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We study the superradiant evolution of a set of N two-level systems spontaneously radiating under
the effect of phase-breaking mechanisms. We investigate the dynamics generated by non-radiative
losses and pure dephasing, and their interplay with spontaneous emission. Our results show that
in the parameter region relevant to many solid-state cavity quantum electrodynamics experiments,
even with a dephasing rate much faster than the radiative lifetime of a single two-level system, a
sub-optimal collective superfluorescent burst is still observable. We also apply our theory to the
dilute excitation regime, often used to describe optical excitations in solid-state systems. In this
regime, excitations can be described in terms of bright and dark bosonic quasiparticles. We show
how the effect of dephasing and losses in this regime translates into inter-mode scattering rates and
quasiparticle lifetimes.
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I. INTRODUCTION

The time a two-level system initially prepared in the excited state ∣↑⟩ takes to relax into its ground state ∣↓⟩
emitting a photon is set by the spontaneous emission rate γS, which quantifies its coupling with the electromagnetic
environment. When N identical copies of such a system are prepared in their excited state, ∣↑ ... ↑⟩, each two-level
system emits independently, leading to a total emission rate NγS. Under the condition that the linear size of the
ensemble is smaller than the resonance wavelength, subsequent photon emissions then cause a build-up of quantum
correlations between different systems, leading after a delay time td = logN

NγS
[1, 2] to the emission of light in a short

and intense burst of peak intensity ∝ N2, with a narrow pulse duration τp ∼ 1
NγS

. Such phenomenon, referred to as

superfluorescence or Dicke’s superradiance, is an example of spontaneous symmetry breaking triggered by quantum
fluctuations and leading to the emergence of macroscopic quantum correlations in time [3].

Superfluorescence is due to the fully-symmetric coupling with the electromagnetic field. If the system is initially
prepared in the totally-excited, maximally-symmetric state ∣↑ ... ↑⟩, photon emission will only cause transitions within
the N + 1 symmetric states, eventually reaching the ground state ∣↓ ... ↓⟩. The evolution of the system will thus be
bound to the (N+1)-dimensional, symmetric subspace of the full 2N -dimensional Hilbert space. Radiative transitions,
allowed only between subsequent states in the discrete energy ladder, are usually characterised by dipole matrix
elements of order

√
N , except for the states close to half-filling, where instead the matrix element becomes of order

N . As initially noticed by Dicke [1], midways through the radiative cascade, the emission thus speeds up, leading to
the occurrence of a superfluorescent peak.

In most physical systems there are also other mechanisms competing with the light-matter interaction. While
their specific sources and microscopic nature may vary, their effect on the dynamics can generally be described in
terms of either non-radiative losses, or energy-conserving pure dephasing. These mechanisms are detrimental to the
development of a coherent, collective dynamics, posing limitations to the observation of cooperative light emission.
Their study has been the subject of several works that have considered non-ideal conditions for superfluorescence,
such as inhomogeneous distribution of the two-level systems resonances, non-radiative emission, radiative emission
through a local photonic environment, and effects of the light propagation in large samples that are optically thick
[4–25]. Under the continuous pumping condition, several works have also investigated the effects of non-cooperative
mechanisms on the cooperative dynamics, with regard to the properties of light emission [26–34], and to the related
phenomena of optical bistability [35–41] and superradiant phase transitions [42–46].

Here we will exploit a theory able to describe the incoherent interaction of N two-level systems with the elec-
tromagnetic field for arbitrary losses and dephasing, to gain a microscopic understanding of the trajectory of the
system in its evolution away from symmetric states, under the effect of non-radiative losses and pure dephasing. Our
results shed light on the parameters required to observe superfluorescence in solid-state environments in which the
non-radiative loss rate γL and the pure dephasing rate γD are usually larger than the spontaneous emission rate of the
single two-level system γS. In order to accomplish this, we will investigate the different dynamics generated by both
phase-breaking mechanisms, and their interplay with radiative emission. We begin by introducing a master-equation
description of the quantum dynamics. After testing the reliability of the theory against exact simulations of the
system dynamics for small N , we use it to investigate a wide parameter range for large N . In the regime relevant for
solid-state cavity quantum electrodynamics, in which collective strong coupling is observable notwithstanding dephas-
ing effects, NγS ≫ γD ≫ γS, we show that the main effect of dephasing and losses is that of making superfluorescence
sub-optimal, with only a limited amount of the energy released superradiantly. Nonetheless, the delay time of pure
superfluorescence, td, remains a good predictor of the occurrence of the superfluorescent peak. Subradiance dominates
the later stage of the dynamics, occurring on a timescale set by the phase-breaking mechanisms.

Finally, we will apply the developed theory to the dilute regime, in which only few excitations are present. Such
a regime, very different from the half-filling relevant to study superfluorescence, is well described by a linear bosonic
theory, extensively used in solid-state physics [47–51]. Specialising our master-equation approach to this regime, we
will recover a theory of interacting bright and dark bosonic quasiparticles [50, 52], in which dephasing and losses are
described in terms of inter-mode scattering rates and particle lifetimes.

