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Environmental noise leads to dephasing and relaxation in a quantum system. Often, a rigorous
treatment of multiple noise sources within a system-bath approach is not possible. We discuss the
influence of environmental fluctuations on a quantum system whose dynamics is dephasing already
due to a phenomenologically treated additional noise source. For this situation, we develop a path
integral approach, which allows to treat the system-environment coupling numerically exact, and
additionally we extend standard perturbative approaches. We observe strong deviations between
the numerical exact and the perturbative results even for weak system-bath coupling. This shows
that standard perturbative approaches fail for additional, even weak, system-bath couplings if the
system dynamics is already dissipative.

Open quantum dynamics is a very successful approach
to describe and treat dissipative effects like relaxation,
decoherence and dephasing in quantum systems [1–3].
Dissipation results therein by coupling the quantum sys-
tem of interest to an environment. The later is typically
described by a set of harmonic oscilators bilinear cou-
pled to the system. The according system-bath model
can then be treated either perturbatively or by numer-
ical exact methods. This allows successful treatment
of problems like energy transfer in photosynthetic com-
plexes [4, 5], fluorescence properties of optical quantum
dots [6] and dephasing in various qubit realizations [7],
for example, in two-electron charge qubits [8].

The quantum systems of interest are typically subject
to various noise sources. Charge and flux qubits, for ex-
ample, experience noise due to phonons, voltage fluctu-
ations in the various gates, charged defects and currents
through nearby quantum point contacts [7, 9]. Chro-
mophores in photosynthetic complexes are disturbed by
strong environmental fluctuations due to intra- and in-
termolecular vibrations of the photoactive complexes, vi-
brations of embedding proteins, solvent fluctuations and
the charge separation in the reaction center [5]. Usually,
the various noise sources are described by one effective
bath if they all couple identically to the quantum system,
Alternatively, one focusses on the main noise source and
treats the others phenomenologically. Pure dephasing
effects in flux qubits due to defects are phenomenologi-
cally treated by introducing dephasing rates. In energy
transfer in photosynthetic complexes the reaction center
is often included as energy sink described by phenomeno-
logical Lindblad rates [10].

A system-bath approach treats the environmental in-
fluence on a quantum system with Hamiltonian dynam-
ics. In contrast, the dynamic of problems, which include
a phenomenological sink or dephasing rate, is Liouvil-
lian, i.e. is determined by a Liouville von Neumann
equation. Environmental noise which additionally acts
on such a dissipative quantum system can then not be
treated within a standard system-bath approach. Ap-
proximately, one might determine the influence of each
noise source independently. Thereby, all cross correla-

tions between the different fluctuations are neglected.
We extend the numerical exact quasi-adiabatic path

integral approach [11–13] and a perturbative approach
[14, 15] to allow for Liouvillian system dynamics. We
then discuss a quantum two-level system (TLS) which
dephases via a phenomenological dephasing rate γD and
is subject to environmental fluctuations which we treat
with the extended system-bath approach. We observe
that the dephasing of the TLS due to γD strongly sup-
presses the dissipative influence of the environmental
fluctuations. Surprisingly, the perturbative results dif-
fer quantitatively and qualitatively strongly from numer-
ical exact results even at weak system-bath coupling.
Thereby, the dephasing due to γD is treated exactly
in both cases. Accordingly, perturbative treatment of
system-bath coupling for a dephasing quantum two-level
system fails.
We study a quantum two level system (TLS) with dipo-

lar coupling ∆ leading to a system Hamiltonian

HS =
∆

2
σx. (1)

The TLS is disturbed by two independent fluctuation
sources of which we model one as a harmonic baths, i.e.
HSB,z, leading to a Hamiltonian H = HS +HSB,z with

