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Quantum systems, in general, cannot be simulated efficiently by a classical computer, and hence
is useful for solving certain mathematical problems and simulating quantum many-body systems.
This also implies, unfortunately, that verification of the output of the quantum systems is not so
trivial, since predicting the output is exponentially hard. As another problem, quantum system is
very delicate for noise and thus needs error correction. Here we propose a framework for verification
of the output of FTQC in the measurement-based model. Contrast to existing analyses on fault-
tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state
is tested by using only single-qubit measurements to verify whether the output of measurement-
based quantum computation on it is correct or not. Verifiability is equipped by a constant time
repetition of the original meausrement-based quantum computation in appropriate meausrement
bases. Since full characterization of quantum noise is exponentially hard for large-scale quantum
computing systems, our framework provides an efficient way of practical verification of experimental
quantum error correction.

Introduction.— Quantum computation provides a new
paradigm of information processing offering both fast
and secure information processing [1]. Recently, a lot of
experimental efforts have been paid to realize quantum
computation [2–4]. There, fault-tolerant quantum com-
putation (FTQC) with quantum error correction [1, 5]
is inevitable to obtain quantum advantage using noisy
quantum devices.

Due to the recent rapid progresses on experimental
quantum error correction techniques [6–9], there is an
increasing demand on an efficient performance analysis
of FTQC. There are three categories for this purpose,
characterization, validation and verification of quantum
systems (QCVV) [10, 11]. In the majority of existing
performance analyses of FTQC, a specific noise model,
such as stochastic Pauli errors, is assumed apriori [12–
20]. By characterizing the elementary quantum opera-
tions experimentally, these could serve as validation of
quantum computing devices [21]. However, in actual ex-
periments, more general noise might occur including var-
ious correlation between qubits [22, 23]. Since full tomo-
graphic approch does not work efficiently, we need a novel
scheme for the third category, verification, to guarantee
correctness of the output of a quantum computer with-
out assuming the underlying noise model. Unfortunately,
existing FTQCs have not equipped such an efficient ver-
ification scheme yet.

The aim of this paper is to develop FTQCs being
equipped with a verification scheme without assuming
the underlying noise model. As requirements of veri-
fiable fault-tolerance, we define the following two con-
cepts. One is detectability which means that if the er-
ror of a quantum computer is not correctable, such a
faulty output of the quantum computation is detected
with high probability. In this stage, any assumption on

the underlying noise model should not be made. The
other is acceptability which means that an appropriately
constructed quantum computer can pass the verification
with high probability. In other words, under a realistic
noise model, the test accepts the quantum computation
with high probability. Both properties are important to
characterize performance of test in statistical hypothesis
testing [24].

In this paper, we develop verifiable fault-tolerance
in measurement-based quantum computation (MBQC)
[27, 28], which satisfies both detectability and accept-
ability. We take a rather different approach to fault-
tolerance than conventional one. We do not assume any
noise model underlying, but define a correctable set of er-
rors on a resource state of MBQC and test whether the er-
ror on a given resource state belongs to such a set or not.
To this end, we employ the stabilizer test proposed in
Ref. [29, 30], where MBQC is efficiently verified by test-
ing the graph state. However, this method is not fault-
tolerant lacking acceptability; any small amount of noise
on the graph state causes rejection regardless whether or
not it is correctable. Therefore, we crucially extend the
stabilizer test [29] for a noisy situation, so that we can
decide whether the given resource states belong to a set
of fault-tolerant resource states or not. Under the condi-
tion of a successful pass of the test, the accuracy of fault-
tolerant MBQC is guaranteed to be arbitrarily high (i.e.,
contraposition of detectability). Our verification scheme
works quite efficiently by simply repeating fault-tolerant
MBQC for a constant time in appropriate measurement
bases. Therefore, we do not need any special resource
state nor entangling operation for verification. The total
overhead is only factored by a constant to the original
fault-tolerant MBQC. Moreover, our framework is appli-
cable to any fault-tolerant measurement-based quantum
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FIG. 1. (a) A two-colorable graph state. (b) The three dimen-
sional two-colorable graph state for topologically protected
measurement-based quantum computation.