II. GENERAL THEORY

In this Section we will develop the general theory to study the evolution of a set of N two-level systems evolving
under the effect of different incoherent interactions with their environment. Following Dicke [1] we begin by describing
the nth two-level system with the algebra of a spin 1

2
. We thus define the operators over its two-dimensional Hilbert

space Jξ,n, ξ ∈ {x, y, z,+,−}, obeying the angular momentum algebra

[Jx,n, Jy,n′] = iJz,nδn,n′ , (1)
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and cyclic permutations, with J±,n = Jx,n±iJy,n. We also define the corresponding total spin operators Jξ = ∑Nn=1 Jξ,n.
The free Hamiltonian describing N identical and independent two-level systems of energy h̵ω0 can then be written in
terms of spins as

H0 = h̵ω0

N

∑
n=1

Jz,n = h̵ω0Jz (2)

and their interaction Hamiltonian with the electric field E in the dipolar approximation

Hint = d ⋅E
N

∑
n=1

(J+,n + J−,n) = d ⋅E(J+ + J−), (3)

where d is the dipolar moment of each spin. From the theory of addition of angular momenta we can diagonalise the
free Hamiltonian H0 on the basis indexed by the quantum numbers j, m, and α, where

J2 ∣j,m,α⟩ = j(j + 1) ∣j,m,α⟩ , Jz ∣j,m,α⟩ =m ∣j,m,α⟩ , J± ∣j,m,α⟩ =
√

(j ∓m)(j ±m + 1) ∣j,m ± 1, α⟩ , (4)

with j = N
2
, N

2
− 1, ..., jmin + 1, jmin, and jmin = 0, 1

2
for N even or odd, respectively, and m an integer or semi-integer,

respectively, such that ∣m∣ ≤ j. The index α, referred to as symmetry parameter, runs over subspaces with the same
value j [53]. As clear from Eq. (4), the collective spin operators cannot change α and we will thus not mark it
explicitly in the following. This choice introduces a degeneracy for the Dicke state ∣j,m⟩ that can be easily computed.
Notice that there are N general states with one excitation, but the ground state ∣N

2
,−N

2
⟩ is connected only to a single

one-excitation state, the maximally-symmetric state ∣N
2
,−N

2
+ 1⟩ ∝ J+ ∣N

2
,−N

2
⟩. This implies that the degeneracy of

the state ∣N
2
− 1,−N

2
+ 1⟩ is (N − 1). From Eq. (4) we see that each state ∣N

2
− 1,m⟩ has the same degeneracy, and is

said to belong to the same Dicke ladder. Analogously, the degeneracy of all of the other inequivalent subspaces can
be iteratively computed, leading to the formula for the degeneracy of each Dicke state ∣j,m⟩ to be

Dj =
N !(2j + 1)

(N
2
+ j + 1)!(N

2
− j)!

. (5)

The degeneracy for a given eigenvalue h̵ω0m of Eq. (2) instead is [54]

dm = ( N
N
2
+m ) = N !

(N
2
+m)! (N

2
−m)!

. (6)

The coupling with the electromagnetic field, and with the other reservoirs responsible for phase randomisation and
energy loss, can be described introducing the master equation for the density matrix ρ of the system

d

dt
ρ = iω0[Jz, ρ] +

γS

2
LJ−[ρ] +

γL

2

N

∑
n=1

LJ−,n[ρ] +
γD

2

N

∑
n=1

LJz,n[ρ], (7)

where the Lindblad operator LO[ρ] = 2OρO† − O†Oρ − ρO†O, describes the different scattering rates quantified by
the spontaneous emission rate γS, the non-radiative relaxation rate γL, and the pure dephasing rate γD. The crucial
element to notice in Eq. (7) is that the electromagnetic field couples symmetrically with all the spins, and can thus be
expressed in terms of the collective spin operators. This expression is not possible for the other two processes, that
instead couple with each individual spin independently. In this sense dephasing and losses are both phase-breaking
mechanisms, that randomise the phases between different spins. This implies that the spontaneous emission conserves
j, leading to an evolution simply described by a radiative cascade through the (2j + 1) levels of one of the subspaces
indexed by fixed values of j and α. This is a huge simplification, restricting the size of the relevant Hilbert space
from 2N to (2j +1), allowing one to solve the problem through direct numerical diagonalisation. The other two terms
instead, by randomising phases, can couple states with different j and α. The problem in this form cannot be solved
exactly and brute-force numerical simulations of the dynamics cannot explore the large-N limit, with a tight bound
given by the growth of the Hilbert space as 2N . We will nevertheless exploit the randomisation of the phase-breaking
processes by employing a numerical method that exploits the properties of permutational-invariant density matrices,
which scales as O(N3) in general and as O(N2) for special initial states, including Dicke states [55–57]. Similarly,
the fact that the Lindblad operators are invariant under SU(4) symmetry can be employed to reduce the numerical
resources required to solve the dynamics [58, 59]. Hereafter we will initially begin to gain a qualitative understanding
of the effect of each one of the terms of Eq. (7), before developing solid approximations that will allow us to simulate
the system dynamics.
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III. DYNAMICS ANALYSIS IN THE DICKE TRIANGLE

We begin by writing the evolution equations for the expectation values of Jz and J2. Using the shortcuts d
dt
⟨Jz⟩ =

Tr [Jz d
dt
ρ ], d

dt
⟨J2⟩ = Tr [J2 d

dt
ρ ], and J2 = J2

z − Jz + J+J−, after some algebra we obtain

d

dt
⟨Jz⟩ = −γS (⟨J2⟩ − ⟨J2

z ⟩ + ⟨Jz⟩) − γL (⟨Jz⟩ +
N

2
) , (8)

d

dt
⟨J2⟩ = −γD (⟨J2⟩ − ⟨J2

z ⟩ −
N

2
) − γL[⟨J2⟩ + (N − 1)⟨Jz⟩ + ⟨J2

z ⟩ −N].

