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Abstract 

 

 We demonstrate optomechanical interference in a multimode system, in which an optical 

mode couples to two mechanical modes.  A phase-dependent excitation-coupling approach is 

developed, which enables the observation of destructive interference in dynamical back-actions.  

The destructive interference prevents the coupling of the mechanical system to the optical mode, 

suppressing optically-induced mechanical damping.  These studies establish optomechanical 

interference as an essential tool for controlling the interactions between light and mechanical 

oscillators.   
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I. Introduction 

Cavity optomechanics explores fundamental interactions between light and mechanical 

oscillators[1,2].  While earlier research efforts have focused on simple two-mode systems, in 

which an optical mode couples only to one mechanical mode, recent efforts have also 

emphasized multimode systems, in which an optical (or mechanical) mode couples to multiple 

mechanical (or optical) modes.  These multimode systems can provide versatile experimental 

platforms for a rich variety of physical phenomena, such as exceptional points and topological 

energy transfer[3], back-action evasion[4,5], two-mode squeezing[6,7], and optical or 

mechanical state transfers[8-18].   

Interference plays a pivotal role in quantum control of multi-level or multi-qubit systems.  

The advances on multimode systems have thus stimulated strong interest in exploring 

optomechanical interference processes and in using these processes for applications such as 

optomechanically-mediated interfaces, entanglement, and ground state cooling[19-24].  For 

example, when two mechanical modes couple to a common optical mode[3,5-7,13,17,25-27], 

destructive interference between the respective optomechanical processes can prevent the 

coupling of the mechanical system to the optical mode, leading to the formation of an optically-

dark mechanical superposition mode[23,26].  Similarly, a mechanically-dark optical 

superposition mode can be formed when two optical modes couple to a common mechanical 

mode[19,20].  These dark modes can be used for the realization of state transfer as well as two-

mode squeezing.  The dark optical mode can also be exploited to circumvent the effects of 

thermal mechanical noise[19,20,22,23].  Evidence for dark optical and dark mechanical modes 

has been reported in earlier studies[8,26], though there has been no direct experimental probe on 

the underlying optomechanical interference processes.   

In this paper, we report experimental demonstration of optomechanical interference in a 

multimode system, in which an optical mode couples to two mechanical modes.  A phase-

dependent excitation-coupling approach is developed for the realization of constructive and 

destructive interferences.  With a phase shift of π, these interference processes can effectively 

switch the mechanical system from an optically-active to an optically-dark superposition mode.  

Further experiments on the decay of the dark mode demonstrate directly the suppression of 

optically-induced mechanical damping and thus the decoupling of the mechanical superposition 

mode from the optical mode due to the destructive interference in dynamical back-actions.  The 
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interference experiments have been carried out at room temperature and above the thermal 

background.  They can also be extended to the quantum regime.  Overall, these studies establish 

that interference is an effective tool for controlling the interactions between light and mechanical 

oscillators.   

For the three-mode system shown in Fig. 1, two mechanical modes with frequencies ωm1 

and ωm2 couple to an optical mode with frequency ω0, with the optomechanical coupling driven 

by two strong external laser fields, E1 and E2, which are respectively ωm1 and ωm2 below the 

optical resonance.  The interaction Hamiltonian including only resonant processes is given by  

..)ˆˆ(ˆ )(
2211

021 chebGebGeaV tiii
R

s ++= −+ ωωφφh            (1) 

where 1̂b  and 2̂b  are the mechanical annihilation operators in their respective rotating frames, â is 

the annihilation operator for the optical mode in the rotating frame of a signal field with 

frequency ωs, φ1 and φ2 are the initial phases of E1 and E2, and G1 and G2 are the optomechanical 

coupling rates for the individual mechanical modes.  Under these conditions, the mechanical 

system features bright and dark mechanical modes, described respectively by their annihilation 

operators,  
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With G1=G2, the two superposition modes in Eq. 2 are completely controlled by the relative 

optical phase, Δφ =φ2−φ1.  In particular, by making a π phase shift in Δφ, we can turn a bright 

mechanical mode into a dark mechanical mode.   

 

II. Experimental setup 

A silica microsphere with a diameter near 200 μm is used as a model multimode system.  