HSB,z =

M
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and [qk′ , pk] = i~δk,k′ . Herein, the qk and pk are the
position and momentum of mode k with frequency ωk

coupled via λk to the system. Explicitly, the system-

bath coupling terms are HI,z = −σ̂z

∑M
k=1 λkqk and

HSB,z = HI,z + HB,z. The (longitudinal) fluctuations
of the energy difference between the eigenstates to σz ,
induced by HSB,z, result in energy exchange between
system and bath and thus relaxation and dephasing. For
simplicity, we employ an Ohmic spectral function for the
bath, i.e.
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with coupling strength γz and cut-off frequency ωc.
The second fluctuation source is assumed to cause pure

dephasing. Most often pure dephasing noise sources are
difficult to characterize in detail and a full description
is missing. At temperatures kBT ≃ ∆, typically pure
dephasing can effectively be treated by incorporating into
the von-Neumann equation explicit dephasing terms [6,
17–21]. Thus, the dynamics of the TLS is determined by
the von-Neumann equation

∂tW = −
i

~
[HS +HSB,z,W ]− ΓDW = LeW (4)

for the statistical operator W (t) with ΓD =
diag(0, 0, γD, γD) in a basis {1l, σx, σy, σz} and the de-
phasing rate γD. The right hand side of (4) defines the
Liouvillian Le = − i

~
[HS+HSB,z, �]−ΓD. We aim now at

a system-bath approach which allows a numerical exact
treatment of the HSB,z noise in eq. (4).
Introducing the time evolution super-operator U(t, t0)

via W (t) = U(t, t0)W (t0) and U(t, t0) = exp(Le(t − t0))
allows for an alternative desciption of the dynamics in
terms of a Dyson equation

U(t, t0) = U0(t, t0) +

∫ t

t0

dsU0(t, s)LIU0(s, t0) (5)

+

∫ t

t0

ds

∫ s

t0

ds′U0(t, s)LIU0(s, s
′)LIU(s

′, t0)

which facilitates perturbative approaches. The bare evo-
lution is U0(t, t0) = exp(L0(t− t0)) with L0 = − i

~
[HS +

HB,z, �]−ΓD and the system-bath coupling leads to LI =
− i

~
[HI,z, �]. Typically, a factorized initial state W (0) =

ρS(0)⊗ ρBz,eq with the bath in thermal equilibrium, i.e.

ρBz,eq = e−βHSB,z[λk≡0]/Tr{e−βHSB,z[λk≡0]} is assumed.
The effective system dynamics under the influence of the
environment is obtained by integrating out the bath de-
grees of freedom leading to ρeff(t) = TrB{W (t)} or, al-
ternatively, the effective time evolution super-operator
Ueff(t, t0) = 〈U(t, t0)〉B = TrB{U(t, t0)ρBz,eq}.
In case of purely Hamiltonian dynamics, i.e. for van-

sihing dephasing γD, resumed perturbative treatments
leading to Redfield-type master equations are efficient
for small system-bath coupling strength, i.e. γz ≪ 1, to
describe the system dynamics and the dissipative bath
influence [16]. One such approach is RESPET [14, 15]
which derives the effective time evolution super-operator
by integrating out the bath degrees of freedom in equa-
tion (5). For Liouvillian system dynamics, i.e. finite γD,
such a resumed perturbative treatment is formaly leading
to

Ueff(t, t0) = US(t, t0) (6)

+

∫ t

t0

ds

∫ s

t0

ds′US(t, s)M(s, s′)Ueff(s
′, t0).

Therein, US(t, t0) = exp(LS(t − t0)) with LS =
− i

~
[HS , �] − ΓD. The memory kernel M(s, s′) is in low-

est order perturbative treatment given as M(s, s′) =
〈LIU0(s, s

′)LI〉B.

As dynamic observable we discuss Pz(t) = 〈σz〉(t)
whose derivation is now straight forward. We obtain for
Pz(t) ≃ cos∆t e−Γpt with the rate

Γp(γD) = γD −

∫ ∞

−∞

dωG(ω) coth
(

β
ω

2

) γD
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D

+2πRe

{
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(

β
∆− iγD

2

)}

(7)

for initial system state ρS(0) = 1
2 (1l + σz). Note that

additional small non-Markovian contributions to Pz(t)are
neglected since they do not exhibit damped oscilations
and, thus, will not contribute to an observed damping
rate.