We are now able to analyse the effect of the three scattering channels on an arbitrary state ∣j,m⟩. Projecting Eq. (8)
on such a pure state we obtain

d

dt
m = −γS (j2 + j −m2 +m) − γL (m + N

2
) , (9)

d

dt
j = −γD

j2 + j −m2 − N
2

2j + 1
− γL

j2 + j + (N − 1)m +m2 −N
2j + 1

.

We will represent the Hilbert space as done in Fig. 1, in the form of an isosceles triangle, with m on the y-axis and
j on the x-axis. Spontaneous emission, conserving j and reducing m by one, can only couple a state with the one
immediately below it, and indeed in Eq. (9) only d

dt
m depends on γS. In particular we obtain that the photonic

emission rate from a state ∣j,m⟩ is

d

dt
mS = − (j2 + j −m2 +m)γS. (10)

The presence of many spins translates into a state-dependent superradiant enhancement of the spontaneous emission
rate. From Eq. (10) we see that when m is of order j, the squares tend to cancel, leading to a contribution at
most of order j. Only when m2 ≪ j2 the j2 term tends instead to dominate, leading to a superfluorescent emission
rate of order j2. In the literature of Dicke superradiance, j is usually named cooperation number or cooperativity: it
indeed measures the effective number of spins that coherently participate in the superradiant emission process, leading
symmetric states to a burst of peak intensity proportional to N2. The effect of spontaneous emission is illustrated in
Fig. 1 by red vertical arrows with sizes corresponding to the emission rate. This result validates the intuitive picture
of superfluorescence: after the system is prepared in the totally-excited state in the top left corner of the triangle in
Fig. 1, it starts emitting photons, moving down and accelerating. When approaching m = 0 it quickly emits most of
its energy in a superfluorescent burst, then slowing down until it reaches the ground state in the bottom left corner.

The pure dephasing term in Eq. (7) on the contrary, cannot change the value of m because its jump operators Jz,n
commute with Jz. It can only modify the value of the cooperativity j as

d

dt
jD = −

j2 + j −m2 − N
2

2j + 1
γD. (11)

Its elastic, phase-randomising effect is shown as blue horizontal arrows in Fig. 1. Contrary to spontaneous emission,
the effect of pure dephasing cannot lead to a superfluorescent enhancement of order N2 due to the denominator in
Eq. (11), which limits d

dt
jD to be at most of order N . Finally, the non-radiative losses play a role on both m and j

[15]

d

dt
mL = −(m + N

2
)γL, (12)

d

dt
jL = −j

2 + j + (N − 1)m +m2 −N
2j + 1

γL,

and they are represented by green diagonal arrows in Fig. 1. Both contributions are at most of order N , implying again
the absence of a collective enhancement to the loss rate. The previous results are summarised in the table of Table I
for some relevant points of the Hilbert space. The table prompts a comment on the feasibility of state preparation
beyond the case of initial full excitation. Preparing a large ensemble into the maximally-entangled superradiant state
∣N

2
,0⟩ requires local control on the two-level systems, yet a π

2
−pulse on the ground state initialises the system in a

separable state whose dynamical evolution can be similarly superradiant [7, 60]. Regarding the subradiant states
∣j,−j⟩, theoretical investigations have recently focused on the effect of a photonic cavity [46] and on the one-excitation
subspace, setting thus j = N

2
− 1 and generalizing the formalism of Dicke states to the large sample regime [61–63].



5

 

γLγS

γD  

Dark States

Dark States

Sy
m

m
et

ric
 S

ta
te

s

FIG. 1. Hilbert space for N two-level systems parametrised by their energy (m, vertical axis) and cooperativity (j, horizontal
axis). The left vertical side of the triangle marks the Dicke ladder of symmetric Dicke states ∣N

2
,m⟩. The diagonal sides delimit

the borders for the Dicke states ∣j,±j⟩. The arrows represent the effect of radiative decay (red, vertical), pure dephasing (blue,
horizontal), and non-radiative decay (green, diagonal), on different initial states and their size shows their relative strengths.
The black segments of the outer triangle mark the border between areas with positive (right) and negative (left) derivative of
j for γL/γD = 10 (dashed), γL/γD = 1 (dot-dashed), and γL/γD = 0.1 (dotted).

This is the one that can be experimentally investigated in large atomic clouds [64]. Yet enhanced state-preparation
protocols and locally-controlled dynamics can be obtained in artificial atoms in solid state, especially in circuit QED
systems, which have demonstrated to be a promising platform to scale up the ensemble size [65–67].