For our experiments, two mechanical whispering gallery (WG) modes, with frequencies 

ωm1/2π=69.48 MHz and ωm2/2π=69.66 MHz and damping rates γ1/2π=3.5 kHz and γ2/2π=3.6 

kHz, are coupled to a WG optical resonance with a wavelength near 1.55 μm and with damping 

rate κ/2π=1.6 MHz.  The optomechanical interactions take place via anti-Stokes Brillouin 

scattering of the optical driving fields from the mechanical modes[28-30].  The input optical 
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power used for the weak signal field near the optical resonance is less than 0.01 mW.  For the 

optical driving fields, the input optical powers used range from 0.6 to 1.2 mW.   

Figure 2 shows the experimental setup.  The two optical driving fields, E1 and E2, are 

derived from a Newport velocity tunable diode laser with a wavelength near 1.55 μm.  Two 

acoustic optical modulators (AOMs) are used to set the relative frequency and phase of the two 

driving fields.  The weak signal field, Es, is generated with an electro-optic modulator (EOM) 

from the driving field E1.  Two RF signal generators (RF 1a and RF 1b) are used to drive the 

AOM that generates E1.  The outputs from RF 1a and RF 1b are first gated and then combined to 

generate a RF field with a phase slip at specified times.  All RF generators except for RF 1b have 

their external references connected to the same 10 MHz clock (“master clock”). A second 10 

MHz signal generator is also locked to the master and sends a reference signal to the RF 1b.  We 

vary the phase of the second 10 MHz generator to generate a phase slip in E1.   

Optical fields are coupled into and out of whispering gallery optical modes of the silica 

microsphere via a tapered optical fiber and then detected together in a silicon photodiode, whose 

output is sent to a real-time spectrum analyzer (SA).  This detection scheme can be viewed as 

heterodyne detection of the emissions from the optical mode, with the two optical driving fields 

serving as the local oscillators.  A relatively small spectral detection window (100 kHz) is used 

for the SA such that only a single beat frequency is measured in transient measurements.  The 

spectral detection window limits the time-resolution of the experiments to 6 μs.   

 

III. Experimental results 

  We have developed a phase-dependent excitation-coupling approach to probe 

optomechanical interactions and especially interference processes.  We first illustrate this 

approach using a two-mode system.  As shown in the inset of Fig. 3, a weak optical signal field, 

Es, with frequency ωs=ω0, and an optical driving field, E1, with frequency ω1=ωs-ωm1, couple to 

the mechanical mode, converting the signal field in the optical mode to a mechanical 

excitation[31-33].  After Es is switched off, E1 couples to the induced mechanical excitation, 

converting the mechanical excitation back to optical fields.  We introduce a phase slip in E1 right 

after Es is switched off.  The initial phase of E1 in the excitation stage is θ1.  The phase is then 

changed to φ1 in the coupling stage (see Fig. 3).   
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 Heterodyne-detected emissions from the optical mode, with E1 as the local oscillator, are 

plotted in Fig. 3 as a function of time.  The exponential decay of the emission following the 

leading edge of the signal pulse corresponds to the increasing conversion of the signal field in the 

optical mode into the mechanical excitation.  The decay time, which sets the timescale for the 

excitation to reach steady state, is given by 1/[(1+C1)γ1], where κγ 1
2
11 /4GC = =1.6 is the 

cooperativity for the optomechanical coupling.  The decrease in the emission from the optical 

mode in the steady state shown in Fig. 3 corresponds to the dip in the spectral domain 

optomechanically-induced transparency (OMIT) experiment[33].  The exponential decay after Es 

is switched off corresponds to the conversion of the induced mechanical excitation back into 

optical fields.  With κ>>(γ1, G1), the dynamical back-action underlying this conversion process 

leads to optically-induced damping of the mechanical excitation[1], with the total damping rate 

given by (1+C1)γ1, as confirmed in Fig. 3.  Note that interference also plays an important role in 

two-mode systems through OMIT[34].  However, the underlying optomechanical coupling 

cannot be controlled via a phase shift in the optical or mechanical excitations.  The experimental 

result for the two-mode system shown in Fig. 3 is independent of θ1 as well as the phase slip φ1-

θ1. 

We now extend this approach to the three-mode system, for which two optical driving 

fields, E1 and E2, with frequencies ω1=ωs-ωm1 and ω2=ωs-ωm2, couple the two mechanical modes 

to the same optical mode.  The pulse sequence of the experiment is shown in Fig. 4a.  For 

simplicity, no phase slip is introduced for E2, (i.e., θ2=φ2).  In the coupling stage, the induced 

mechanical excitation is in a bright mechanical mode when φ1=θ1.  The same excitation, 

however, is expected to be in a dark mechanical mode when G1=G2 and θ1 is π out of phase with 

φ1.  In general, the mechanical excitation can be a combination of both bright and dark modes.   