computation. As a concrete example, we explicitly define
a set of correctable errors on the resource state for topo-
logically protected MBQC [5, 14, 16], where we can show
acceptability by calculating the acceptance probability
concretely under a realistic noise model.
A general setup for fault-tolerant MBQC.— Let us con-
sider a generic scenario of fault-tolerant MBQC on a
two-colorable graph state composed of the black system
HB and the white system HW , consisting of nB and nW

qubits, respectively (See Fig. 1(a)). Then, we have two
kinds of operators Xz :=

⊗n
i=1 X

zi and Z
x :=

⊗n
i=1 Z

xi,
on HB ⊗ HW = (C2)⊗n, where n := nB + nW . When
we restrict them to the black system HB (the white sys-
tem HW ), we denote Xz and Z

x by X
z
B and Z

x
B (Xz

W and
Z
x
W ). By using the binary-valued adjacency matrix A

(i.e., (i, j) element is 1 iff vertices i and j are connected)
corresponding to the graph, the graph state |G〉 is char-
acterized as

X
zB
B ⊗ Z

AzB
W |G〉 = |G〉, X

zW
W ⊗ Z

AT zW
B |G〉 = |G〉 (1)

for zB ∈ F
nB
2 and zW ∈ F

nW
2 . Then, the total space

HB ⊗HW is spanned by {Zx|G〉}x∈Fn
2
. Suppose we exe-

cute a fault-tolerant MBQC on the two-colorable graph
state. Then a set of correctable errors on the two-
colorable graph state is defined such that an ideal state
|G〉 and erroneous one Z

x|G〉 result in the same compu-
tational outcome under error correction. Such a set of
errors is specified as a subset S of Fn

2 = F
nB
2 ×F

nW
2 . The

projection to the subspace is written by ΠS . We assume
that the subset S is written as SB × SW by using two
subsets SB ⊂ F

nB
2 and SW ⊂ F

nW
2 .

Test for verification of fault-tolerance.— Similar to
Ref. [29], we employ the following sampling protocol to
verify whether the error is correctable. Our protocol runs
as follows:

1. Honest Bob generates |G〉⊗2k+1. Bob sends each
qubit of it one by one to Alice.

2. Alice divides 2k + 1 blocks of n qubits into three
groups, two k blocks and signle block, by random
choice.

3. Alice uses the third group for her computation.
Other blocks are used for the test, which will be
explained later.

4. If Alice passes the test, she accepts the result of the
computation performed on the third group.

For each block of the first and second groups, Alice
performs the following test:

TB For each block of the first group, Alice measures
qubits of W (B) in the Z (X) basis, respectively.
Then, she obtain ZW and XB. If XB + ATZW ∈
SB, then the test is passed.

TW For each block of the second group, Alice measures
qubits of B (W ) in the Z (X) basis. Then, she
obtain ZB and XW . If XW +AZB ∈ SW , then the
test is passed.

Detectability and acceptability.— To show detectability,
taking account into unexpected errors, we obtain the fol-
lowing theorem in the same way as Ref. [29]:

Theorem 1 Assume that α > 1
2k+1 . If the test is passed,

with significance level α [24, 25], we can guarantee that
the resultant state σ of the third group satisfies

Tr σΠS ≥ 1− 1

α(2k + 1)
. (2)

The previous study [29] considers the case with SB =
{0}, SW = {0}, and proves this special case by discussing
the two kinds of binary events XB + ATZW = or 6= 0
and XW + AZB = or 6= 0. Replacing these two events
by the two kinds of events XB + ATZW ∈ or /∈ SB and
XW +AZB ∈ or /∈ SW in the proof given in [29], we can
show Theorem 1 with the current general form.
From the theorem and the relation between the fidelity

and trace norm [31, (6.106)], we can conclude the verifi-
ability: If Alice passes the test, she can guarantee that