From Eq. (8) we can easily ascertain that d
dt
m ≤ 0, as expected, due to the dissipative nature of the system.

On the contrary, d
dt
j can be positive or negative depending on the value of both j and m, and the ratio γL/γD.

Indeed, the possibility of having a dephasing-driven increase of j is not surprising in a finite-dimensional Hilbert
space, where quantum revivals can be observed [68]. In particular we can understand it by noticing that the ground
state corresponds to j = N

2
and thus dissipative phenomena that initially tend to reduce the value of the cooperativity

have eventually to increase it. In Fig. 1 we mark the boundary that separates the region of d
dt
j > 0 (lower-right

concave area) and that of d
dt
j < 0 (upper-left convex area), showing that for increasing values of γL/γD, the region

with positive derivative increases. This highlights the fact that the interplay of the two mechanisms can effectively
steer the dynamics and could be used to access different points of the Dicke triangle.

From the previous arguments we can qualitatively predict how the system will behave upon initial excitation in the
totally-excited state ∣N

2
, N

2
⟩. If the radiative decay is the faster process, γS ≫ γL, γD, the system will move mainly

downward, resulting in the emission of a superfluorescent burst, although at a reduced intensity with respect to pure
fluorescence, as the phase-breaking processes reduce the cooperation number j from its maximum value of N

2
. If

the opposite condition NγS ≪ γL, γD is valid, then most excitations will be lost through non-radiative decay and
the system will thus arrive to the ground state ∣N

2
,−N

2
⟩ hopping down states lying on, or close to, the two diagonal

sides of the triangle in Fig. 1. In the intermediate regime, γS ≪ γL, γD but NγS ≫ γL, γD, the cooperation number
will initially decrease as excitations are non-radiatively lost, but as the system approaches the middle of the Dicke
triangle, cooperative light emission eventually kicks in leading to a superfluorescent burst.

IV. QUANTUM DYNAMICS THROUGH THE TRUNCATED HIERARCHY

The system given by Eq. (8) is not closed, as it contains the average of J2
z . While we could write the equation

of motion for its expectation value, it will in turn depend on the evolution of products of three operators and so
on, leading to a hierarchy of O(N2) coupled equations [69, 70]. One usual way to deal with this kind of problem,
ubiquitous in the study of nonlinear quantum systems, is to truncate the hierarchy at a certain order, factorising all
the products of more than a given number of operators. The system in Eq. (9), in which we calculated the scattering



6

◯ ∎ ⊙ ☀ ◻

∣N
2
, N

2
⟩ ∣N

4
, N

4
⟩ ∣N

2
,0⟩ ∣0,0⟩ ∣N

4
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d
dt
m ↕ − (γS + γL)N − (

γS
2
+ 3

4
γL)N −

γS
4
N2

−
γL
2
N −

γL
2
N −

γL
4
N

d
dt
j ↔ −γLN

γD
2
− 3

4
γLN − (

γD
4
+
γL
4
)N (

γD
2
+ γL)N

γD
2
+
γL
4
N

TABLE I. The table shows the derivatives of d
dt
m and d

dt
j in some characteristic points of the Dicke space (see Fig. 1 for a

reference to the symbols) according to Eq. (9). In the Dicke triangle, shown in Fig. 1, d
dt
m affects the vertical component of

the system dynamics and d
dt
m the horizontal one. For each rate γS, γL, and γD the change is given to the leading order in N .

Notice that only the spontaneous emission of the superradiant state ∣N
2
,0⟩ is collectively enhanced (∝ N2

).

rates from a specific ∣j,m⟩ eigenvector, effectively corresponds to a first-order approximation, ⟨J2
z ⟩ ≃ ⟨Jz⟩⟨Jz⟩.

With the final objective to calculate the quantum dynamics of the system under losses and dephasing, here we will
check the solidity of such an approximation. In order to do this we will compare the first-order approximation of
Eq. (8) both to an exact simulation for up to N = 50, obtained by a permutational invariant method [55] requiring
only O(N2) resources to model the dynamics, and to a second-order approximation for large N . To go to the second
order, we complete the system in Eq. (8) with the equation for the expectation value of J2

z

d

dt
⟨J2
z ⟩ = γS (⟨J2⟩ + ⟨Jz⟩ − 3⟨J2

z ⟩ + 2⟨J3
z ⟩ − 2⟨JzJ2⟩) − γL[ (N − 1) ⟨Jz⟩ + 2⟨J2

z ⟩ − N
2
], (13)

and then factorise the products of three operators assuming ⟨J3
z ⟩ ≃ ⟨Jz⟩⟨J2

z ⟩ and ⟨JzJ2⟩ ≃ ⟨Jz⟩⟨J2⟩, leading to

d

dt
⟨J2
z ⟩ = γS (⟨J2⟩ + ⟨Jz⟩ − 3⟨J2

z ⟩ + 2⟨Jz⟩⟨J2
z ⟩ − 2⟨Jz⟩⟨J2⟩) − γL[ (N − 1) ⟨Jz⟩ + 2⟨J2

z ⟩ − N
2
]. (14)