 Heterodyne-detected emissions from the optical mode are shown in Figs. 4b and 4c as a 

function of time.  A spectral filter is used such that only the heterodyne beat at frequency ωm1, 

with either E1 or E2 as the local oscillator, is detected.  The emissions in Figure 4b are detected 

during the excitation stage of the experiment.  Similar to Fig. 3, the decay of the emission in Fig. 

4b corresponds to the increasing conversion of the signal field in the optical mode into the 

mechanical excitations and shows an effective cooperativity of C=1.4.  The emissions in Fig. 4c 

are obtained when Es is switched off.  In this case, the optical driving fields convert the 
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mechanical excitations back to optical fields, leading to optically-induced mechanical damping.  

As revealed in Fig. 4c, the optomechanical coupling process depends strongly on the phase slip 

φ1-θ1.   

The heterodyne-detected optical emission energy obtained in a time span of 0.4 ms after 

Es is switched off is plotted in Fig. 4d as a function of φ1.  These data are derived from 

experiments similar to those in Fig. 4c.  The interference fringes observed in Fig. 4d are 

sinusoidal with a period of 2π.  The minima and maxima in the oscillations correspond 

respectively to the dark and bright mechanical modes.  The sinusoidal oscillations correspond to 

the switching of the mechanical system between the dark and bright modes as φ1 is varied.  

Similar oscillations are also observed when the heterodyne beat at frequency ωm2 is detected.   

The optomechanical interference underlying the oscillations shown in Fig. 4d occurs in a 

self-consistent two-step process.  For the first step, E1 and E2 scatter from the relevant 

mechanical excitations, generating induced signal fields in the optical mode.  Under the 

condition of two-photon resonance, 2211 mm ωωωω +=+ , the two induced signal fields are at the 

same frequency.  For the second step, the overall induced signal field and the relevant pump field 

couple to an individual mechanical mode, leading to dynamical back-actions, more specifically 

optically-induced mechanical damping[1].  Optomechanical interference takes place through the 

interference of the induced signal fields in the dynamical back-action.  Destructive and 

constructive interferences in the back-action lead respectively to the formation of dark and bright 

mechanical modes.   

 The destructive optomechanical interference effectively decouples the mechanical system 

from the optical mode, suppressing the optically-induced mechanical damping.  For a direct 

demonstration of the destructive interference in the dynamical back-action, we have measured 

the damping rate of the dark mode.  For this experiment, we append a measurement stage to the 

pulse sequence in Fig. 4a.  As shown in Fig. 5a, after keeping the mechanical system in the dark 

mode for a duration of τ, we switch the initial phase of E1 back to θ1.  Correspondingly, the 

mechanical system is switched back to the bright mode.  Heterodyne-detected optical emissions 

occurring in the measurement stage probes directly the amplitude of the dark mode at the end of 

the coupling stage.  The emission energy obtained for a time span of 0.4 ms in the measurement 

stage is plotted in Fig. 5b as function of τ.  Similar to Fig. 4, only the heterodyne beat at 
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frequency ωm1 is detected.  Note that the damping rate of the bright mechanical mode can be 

derived from experiments similar to those in Fig. 4c, in which we measure directly the 

heterodyne-detected optical emission as a function of time after Es is switched off.   

 The damping rate for the dark mechanical mode, derived from Fig. 5b, is γD/2π=7.8 kHz. 

In comparison, the damping rate for the bright mechanical mode obtained under otherwise the 

same experimental condition is γB/2π=11 kHz (see the inset of Fig. 5b), corresponding to C=2.1.  

The relative reduction in the optically-induced mechanical damping rate due to the destructive 

interference is %43)/()( =−− γγγγ BDB , where 2/)( 21 γγγ += .  The suppression is not 

complete, in part due to the slightly unequal damping rates of the two mechanical modes, and to 

a larger part due to optomechanical coupling processes that are not two-photon resonant.  These 

processes include the coupling of E1 to mechanical mode 2 and the coupling of E2 to mechanical 

mode 1.  These two processes do not experience destructive interference, leading to effective 

damping of the mechanical modes.   