∣

∣

∣
Tr (Cxσ)− Tr (Cx

ΠSσΠS

Tr σΠS
)
∣

∣

∣
≤ 1

√

α(2k + 1)

for any POVM {Cx} with the significance level α. That
is, the property of FTQC guarantees that the probability
that the obtained computation outcome is different from
the true computation outcome is less than 1√

α(2k+1)
. If

we take α = 1√
2k+1

, for example, this error probability

is 1
(2k+1)1/4

→ 0 if k → ∞, and therefore the verifiability

is satisfied. Note that the lower bound, α > 1
2k+1 , of

the significance level α is tight, since if Bob generates
2k copies of the correct state |G〉 and a single copy of a
wrong state, Bob can fool Alice with probability 1

2k+1 ,

which corresponds to α = 1
2k+1 . The above theorem

on detectability holds without any assumption on the
underlying noise. Noise in the measurements can also
be taken as noise on the resource state, if it does not
depend on the measurement bases. Even if it is not the



3

case, each qubit in the resource state can be randomly
rotated such that Alice’s measurement bases also become
random. In such a case, the proposed verification works
if the noises at Alice’s and Bob’s sides are independent,
which are physically plausible.

Next, we consider acceptability. Contrast to de-
tectability, the requirement of acceptability is unique for
the verification of FTQC. Indeed, if a quantum computer
is assumed to be ideal without any error as is in Ref. [29],
we can verify whether or not the quantum computer ac-
tually does what one commands to operate with proba-
bility 1, i.e., acceptability of the test is trivially satisfied.
On the other hand, in verification of FTQC consisting of
many elementary parts, each of which cannot be checked
directly, we have to judge whether the output of the com-
putation is correct or not carefully under an expected
error model, which imposes the second requirement, ac-
ceptability.

To calculate acceptability, we assume a specific ap-
plication of Pauli channel on HB ⊗ HW [26]. That
is, the error given as the distribution P on the set
F
nB+nW
2 × F

nB+nW
2 of X-basis errors and Z-basis errors.

Then, we denote the marginal distribution with respect
to the pair of X-basis errors on B and Z-basis errors
on W (Z-basis errors on B and X-basis errors on W )
by PB (PW ). Hence, the probability that Alice passes
the test TB (TW ) with one round is PB(SB) (PW (SW )).
Since we apply them 2k rounds, the probability to be
passed is PB(SB)

kPW (SW )k. Hence, when the proba-
bilities PB(SB) and PW (SW ) are close to 1, Alice can
accept the correct computation result on the third group
with high probability.

Case study.— To show acceptability, below we will ex-
plain how to define a correctable set of the errors on a
graph state. Then, for a concrete example, we will calcu-
late the acceptance probability PB(SB)

kPW (SW )k under
a realistic noise model.

In the theory of FTQC, it is conventional that we
translate fault-tolerance in the circuit model into fault-
tolerance in MBQC [32–34] as follows. In the circuit
model, we can define a set of correctable (sparse) fault
paths [35–37]. Then, translating the correctable (sparse)
fault paths in the circuit model into MBQC, we can de-
fine a correctable set of the errors on the graph state
in general. For example, the schemes in Refs [38, 39]
and Refs [14, 16] can be viewed as measurement-based
versions of circuit-based FTQC using the concatenated
Steane 7-qubit code [5, 40–42] and the surface code with
the concatenated Reed-Muller 15-qubit code [15, 43], re-
spectively.

Let us see a concrete example by using topologically
protected MBQC [5, 14, 16], which has been employed
as a standard framework for fault-tolerant MBQC re-
cently [44–48]. For simplicity of explanations, we here
focus on the original scheme proposed in Ref. [14], where
the surface code and the concatenated Reed-Muller code
are employed to perform two-qubit Clifford gate and
single-qubit non-Pauli-basis measurements, respectively.

FIG. 2. The tubes indicate defect regions, in which the qubits
are measured in the Z-basis. Singular qubits are located
in-between two defect regions, which are measured in the
(X +Y )/

√

2-basis for a transversal logical (X +Y )/
√

2-basis
measurement. Other regions are vacuum, where qubits are
measured in the X-basis to obtain the error syndrome.