Thanks to the factorisation now Eq. (8) and Eq. (14) form a closed, nonlinear system that can be numerically solved
with the proper initial conditions. With the aim of allowing an easy extension of the factorisation scheme to higher
orders, here we report also the general evolution equation for any product of collective operators Jp+JrzJ

q
− [69] with

p, q, r ∈ N + {0}, generated by Eq. (7)

d

dt
⟨Jp+JrzJ

q
−⟩ = −iω0(q − p)⟨Jp+JrzJ

q
−⟩ + γD[− 1

2
(p + q)⟨Jp+JrzJ

q
−⟩ + pq⟨J

p−1
+ (Jz − 1)r(N

2
+ Jz)Jq−1

− ⟩]

+γS{⟨Jp+1
+ JrzJ

q+1
− ⟩ − ⟨Jp+1

+ (Jz + 1)rJq+1
− ⟩ + (p + q)⟨Jp+Jr+1

z Jq−⟩ + 1
2
[p(p − 1) + q(q − 1)] ⟨Jp+JrzJ

q
−⟩}

+γL[⟨Jp+(Jz − 1)r(Jz + N
2
)Jq−⟩ − 1

2
(p + q +N)⟨Jp+JrzJ

q
−⟩ − ⟨Jp+Jr+1

z Jq−⟩]. (15)

V. NUMERICAL STUDY

We begin by assessing the validity of the approximations made in the previous Section for small N , as in that limit
it is possible to solve the dynamics with an exact numerical diagonalisation [71, 72]. We observe that the Lindblad
dynamics of Eq. (7) is permutational-invariant upon exchange of any given couple of two-level systems. The time
evolution of a Dicke state (or, more generally, any permutational invariant state) will thus be restricted to the subset
of other permutational-invariant density matrices, which can be represented with only O(N3) terms, thanks to the
fact that matrix elements corresponding to the Dj degenerate subspaces indexed by α are identical. Moreover the
density matrix is a block-diagonal matrix in which the coherences ⟨j,m∣ρ ∣j′,m′⟩ are non-zero only for j = j′ [55].
Thanks to these facts, the dynamics of Eq. (7) decouples the evolution of coherences ⟨j,m∣ρ ∣j,m′⟩ to that of the
populations ⟨j,m∣ρ ∣j,m⟩, so that a set of rate equations for the evolution of populations of the Dicke states requires
only O(N2) terms [55–57]. This is a considerable simplification, because a brute-force numerical simulation of the
Liouvillian superoperator requires (22N × 22N)-dimensional matrices, which would become numerically challenging
already for N of the order of 10. Exploiting permutational invariance we can easily explore ensembles of up to N = 50
two-level systems. We point out that there are several approaches to reduce the computational resources related
to the dimension of the Lindbladian operator matrices. Permutational-invariant methods have been applied to the
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FIG. 2. Left panels: Exact and approximated observables’ time evolution for small N . The evolution of ⟨Jz(t)⟩ (a) in units of
N
2

, and of ⟨J2
(t)⟩ (b) and ⟨J+J−(t)⟩ (c) in units of N

2
(N

2
+1) as functions of t/td for N = 50. We set γL = 0.1, γS = 1 and choose

different dephasing values γD = 1 (thin curves), 10 (medium curves), 100 (thick curves). The plots show that the nonlinear
equations with first-order (red short-dash curves) and second-order (black long-dash curves) approximations agree well with
the exact time evolution (blue solid curves). Right panels: Approximated observables’ time evolutions for large N . We plot the
first-order (red short-dash curves) with the second-order (black long-dash curves) approximations of ⟨Jz(t)⟩ (d), ⟨J2

(t)⟩ (e),
and ⟨J+J−(t)⟩ (f) as functions of t/td. We set γS = 1, γL = 10, and γD = 100 and vary N = 102 (thick curves), N = 103 (medium
curves), N = 104 (thin curves).

study of the dynamics of spin-squeezing of N spin- 1
2

particles [55, 56] and for the purpose of entanglement and state
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estimation [73, 74]. Permutational invariance has also been used to treat the more general case of multi-level systems
dynamics [75, 76]. The dimension of the Liouvillian space can be reduced to O(N3) by exploiting the SU(4) symmetry
of the Lindblad superoperators [58, 59]; indeed in Ref. [77] a master equation that includes the terms of Eq. (7) has
been treated for the study of Ramsey spectroscopy of atomic ensembles. Recently these methods have been further
developed and they have been employed to study the cooperative effects arising from the interaction with light of
an ensemble of N two-level systems both in the context of light emission [57, 78] and that of superradiant phase
transition [45, 46]. With regard to the study of driven-dissipative steady states in open systems other tools from
condensed matter theory have also been applied [44, 79, 80].

