on very short time scales for which even the 

electric and magnetic field components of an electromagnetic radiation pulse (such as an optical 

laser pulse) may appear time-independent, temporal characteristics of the experimentally relevant 

fields can also affect the pair creation process.  It might be therefore worthwhile to include also 

temporal variations into the external field and to optimize the space-time profile.  We will leave 
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these challenges to follow up investigations. 

 Our work was based on the optimization of the asymptotic long-time rate of the permanent 

pair creation regime.  However, these asymptotic regions could be difficult to be established with 

the planned laser sources, where transient effects might dominate the process.  Also, any radiative 

back reaction by the created particles on the fields was neglected in our studies.  While there have 

been some recent promising proposals to include these effects [32,34], fully three-dimensional 

simulations that incorporate these interactions on a field theoretical and non-phenomenological 

level are very challenging.  There are certainly many other promising computational and analytical 

approaches that can contribute to these questions, such as the Dirac–Heisenberg– Wigner 

formalism [35,36], worldline instantons [37,38] or real-time lattice gauge theory [39].  
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