Of course, more efficient distillation protocols as in
Refs. [15, 16, 43] can also be employed.
In the following we will briefly sketch how the cor-

rectable set SB and SW are defined. A detailed descrip-
tion is shown in Appendix. The errors specified by the
set SB, which correspond to X basis (the Pauli-Z opera-
tor) on black qubits and Z basis (the Pauli-X operator)
on white qubits, are detected on the priaml cubic lat-
tice consisting of the edges on which the black qubits are
located as shown in Fig. 1(b). Then, the error configu-
raion xB ∈ SB can be associated with a set of edges on
the primal cubic lattice. Similarly, the errors in the set
SW is detected on the dual cubic lattice and the error
configuration xW is associated with a set of edges on the
dual cubic lattice.
Depending on quantum computation that Alice wants

to do fault-tolerantly, a measurement pattern is deter-
mined. Specifically, from an analogy of topological quan-
tum computation [49], the sets of qubits measured in X ,

Z, and (X+Y )/
√
2-bases [14] are called defect, vacuum,

and singular qubits, respectively (see Fig. 2). For the
surface code, minimum distance decoding (MDD) can be
done by finding a shortest path connecting the boundary
of the error chain on the cubic lattice. Then, if MDD
results in a logical operator of a weight (distance) larger
than the code distance d by wrapping around a defect
or connecting two different defects, such an error is un-
correctable (see Appendix for the detail). Accordingly,
we can define Ssf

C for C = B,W as the complement of
them. The code distance d is chosen to be polylog(n′)
with n′ being the size of the quantum computation that
Alice wants to do fault-tolerantly. Therefore, the number
of qubits of the graph state is given by n = poly(n′).
Around the singular qubits, we still have a logical er-

ror of a weight lower than d as shown in Fig. 2. Such
a logical error is corrected by using another code, the
concatenated Reed-Muller code. To this end, the fault-
tolerant Clifford gates using the surface code are further
employed to encode the logical qubits into concatenated
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Reed-Muller codes, on which we can implement all Pauli-
bases and (X+Y )-basis measurements transversally. The
corresponding physical (X+Y )-basis measurements, i.e.,
measurements on the singular qubits, are depicted by red
circles in Fig. 2. Then we can define the correctable set
Srm
C of the errors for the concatenated Reed-Muller code

recursively for C = B,W as done in Ref. [35] (see Ap-
pendix for the detail).
Since we employ two types of error correction codes as

seen above, the correctable set of the errors are defined
as an intersection of the correctable sets Ssf

C and Srm
C

for the surface code and the concatenated Reed-Muller
code, respectively, for both colors C = B,W . Since both
decording can be done efficiently, we can efficiently decide
whether a given error pattern XB+ATZW ( XW +ATZB

) are in SB (SW ) or not.
Acceptance probability under a typical error model.— To
calculate the acceptance probability, we assume, for sim-
plicity, the errors Z

x (x ∈ F
n) are distributed indepen-

dently and identically for each qubit with probability p.
It is straightforward to generalize the following argument
to any local noise model [50]. Then the standard count-
ing argument of the self-avoiding walk for the surface
code [42] tells us that

P (Ssf
C ) > 1− poly(n)(10p1/2)d (3)

for C = B,W . Apparently, if p is sufficiently smaller
than a certain constant value, P (Ssf

C ) converges to 1 for
C = B,W . By considering a recursive decoding of the
concatenated code, we obtain

P (Srm
C ) > [1− (1052pfault0 )2

l

/1052]m, (4)

for C = B,W where pfault0 is a logical error probability of
a weight lower than d, which occurs around the singular
qubits. Such a logical probability is also calculated as a
function of the physical error probaility p by counting the
number of self-avoiding walk [42] as show in Appendix.
The integer m = poly(n′) and l = poly log d) are the
numbers of the logical (X + Y )-basis measurements and
the number of concatenation, respectively. Again by us-
ing counting the number of self-avoiding walks [42, 50] we
can evaluate pfault0 . By choosing p smaller than a certain
constant value, pfault0 becomes sufficiently small so that
P (Srm