In Fig. 2(a)-(c) we show, for N = 50, the time evolution of the normalised values of ⟨Jz(t)⟩, ⟨J2(t)⟩, and ⟨J+J−(t)⟩
calculated exactly (blue solid curves), with the first-order approximation of Eq. (8), setting ⟨J2

z ⟩ = ⟨Jz⟩2 (red short-
dash curves), and with the second-order approximation of Eq. (8) and Eq. (14) (black long-dash curves). We set γS = 1,
γL = 0.1, and tune γD = 1 (thin curves), 10 (medium curves), 100 (thick curves). One can observe that qualitatively
the first- and second-order approximations match well the exact dynamics, with the second- faring better than the
first-order. For γD = 1, both dephasing and losses are small compared to the superradiant rate NγS. This is the
condition closest to the standard case of pure superfluorescence, γD = γL = 0, and we report it as a reference point or
benchmark. In absence of dephasing and losses the peak of the superradiant pulse would occur after the delay time

td = log(N)
NγS

, (16)

which is calculated by linearizing Eq. (10) [2]. As seen in Fig. 2(a) (thin curves), for γD = 1 the ensemble’s energy
is lost on the scale of the superradiance delay time td and, as shown in Fig. 2(b), the cooperativity of the system is
almost constant, marking the fact that the atomic correlations enhance the light emission intensity, which is ∝ N2,
as seen in Fig. 2(c). For γD = 10 (medium curves), still most of the dynamical changes are occurring on the scale of
td, yet the cooperativity, shown in Fig. 2(b), is not constant. This is an example of sub-optimal superfluorescence, for
which radiative and phase-breaking mechanisms compete (γD = γS), yet the collective enhancement is greater than
the other processes NγS ≫ γD. For γD = 100 (thick curves) the system’s evolution is dominated by the phase-breaking
processes and one retrieves that the dynamics is simply set by the characteristic time t0 = (γS + γL)−1 of exponential
decay, as shown in Fig. 2(c).

In Fig. 2(d)-(f) we compare the results for the time evolutions for large N , with N = 102 (thick curves), N = 103

(medium curves), and N = 104 (thin curves). We can access the large-N limit thanks to the first-order (red short-
dash curves) and second-order (black long-dash curves) approximations deriving from Eq. (8), which become almost
perfectly overlapped. This is not surprising considering that the factorisation schemes, as mean field approximations,
are expected to improve with increasing N . Since in the solid state, dephasing is generally the fastest mechanism, we
have set now radiative decay as the weakest one, γS = 1, γL = 10, and γD = 100. Notice that for N = 102 (thin curves)
we have γD = NγS, the dynamics is completely incoherent and the decay is exponential with characteristic time t0. As
N is increased to N = 103 and N = 104 (medium and thick curves), the dominant dynamic drive is that of collective
decay, since NγS ≫ γD, γL even if the system is still in the limit of strong dephasing, γD ≫ γL ≫ γS.

We are now in a position to study numerically the dynamics for large N and investigating how superfluorescence is
affected by losses and dephasing. We can define operatively a superfluorescence effective delay time teff

d in presence of

phase-breaking mechanisms as the time at which the system reaches half-filling, ⟨Jz(teff
d )⟩ = 0. In the limiting case in

which γD = γL = 0, teff
d corresponds to the pure superfluorescence delay time td of Eq. (16), while when the incoherent

mechanisms dominate the dynamics, this is simply the characteristic time t0 of the exponential decay.
In Fig. 3(a) we set γS = 1, γL = 10 and report the value of teff

d calculated from the closed set of Eq. (8) and Eq. (14)
for varying N and γD. It is clear the threshold between the exponential decay (white background) and the cooperative
one (dark shading), occurring when NγS ≫ γD. This is consistent with previous analyses that estimated the threshold

as T ∗2 = √
τptd, where T ∗2 is the critical pure dephasing time, τp the pulse duration [19–21, 24], i.e. γ∗D ≃ γSN√

logN
,

plotted as a black dashed curve in Fig. 3(a). In order to better understand the global dynamics of the system, we
can now perform a qualitative analysis of a specific point in the parameter space of Fig. 3(a), choosing one for which
superfluorescence occurs but it is relatively near to the threshold. We consider N = 103 and γD = 100 (red dot in panel
(a)), and recall that γS = 1 and γL = 10. This means that this point is in the regime NγS > γD ≫ γL > γS, where we
expect superfluorescence to occur. In Fig. 3(b) we show for this choice of parameters the trajectory of the system in
the (j,m) Dicke space (arrows guide the eye to indicate the time evolution). The system does not evolve along the left
side of the triangular phase space down the longest Dicke ladder for which j = N

2
as in pure superfluorescence, instead

it explores the inner area of the Dicke space until it reaches a sub-optimal dark state ∣j,−j⟩ on the lower right side of
the triangle. From then on, as already analysed qualitatively in the previous section, see Table I for the state ∣N

4
,−N

4
⟩,

the dynamics is governed by non-radiative energy loss. The inset of Fig. 3(b) further shows that the two different
stages of the dynamics are a first fast one, and a second one, given by the exponential non-radiative decay processes,
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of order of t0. The effect of this two-stage dynamics for the controlled generation of subradiant states has also been
analysed in Ref. [46] in the regime of small dephasing. A color plot of the Dicke space shows the intensity of light
emission enhancement in a given point (j,m), through d

dt
mS from Eq. (10) expressed in units of N2γS, from which it

is clear that although the system does not undergo pure superfluorescence, it crosses the inner superfluorescent area
and light emission gets superradiantly enhanced.
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0.05
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0
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15t
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j 0