 

III. Theoretical analysis 

 For a theoretical analysis of the experimental results, we have used the semi-classical 

coupled-oscillator equations, with the equations of motion given by 

αβγβ φδ
1111

1)2/( Gie iti −−−−=&           (3a) 

αβγβ φδ
2222

2)2/( Gie iti −−−−=&           (3b) 

s
exttiii AeGeGeii κββακα δφφ ++−+Δ−= )()2/( 2211

21&            (3c) 

where >=< 11 b̂β , >=< 22 b̂β , >=<âα , sωω −=Δ 0 , and extκ  is the cavity decay rate due to input-

output coupling.  The amplitude of the input signal field, As, is normalized such that 2|| ss AI =  is 

the photon flux.  For simplicity, the above equations have assumed that the two-photon resonant 

condition is satisfied, with 1211 msms ωωωωωωδ −−=−−= , and have omitted coupling terms that 

are not two-photon resonant (the general equations are given in the appendix).  It is straight 

forward to show from Eq. 3 that with γ1=γ2, the amplitude of the dark mode, >=< DD b̂β , is 

completely decoupled from the field in the optical mode.   



8 
 

Theoretical calculations, which include both two-photon resonant and non-resonant 

optomechanical couplings and use experimentally determined parameters, are in good agreement 

with the experimental results on the fringe visibility shown in Fig. 4d and on the damping rate of 

the dark mode shown in Fig. 5b.  As shown in Fig. 5b, the theoretical calculation that includes 

only two-photon resonant optomechanical coupling yields a damping rate for the dark mode, 

γ/2π=3.6 kHz, nearly the same as γ1/2π and γ2/2π.  In this regard, the residual optically-induced 

mechanical damping for the dark mode is almost entirely due to the two-photon non-resonant 

couplings, which can be suppressed if the frequency separation between the two mechanical 

modes far exceed the optical linewidth.   

 

IV. Conclusion 

 In conclusion, we have successfully exploited optomechanical interference processes to 

control optomechanical interactions, in particular, dynamical back-actions, in multimode 

optomechanical systems.  Like its counterpart in multi-level or multi-qubit systems, 

optomechanical interferences will play an essential role in the exploration and application of 

interactions between light and mechanical systems.   
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Appendix: Theoretical analysis 

 

We consider the optomechanical coupling between two mechanical modes with 

frequencies ωm1 and ωm2, and one optical mode with frequency ω0, driven by two strong external 

laser fields, E1 and E2, which are nearly ωm1 and ωm2 below the optical resonance, respectively.  

In the resolved-sideband limit, the linearized optomechanical Hamiltonian that can satisfy the 

two-photon resonance condition, 1122 ωωωω +=+ mm , is given by 

.].ˆˆ[.].ˆˆ[ˆˆ 2
)(

21
)(

1
222111 chbaeGchbaeGaaH itiiti

R
msms ++++Δ= ++−−++−−+ φωωωφωωω hhh         (A1) 

where 1̂b  and 2̂b  are the annihilation operators for the mechanical modes in their respective 

rotating frames, â is the annihilation operator for the optical mode in the rotating frame of the 

signal field with sωω −=Δ 0 , φ1 and φ2 are the initial phase for E1 and E2, and G1 and G2 are the 

effective optomechanical coupling rates for E1 coupling to mechanical mode 1 and E2 coupling 

to mechanical mode 2, respectively.  The above Hamiltonian does not contain optomechanical 

coupling terms that cannot satisfy the two-photon resonant condition.  These terms are given by  

       .].ˆˆ[.].ˆˆ[ 1
)(

212
)(

12
212121 chbaeGchbaeGV itiiti

NR
msms +++= ++−−++−− φωωωφωωω hh          (A2) 

where G12 and G21 are the effective optomechanical coupling rates for E1 coupling to mechanical 

mode 2 and E2 coupling to mechanical mode 1.  Note that the non-resonant coupling terms 

become negligible if the frequency separation between the two mechanical modes far exceeds 

the optical cavity linewidth.   

 The semi-classical equations of motion including both two-photon resonant and non-

resonant optomechanical interactions are given by 

αβγβ φωωωφωωω ][
2

212111 )(
21

)(
11

1
1

itiiti msms eGeGi −−−−−−−− +−−=&        (A3a) 

αβγβ φωωωφωωω ][
2

121222 )(
12

)(
22

2
2

itiiti msms eGeGi −−−−−−−− +−−=&        (A3b) 

s
exttitititititi AeGeGieeGeGiei msms κββακα ωφωφωωωφωφωω ++−+−+Δ−= −−−−−−

2
)(

12
)(

2
)(

1
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21
)(

1
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2
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For a qualitative discussion, we note that the four optomechanical coupling terms in Eq. 