C ) converges to 1 for C = B,W . Since

P (SC) = P (Ssf
C ∩ Srm

C ) > P (Ssf
C ) + P (Srm

C )− 1 (5)

for C = B,W , the probability P (SC) also converges
to 1 exponentially in the large d limit, if the physi-
cal error probability p is smaller than a certain con-
stant threshold value (see Appendix). Since d can be
chosen independently of k, the acceptance probability
PB(SB)

kPW (SW )k converges to 1.
Verifiable blind quantum computation.— Finally, we ad-
dress an application of the proposed verification scheme
in blind quantum computation (BQC) [51–57]. A
promising application of the proposed framework is ver-
ification of measurement-only BQC [55]. Suppose a

quantum server generates two-colorable graph states and
sends them to a client who execute MBQC with proposed
verification. As same as the original measurement-only
BQC [55], the blindness is guaranteed by the no-signaling
principle, which contrasts to verifiable BQC [52, 57] of
BFK (Broadbent-Fitzsimons-Kashefi) type [51]. Accord-
ing to Theorem 1 (detectability) under the condition of
acceptance the accuracy of the output is guaranteed.
Contrast to the earlier verifiable BQC [29, 52], by virtue
of acceptability, the proposed verification scheme can
accept the delegated quantum computation even under
quantum server’s deviation or quantum channel noise as
long as they are correctable. It would be interesting to
apply the proposed framework to quantum interactive
proof systems [58].
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Appendix A: Test for topological protection

The error detection on the black vacuum qubits (edges
of the primal cubic lattice) is executed as follows. If
there is no error on the graph state, the outcome mb

of the X-basis measurements satisfies the condition:
sv ≡ ⊕

b∈δv mb = 0, where δv indicates a set of black
qubits adjacent to the vertex v. Depending on a given
error Z

xB (xB ∈ F
nB
2 ) on the graph state, we can

obtain the error syndrome {sv(xB)} in the defect re-
gion. From the error syndrome, the most likely lo-
cation of the errors is estimated using the minimum-
weight-perfect-matching (MWPM) algorithm [42]. Let
x̄B ≡ argminx|{sv(x)=sv(xB)} |x| be the estimated error
location, where |x| indicates the number of 1s in a bit
string x. If a chain of edges specified by xB + x̄B have a
nontrivial cycle in the sense of the relative homology [14–
16], the error correction fails. At the defect region far
from the singular qubits, a nontrivial cycle have at least
length d determined as follows. Let n′ be the size of
the quantum computation that Alice wants to do fault-
tolerantly. To guarantee the accuracy of the output, it is
enough to choose d = polylog(n′).
Now we can define the correctable set of errors as fol-

low: an error location xB belongs to the correctable set
Ssf
B ⊂ FnB of the errors iff there exists a connected com-

ponent of length d in the chain of edges specified by
xB + x̄B. The error detection and definition of the cor-
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rectable error set Ssf
W on the white vacuum qubits are

done in the same way but on the dual lattice.
From the test TB, we know the error location xB . Since

the MWPM algorithm works in polynomial time in the
number of vertices with sv = 1, we can decide whether
or not xB belongs to the correctable error set Ssf

B . The
same argument also holds for the error location xW on
the white vacuum qubits tested by TW . Therefore, we
can efficiently check whether or not the errors on a given
resource belong to Ssf

B × Ssf
W .

Appendix B: Test for the logical (X + Y )/
√

2-basis
measurement

We here, for simplicity, do not employ magic state
distillaion [15, 16] but encodes each logical qubit into
the Reed-Muller 15-qubit code. Then we perform a
fault-tolerant logical (X + Y )/

√
2-basis measurement by

transversal physical (X + Y )/
√
2-basis measurements on

the singular qubits as done in Ref [14]. Thereby, Al-
ice can fix her strategy of quantum computation, which
makes easy to define the correctable set of errors for the
test. Let l and m = poly(n′) be the number of concate-
nation levels and the number of the logical (X+Y )-basis
measurements, respectively. Then we need 15lm physical
(X+Y )/

√
2-basis measurements, on the singular qubits.