−N

2 N

2

N

2

0 jm d
dtmS

107

106

105

104

103

102

10310210110010-1

teffd

td

t0
(a) (b)

FIG. 3. (a) Calculated delay time teff
d in the parameter space given by NγS/γD (horizontal axis) and N (vertical axis)

for an initially totally-excited ensemble. We set γS = 1 and γL = 10. The two limiting values t0 and td indicate where the
system dynamics is incoherent and where superfluorescent, respectively. A dashed curve indicates the approximated analytical
expression derived in the literature for the delay in presence of dephasing. The red dot marks a point of the parameter space
for which the plot in the right panel shows trajectory and time evolution. (b) Trajectory of the system in the (j,m) Dicke
space for N = 103, γS = 1, γL = 10, γD = 100. The plot shows that superfluorescence can occur even deep inside the Dicke space,
far from the j = N

2
side. A color plot shows the value of the photonic emission rate d

dt
mS of Eq. (10) in units of N2γS. Arrows

guide the eye along the trajectory according to the time evolution. Inset: The time evolution of the same system is shown
explicitly in the Dicke space, with the axes of m and j normalised by N

2
, and time as the third coordinate. The middle of the

Dicke triangle, m = 0 (dashed dark blue line), is reached at a time much shorter than the characteristic time of exponential
decay teff

d ≪ t0.

VI. BOSONISATION IN THE DILUTE REGIME

Having elucidated the impact of losses and dephasing on superfluorescence, here we apply the theory we developed
to the lower left corner of the Dicke triangle, characterised by average numbers of excited spins (m+ N

2
) much smaller

than their total number N . In this regime the system’s excitations can be treated as approximately bosonic. Such an
approach, largely applied in solid-state physics [48–51] is based on the general idea that a system far from saturation
is essentially harmonic. It can be formalised through the Holstein-Primakoff transformation that exactly maps the
algebra of a spin j into the one of an harmonic oscillator [47, 81–83]

J− =
√

2j

√
1 − b

†b

2j
b, J+ =

√
2jb†

√
1 − b

†b

2j
, Jz = b†b − j, (17)

with [b, b†] = 1. The number of bosonic excitations in a generic state ⟨j,m∣ b†b ∣j,m⟩ is thus equal to (j +m), that is
the number of excitations over the lowest lying state for a fixed value of j. If such a number is much smaller than j
(dilute regime) we can then do a lowest-order expansion of the square roots in the small parameter b†b/2j, recovering
standard quadratic, bosonic Hamiltonians. In our case this formal approach is not directly applicable because the
mapping explicitly depends on j and phase-breaking effects would thus have an impact on the very definition of
the bosonic operators [44]. In order to understand how the bosonic approach maps into the full picture of a spin
Hamiltonian, we will instead proceed more phenomenologically, studying the structure of the lower left corner of the
Hilbert space in Fig. 4, corresponding to the dilute regime. We begin by formally defining the operators

b†p =∑
n

fpnJ+,n, p ∈ [0,N − 1], (18)
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where the fs form an orthonormal basis

∑
n

fpn f̄
q
n = δp,q, f0

n =
1√
N

∀n. (19)

Using Eq. (18) we can then calculate

Jz =∑
p

(b†pbp − 1
2
) , (20)

which stands as a generalisation of the third term of Eq. (17). The operators of Eq. (18) are defined such that the
N states b†p ∣N2 ,−

N
2
⟩ span the one excitation subspace. The bosonic approximation consists in assuming that those

modes remain orthogonal and bosonic also in the excited manifolds, that is

[bp, b†q] = δp,q. (21)

Using Eq. (19), we can rewrite Eq. (3) in the form

Hint =
√
Nd ⋅E(b0 + b†0), (22)

from which we see that only the p = 0 (bright) mode couples with light, with a dipole
√
N times the bare one [67],

while the other N −1 modes are dark. Notice that the collective
√
N enhancement to the dipole has an impact on the

system’s spectrum, allowing us to explore non-perturbative coupling regimes (strong [84], ultra [48], or deep [85]), but
it does not affect the emission rate. Since the emission rate is proportional to the square of the dipole, we recover a
total emission that scales as N , as if each dipole was emitting independently. This is as expected from the discussion
of the previous section, in which we saw that an enhancement of the emission rate can only be obtained for a system
close to half-filling ∣m∣≪ j, where the bosonic approximation does not hold.

In order to investigate the role of losses and dephasing on the dynamics of bright and dark modes in the bosonic
approximation, in Fig. 4 we plot a zoom of the lowest left corner of the Hilbert space, in which the bosonic approxi-
mation is relevant, explicitly showing the degeneracy of each state, Dj [54]. In the one excitation manifold, which is

exactly spanned by the N vectors b†p ∣N2 ,−
N
2
⟩, the effect of both spontaneous emission and of non-radiative losses is

trivial: as both need to lower the number of excitations and there is a single ground state, they will scatter each state
into the ground state ∣N

2
,−N

2
⟩. From Eq. (11) we can see that the pure dephasing term will lead, to the dominant

order in N , to d
dt
jD = −γD for the bright state and to d

dt
jD = 1

N
γD for the dark ones. This can be easily interpreted

recalling that the dephasing randomises the phases between the different spins, thus transforming one mode into the
other. Given that there is a single bright mode and (N −1) dark ones, any phase change will transform a bright mode
into a dark one, decreasing j, but the majority of the phase changes will not influence the population of the dark
modes. This describes well, for example, intersubband transitions in doped quantum wells, where the line width of
the bright mode coupled with the electromagnetic field is determined by its dephasing rate, that transforms it into a
dark, uncoupled excitation that eventually relaxes non-radiatively [86, 87].