A3c generate optical fields at frequencies of 11 mωω + , 22 mωω + , 21 mωω + , and 12 mωω +  through 

anti-Stokes scattering.  Only the two processes corresponding to 11 mωω +  and 22 mωω +  can satisfy 

the two-photon resonant condition.  All four processes contribute to the optically-induced 

mechanical damping.  For the interference experiments shown in Fig. 4, only the beat frequency 

at ωm1 is measured in the heterodyne detection, with either E1 or E2 serving as the local 

oscillator.  Under the two-photon resonant condition, optical fields generated by the 

optomechanical coupling at frequencies, 11 mωω + , 22 mωω + , and 12 mωω + , contribute to the 

experiments.  The field at 21 mωω +  does not contribute to the experiments in Fig. 4.   

For the theoretical calculations shown in Figs. 4 and 5, we have solved Eq. A3 

numerically using the experimentally determined parameters.  To determine the relative 

contribution of two-photon non-resonant processes to residual optically-induced mechanical 

damping of the dark mechanical mode, we have also calculated the dark mode decay including 

only contributions that are two-photon resonant.   
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Figure 1  (a) Schematic of a multimode optomechanical system driven by two optical fields via 
respective red sideband couplings.  (b) Interference between the two optomechanical coupling 
processes leads to the formation of dark and bright mechanical modes that depend on the relative 
phase of the optical driving fields, Δφ=φ2-φ1, with the dark mode decoupled from the optical 
mode.   

 

  

ωm1

ωm2
ω0

Optical Mode G1

G2
])[(

2

])[(
1

220

110

φωω

φωω

−−−

−−−

+

=
ti

ti

m

m

eA

eAE

ω0
G

Bright

Dark
Optical Mode

)(ˆ φΔDb

)(ˆ φΔBb

1b̂

2b̂

(b)

(a)

E



12 
 

 

 

 

 

 

 

 

 

Figure 2   Schematic of the experimental setup. Optical fields are coupled into and out the 
relevant whispering gallery optical modes in the microsphere through a tapered fiber.   
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Figure 3    Heterodyne-detected emissions (the dots) from the optical mode as a function of time 
in the two-mode system.  Solid lines are numerical fits to single exponential decays with a decay 
rate, γ/2π=9.1 kHz.  The first decay corresponds to the increasing conversion of Es to a 
mechanical excitation. The second decay corresponds to the conversion of the mechanical 
excitation to optical fields and the resulting mechanical damping, after Es is switched off.  The 
inset shows the optical pulse sequence used, with Es (0.5 ms in duration) at ω0 and E1 at the red 
sideband of Es.   
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Figure 4   (a) Optical pulse sequence used for optomechanical interference, with Es (0.5 ms in 
duration) at ω0 and E1 and E2 at the respective red sidebands of Es.  (b) Heterodyne-detected 
emissions from the optical mode as a function of time with θ2=φ2, when Es is on.  (c) 
Heterodyne-detected emissions from the optical mode as a function of time at various φ1 with 
θ2=φ2, C1=1.3, and C2=1, when Es is off.  Solid lines in (b) and (c) are numerical fits to single 
exponential decays.  (d) The emission energy from the optical mode as a function of φ1, obtained 
in a time span of 0.4 ms after Es is switched off.  The dashed line shows the theoretical 
calculation discussed in the text. φ0 is an offset such that the dark mode occurs when φ1-φ0=π.   
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Figure 5 (a) Optical pulse sequence used to probe the suppression of optically-induced 
mechanical damping due to destructive interference.  (b) Heterodyne-detected optical emissions 
(the stars) from the optical mode obtained in the measurement stage as a function of τ, with 
θ2=φ2 and G1= G2 and with φ1 adjusted such that the mechanical system is in the dark mode in 
the coupling stage.  The dashed line shows the corresponding theoretical calculation discussed in 
the text.  The dash-dotted line shows the theoretical calculation that includes only two-photon 
resonant optomechanical coupling, yielding a damping rate, γ/2π=3.6 kHz.  The inset shows the 
measurement of the bright mode decay in the coupling stage.  The solid lines are numerical fits 
of the experimental data to single exponential decays.   
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