Little is known about the reliability of such a pertur-
bative approach to treat a system-bath coupling when
the system dynamics is Liouvillian instead of Hamilto-
nian, i.e. for finite γD. In order to test it, we must
devise a numerical exact approach to treat the dynam-
ics, specifically the HSB,z noise in Eq.(4). The regular
QUAPI approach [11, 12] employs a time discretization
to split the quantum mechanical time evolution opera-
tor U(t) = exp(−iHt) which combined with a symmet-
ric Trotter splitting leads to a description in terms of a
path integral where the bath effects enter via a Feynman-
Vernon influence functional. The effective dynamics of
Eq. (4) can, however, not be described in terms of a
quantum mechanical time evolution operator. Instead
we must employ a time-evolution super operator

Ue(t) = eLet and W (t) = Ue(t)W (0). (8)

Thereby, Le = LS +LSB,z and LSB,z = −(i/~)[HSB,z, �]
and LS = −(i/~)[HS, �] − ΓD. To proceed we dis-
cretize time in N steps, i.e. t = N∆t, and Ue =
∏N

j=1 Ue,j with Ue,j = eLe∆t. Inserting furthermore
1l - super-operators, i.e.

1l =

∫ ∞

−∞

dσ+

∫ ∞

−∞

dσ−

∫ ∞

−∞

dq+

∫ ∞

−∞

dq−|σ±,q±)(σ±,q±|.

in between all time steps leads to a discretized path sum.
Herein the super-states |σ±,q±) = |σ+,q+〉〈σ−,q−| and
the scalar product is defined as (A|B) = Tr{A† · B} for
operators A and B acting on the Hilbert space.

To proceed we need the elements of the time-evolution
super operator

(σ±
j ,q±

j |e
Le∆t|σ±

j−1,q
±
j−1) = (9)

Tr
{

|σ−
j ,q−

j 〉〈σ
+
j ,q

+
j |e

Le∆t
[

|σ+
j−1,q

+
j−1〉〈σ

−
j−1,q

−
j−1|

]}

where we inserted the [·] - brackets in order to highlight
on which operator the time evolution super-operator acts.
Employing the symmetric Trotter splitting to split the
time-evolution super operator leads to

Uj ≃ eLSB,z∆t/2eLS∆teLSB,z∆t/2 +O(∆t3).
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With eLSB∆t/2[A] = e−iHSB∆t/2~AeiHSB∆t/2~ we obtain

(σ±
j ,q±

j |e
Le∆t|σ±

j−1,q
±
j−1) = (σ±

j |e
LS∆t|σ±

j−1) · (10)

·〈q+
j |e

−iHSB(σ+

j
)∆t/2~e−iHSB(σ+

j−1
)∆t/2~|q+

j−1〉

·〈q−
j−1|e

iHSB(σ−

j−1
)∆t/2~eiHSB(σ−

j
)∆t/2~|q−

j 〉.

Thus, as in the regular QUAPI scheme the system and
the bath dynamics are separated on a single time slice
and the bath influences are summed up into an influ-
ence functional. Assuming a factorized initial condition,
we obtain for the components of the effective statistical
operator of the system

〈σ+
N |ρeff(t)|σ

−
N 〉 =

N−1
∏

j=0

∫ ∞

−∞

dσ+
j

∫ ∞

−∞

dσ−
j (σ±

j+1|e
LS∆t|σ±

j )

·〈σ+
0 |ρ(0)|σ

−
0 〉 · I(N)(σ±

0 , σ±
1 , . . . , σ

±
N ). (11)

with

(σ±
j+1|e

LS∆t|σ±
j )= Tr

{

|σ−
j+1〉〈σ

+
j+1|e

LS∆t|σ+
j 〉〈σ

−
j |
}

.(12)