This picture can be extended to the higher excited manifolds taking into consideration that the addition of a dark
excitation in the dilute regime effectively translates only into an upward-right diagonal step, as shown in Fig. 4,
reducing the value of j by one while increasing m, due to the greater weight of the degeneracy Dj for the Dicke

ladders of lower cooperation number j, for j = N
2

. This can be verified by counting the available modes: there are

O(N) dark modes and a single bright one, so that there are O(N2) states with two dark excitations and O(N) states
with a dark and a bright excitation and analogously for higher excitations number. We are using orders of magnitude
here instead of the exact mode counting because considering N independent bosonic modes leads to over-counting
the number of states, with an error of the order of the total number of excitations divided N . Once again we see that
the bosonic approximation breaks down when the number of excitations becomes comparable with the total number
of spins.

In order to describe the effect of phase-breaking mechanisms on the multi-excitation dynamics in the bosonic
approximation, we start by introducing the bright and dark excitation populations

nb = ⟨b†0b0⟩, (23)

nd = ⟨∑
p≠0

b†pbp⟩.

Using Eq. (18) and Eq. (19) in Eq. (23) we obtain

nb =
1

N
[j(j + 1) −m2 +m], (24)

nd =m − 1

N
[j(j + 1) −m2 +m] + N

2
,
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N(N-1)/2

N

1
b†0 b†q �=0

1 N-1 N(N-3)/2 dm
N !(2j + 1)

(N2 + j + 1)!(N2 − j)!
Dj

N !

(N2 +m)!(N2 −m)!

O(1) O(N2)O(N)

FIG. 4. Bosonic approximation valid in the lower part of the full triangular Hilbert space, as shown in Fig. 1. Upward-pointing
vertical and oblique arrows represent the bosonic creation operators. The bright bosonic operators b†0 connect the Dicke states

in the same Dicke ladder, ∆m = 1, ∆j = 0. The dark modes are represented by the dashed arrows b†q≠0. They create an

excitation ∆m = 1 and in general ∆j = 0,±1. On average, as shown by the rate equation for the dark mode population d
dt
nd,

in the lower part of the Dicke triangle they destroy cooperativity, ∆j = −1. The degeneracy of the states in the same Dicke
ladder Dj and the degeneracy of the states dm with same energy eigenvalue m are shown. As a reference for the dynamics of
Eq. (7) and with the bottom panel, also the effect of the scattering rate for the lower excited stated are sketched by a set of
small arrows under each state.

that in the dilute regime, to the dominant order in N leads to

nb = j +m, (25)

nd = N
2
− j.

The physical content of Eq. (25) can be immediately verified, as the total number of excitations is clearly given by
nb + nd =m + N

2
, whereas the number of dark excitations increases by one when reducing j by one.

We can now capture the dynamics of the populations of bright and dark states in Eq. (23) either directly from
Eq. (24) using Eq. (8) or more formally by a derivation in time of Eq. (23) using Eq. (18) and Eq. (20), as both give
to the dominant order in N

d
dt
nb = −(NγS + γD + γL)nb, (26)

d
dt
nd = −γLnd + γDnb.

Such a system is consistent with our initial interpretation: all the scattering processes destroy the bright mode, while
the dark modes can decay only through non-radiative losses and they are replenished by dephasing that transforms a
bright mode into a dark one. Note that in the second line of Eq. (26), the absence of a term proportional to γLnb that
one would expect from the previous discussion, as the phase-randomising effect of the non-radiative losses, should
transform bright into dark modes. This effect is absent because from Eq. (12) we see that in the symmetric-states
subspace j = N

2
, nb = −N2 +m ≪ N , d

dt
jL is of order 1

N
. That is, in the dilute excitation regime non-radiative losses

do not cause dephasing. An equivalent result could be obtained also by neglecting the jump term γL
2 ∑n J−,nρJ+,n in

the Lindblad superoperator LJ−,n[ρ] in Eq. (7), a procedure that is justified in the case of weak pumping, which falls
into the dilute regime treated here [34, 88, 89].

VII. CONCLUSIONS

We have performed a study of the interplay of superradiant light emission and local phase-breaking mechanisms.
Describing dephasing and non-radiative decay with a master equation formalism, solved through a mix of approx-
imate and exact approaches, we investigated how the interplay of the different scattering channels influences the
characteristics, and even the occurrence of the superfluorescent burst. Our results set clear requirements to observe
superfluorescence in different condensed-matter systems. We also show how our treatment, when applied to the dilute
excitation regime, allows to describe phase-breaking mechanisms in term of scattering of bright and dark modes.
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