Note that l = O(poly log logn′) is enough to reduce the
logical error sufficiently. In the following, we the error
on the graph state is specified by x ∈ Fn

2 by converting
it into Z operators on the graph state, Zx|G〉.
The logical (X+Y )/

√
2-basis measurement is done by

physical transversal (X + Y )/
√
2-basis measurements by

encoding each qubit into a concatenated Reed-Muller 15-
qubit codes [14]. This is also the case for all Pauli-basis
measurements. In the vacuum region near the singular
qubits, we have a logical error of length smaller than d
as shown in Fig. 2, since they are not topologically pro-
tected. Correctable error for the fault-tolerant logical
(X+Y )/

√
2-basis measurement is defined for a given er-

ror (xB , xW ) ∈ Srm
B ×Srm

W recursively as follows: At phys-
ical level, which we call level-0, if xB + x̄B or xW + x̄W

becomes a logical error for a singular qubit, the level-0
(singular) qubit is labeled to be faulty. At l′th concate-
nation level, if the level-l′ logical qubit consisting of 15
level-(l′ − 1) logical qubits encoded in the Reed-Muller
15-qubit code has two or more faulty level-(l′− 1) logical
qubits, the level-l′ logical qubit is labeled to be faulty. At
the highest level l′ = l, if no level-l logical qubit is faulty,
the given error (xB , xW ) belongs to the correctable set
Srm
B × Srm

W .

Appendix C: Acceptance probability

Let us first consider the pass probability of the test
for topological protection. The error xB is rejected if

FIG. 3. Actual error xB and estimated one x̄B are denoted
by solid and dotted lines, respectively. The vertices (error
syndrome) of sv = 1 are denoted by red squares. The 3D
lattice is depicted as if it is two dimensional.

xB + x̄B contains a connected component of length at
least d. Such a probability is calculated [42] to be

∑

ν=d

ν
∑

µ=ν/2

6

5
n · 5ν

(

ν
µ

)

pµ(1− p)n−µ < poly(n)(10p1/2)d.

Therefore, if p is sufficiently smaller than a constant
value, the rejection probability is exponentially sup-
pressed.
Next we consider the test for the logical (X + Y )/

√
2-

basis measurement. Let pfault0 be the probability that
a level-0 (singular) qubit is faulty. pfail0 is evaluated in
a similar way to the previous case for the topological
protection but we have to count logical errors consist of
the chains of length lower than d:

pfault0 =

d
∑

ν=1

ν
∑

µ=ν/2

Cν

(

ν
µ

)

pµ(1 − p)n−µ, (C1)

where Cν is the number of chains of length ν that con-
tribute to the logical error of length ν. Cν is counted in
Ref. [50] rigorously up to ν = 14, which indicates that
we can reduce pfault0 by decreasing p sufficiently.
The probability pfaultl′ of obtaining the level-l′ faulty

qubit is given recursively by

pfaultl′ <
15
∑

r=2

(pfaultl′−1 )
r(1− pfaultl′−1 )

15−r = (7 · 15)2(pfaultl′−1 )
2.

The we obtain pfaultl = (1052pfault0 )2
l

/1052. The probabil-
ity to obtain no faulty level-l logical qubit at the highest
level is given by (1 − pfaultl )m.
Accordingly, if pfault0 is sufficiently smaller than 1/(7 ·

15)2, we can reduce the rejection probability of the test

for the fault-tolerant logical (X + Y )
√
2-basis measure-

ment.
Since m = poly(n′), it is sufficient to chose d =

poly(logn′) and l = poly(log d), which are independent
of 2k + 1, the number of the samples of the graph state.
Therefore, in the large d limit for a given n′, we can re-
duce the logical error probability polynomially, and hence
amplify the acceptance probability PB(SB)

kPW (Sw)
k ar-

bitrarily close to 1.
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