In the iterative scheme of Makri and Makarov [11, 12]
the Hamiltonian system dynamics enters only in the com-
bination 〈σ+

j+1|e
−iHS∆t/~|σ+

j 〉 · 〈σ
−
j |e

iHS∆t/~|σ−
j+1〉 which

equals exactly (σ±
j |eLS∆t|σ±

j−1) for the special case of

Hamiltonian system dynamics, i.e. LS = −(i/~)[HS, �].
Thus, for our more general case of Liouvillian system dy-
namics, i.e. LS 6= −(i/~)[HS, �] we can still construct
an iterative scheme when restricting to a finite memory
time following the procedure as outlined by Makri and
Makarov [11, 12]. Thus, (11) readily allows to extend the
quasi-adiabatic path integral approach to treat numeri-
cal exactly the influence of environmental fluctuations on
any system dynamics which can be cast into a Liouvillian
equation (4). This is our first result.
Equipped with two methods we study the influence

of environmental fluctuations on an already dephasing
quantum system. We determine the decoherence rate Γ
of a symmetric quantum two-level system (1) by fitting
f(t) = cos∆t e−Γt to the numerical results for the σ̂z

expectation value employing our hybrid-QUAPI scheme.
The inset of Fig.1 shows the decoherence rate Γ versus
the dephasing rate γD. We use kBT = ∆ and ωc = 5∆
and find that Γ increases monotonically with γD for all
studied system-bath couplings γz. In order to separate
out the contribution from the system-bath coupling Fig.1
plots the difference of decoherence rate and γD normal-
ized by the RESPET result Γp(γD = 0) for vanishing
γD. For small γz and γD we observe that the decoher-
ence rate is simply the sum of the dephasing rate γD
and the weak coupling result for the longitudinal fluctua-
tions. With increasing system-bath coupling γz the ratio
of (Γ− γD)/Γp(γD = 0) decreases as higher order effects
set in. Surprisingly, for all system-bath couplings the
ratio decreases also for increasing γD. Thus, increasing
a phenomenological dephasing suppresses the decohering
effect of longitudinal fluctuations. In contrast, the relax-
ation rate (determined by fitting an exponential decay to
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FIG. 1. The difference of decoherence rate and γD normalized
by Γp(γD = 0) is plotted versus dephasing rate γD for various
system-bath couplings γz for kBT = ∆ and ωc,z = 5∆. The
inset plots the decoherence rate directly.

〈σ̂x〉(t) (data not shown) is constant within the numerical
accuracy of the hybrid-QUAPI scheme.

The observed suppression of decoherence is studied
in more detail in Fig.2. The ratio (Γ − γD)/Γp(γD =
0) is plotted versus γD for a rather strong system-
bath coupling γz = 0.2/(4π) at five temperatures, i.e.
kBT = 0.01∆ (red crosses), 0.05∆ (green squares), 0.2∆
(blue squares), 0.5∆ (magenta squares) and ∆ (orange
squares). Data for the two temperatures kBT = 0.01∆
and 0.05∆ coincide which, thus, represents the low tem-
perature limit. Additionally, data is shown for a weak
system-bath coupling γz = 0.01/(4π) at three temper-
atures, i.e. kBT = 0.2∆ (blue circles), 0.5∆ (ma-
genta circles) and ∆ (orange circles). Perturbative re-
sults following (7) are given as lines. Since we re-
stricted the perturbative calculation to lowest order the
ratio (Γ − γD)/Γp(γD = 0) (with Γ determined by RE-
SPET) does not depend on the system bath coupling
γz. The QUAPI data shows small deviations between
the γz = 0.01/(4π) and γz = 0.2/(4π) for temperatures
kBT = 0.2∆ and ∆ but not for kBT = 0.5∆ (within the
accuracy of the data). This lack of γz dependence points
towards a lowest order effect in the system-bath coupling
as determined by the extended RESPET. Surprisingly,
however, QUAPI results differ substantially from the RE-
SPET results except for very small dephasing γD. Fur-
thermore, RESPET shows with increasing γD at first a
suppression of decoherence and then an increase. The
minimum shifts towards larger γD with increasing tem-
perature and, thus, is only visible for kBT = 0.2∆ in Fig.
2. In contrast, the correct behaviour as determined by
QUAPI shows at first a decrease of decoherence which
seems to level of for larger γD.

To investigate this further Fig.3 (upper graph) plots
the data for γz = 0.01/(4π) and kBT = 0.2∆ and
kBT = 0.5∆ for an extended range of γD. Therein,
the γD dependence is very weak for γD & 2∆. The
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FIG. 2. The difference of decoherence rate and γD normalized
by Γp(γD = 0) is plotted versus dephasing rate γD for five
temperatures and two system-bath couplings and compared
to the RESPET result (7).

kBT = 0.2∆ data exhibits a shallow minimum but the
kBT = 0.5∆ simply levels off.
In total, we find that a perturbative approach, which

is standard to treat weak system-bath coupling success-
fully, fails when the system dynamics is not Hamiltonian
but follows an Liouvillian dynamics. In detail, we stud-
ied a quantum two-level system with phenomenological
dephasing. One might argue heuristically that a large
dephasing rate γD is the result of strong environmental
noise and further that such a strongly coupled environ-
ment even invalidates a perturbative treatment of an ad-
ditional independent noise source even when this noise is
weak, i.e. its system-bath coupling is small, i.e. γz ≪ 1.
Then, discrepancy between QUAPI and RESPET should
occur only for large γD. Fig. 3 (lower graph) plots the
data for γz = 0.01/(4π) and kBT = 0.2∆, 0.5∆ and ∆
with a focus on small dephasing rate γD. As expected
RESPET and QUAPI results agree for vanishing phe-
nomenological dephasing. Sizeable differences, however,
already occur for γD & 0.1∆ with stronger deviations at
lower temperatures.
We have developed an effective treatment to determine

the non-equilibrium dynamics of a dephasing quantum
system subjected to additional environmental fluctua-
tions. The dynamics of the dephasing quantum system
is described by an phenomenological Liouville von Neu-
mann equation and the coupling to the additional envi-
ronment is treated within a system bath approach. To
treat this system-bath coupling we have extended the
quasi-adiabatic path integral scheme to allow the (num-
merical) exact treatment of a system-bath problem when

the system dynamics is determined by a Liouville von
Neumann equation rather than a Hamiltonian. We have
then studied the dynamics of the dephasing quantum
two-level system.
We observe a suppression of the contribution from the

environment to the decoherence rate with increasing de-
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FIG. 3. The difference of decoherence rate and γD normalized
by Γp(γD = 0) is plotted versus dephasing rate γD for two
temperatures and an extend γD range (upper graph) and for
three temperatures with a focus on small γD (lower graph).

phasing. Thus, dephasing suppresses the effects of addi-
tional environmental fluctuations. We then additionally
determined the dynamics treating the system-bath cou-
pling perturbatively. Surprisingly, we find strong quanti-
tative and qualitative deviations between the perturba-
tive and the (numerically) exact results for the environ-
mental influences even for system-bath couplings which
are normally considered to justify a perturbative treat-
ment. This shows that the interplay of dephasing and
additional environmental noise gives rise to peculiar non-
perturbative effects.
These results are important to evaluate the dynamcis,

for example, of qubits, of photosynthetic complexes and
also of quantum transport experiments. In all these case
multiple noise sources influence the quantum system of
interest. In charge and also flux qubits pure dephasing
noise is notoriously difficult to characterize and, thus,
typically treated phenomenologically whereas the other
noise sources are most often perturbatively treated. Our
results show that these perturbative evaluations should
be used with utmost care.
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