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Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantummechanics,
and quantum information science. In order to induce strong coupling between an electron spin and
the center-of-mass motion of a mechanical oscillator, a large magnetic gradient is usually required,
which is difficult to achieve. Here we show that strong coupling between the electron spin of a
nitrogen-vacancy (NV) center and the torsional vibration of an optically levitated nanodiamond can
be achieved in a uniform magnetic field. Thanks to the uniform magnetic field, multiple spins can
strongly couple to the torsional vibration at the same time. We propose to utilize this new coupling
mechanism to realize the Lipkin-Meshkov-Glick (LMG) model by an ensemble of NV centers in a
levitated nanodiamond. The quantum phase transition in the LMG model and finite number effects
can be observed with this system. We also propose to generate torsional superposition states and
realize torsional matter-wave interferometry with spin-torsional coupling.

PACS numbers: ******

I. INTRODUCTION

Micro and Nano-mechanical resonators in the quantum
regime, based on light-matter interaction, have wide ap-
plications in quantum metrology and quantum informa-
tion science [1]. It is one of the best test-beds for gener-
ating macroscopic quantum superpositions, and studying
quantum-classical boundaries [2, 3]. To this end, mechan-
ical resonators need to be coupled to other systems, such
as atoms [4], superconducting circuits [5, 6], cavity modes
[1], nitrogen-vacancy (NV) centers [7–9], etc. Among
these systems, NV centers attract a great attention [10]
due to the extraordinary long coherence time (ms) even
at room temperature[11] as well as its high manipulation
and detection efficiency. The center-of-mass motion can
even be coupled to the electron spins in magnetic field
with a large gradient[7, 17]; typically this gradient should
be of the order of 107 T/m, which is difficult to achieve
in stat-of-art experiments. Furthermore, this large mag-
netic gradient prevents collective coupling between NV
electron spin ensemble and the mechanical oscillator.
The motion of the nanoparticles can behave in a totally

different way when levitated in a high quality vacuum
by optical trapping[18–20]. In this case the nanoparti-
cles can vibrate along different directions controlled by
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the external optical field. In recent years this torsional
vibration for a nonspherical nanodiamond in an optical
trap in vacuum was observed[21]. It was also proposed
that a torsional mode can be cooled down to the ground
state by a linearly polarized cavity mode [21, 22]. In this
work, we investigate the coupling between the torsional
vibration of a levitated nanodiamond and NV center elec-
tron spins (see Fig. 1). The orientation of an NV cen-
ter will change together with the torsional vibration of
the nanodiamond [23], thus even in a uniform magnetic
field the energy levels of the NV electron spins can still
depend strongly on its orientation as well as its displace-
ment from the origin, which induce coupling between the
torsional vibration and the NV spin. We find that strong
coupling can be reached with a modest uniform magnetic
field (for example 0.05 T), thus can circumvent the tech-
nical difficulty mentioned above[7, 17].

We also propose several applications of spin-torsional
coupling. We show how to realize matter-wave interfer-
ometry, and propose to use the collective coupling be-
tween an ensemble of NV electron spins and the tor-
sional mode to realize the Lipkin-Meshkov-Glick (LMG)
model [24–26]. The LMG model was first introduced
in nuclei physics for phase transitions, and has been
found to be relevant to a large number of quantum sys-
tems such as Bose-Einstein condensates in different traps
[27–30], the Bardeen-Cooper-Schrieffer superconducting
model [31], the radiation-matter Dicke model [32–35] and
cavity QED [36]. Up to now the special case of LMG
model was realized [37, 38] in ultracold atoms and the
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FIG. 1. (Color online). (a) NV centers in a levitated diamond
nanocrystal in a uniform magnetic field B along z axis. We
only consider NV centers in one direction (z′) of the four
possible orientations. The orientation of z′ is shown in the
lab frame oxyz using polar angle θ and azimuthal angle φ.(b)
Energy levels for NV centers electron spins.

corresponding transition from Rabi dynamics to Joseph-
son dynamics has been reported, yet the full LMG model
has never been experimentally realized. We show that the
quantum phase transition in the LMG model and finite
number effects can be observed in our proposed system.

II. SPIN-TORSIONAL COUPLING

We consider a non-spherical nanodiamond with one
long axis and two short axes optically trapped in high
vacuum [21, 39] in a static uniform magnetic field (Fig.
1). The direction of the nanodiamond can be manipu-
lated and aligned with the laser field [21, 23, 40]. We con-
sider the torsional vibration of the nanodiamond along θ
direction around the polarization direction of the laser
beam. The torsional Hamiltonian is Htor = ωθb

†b (with
natural unit ~ = 1). Typically ωθ is of the order of MHz.
We first consider a single NV center in the nanodi-

amond. The direction of the magnetic field is denoted
as z while the intrinsic quantization direction of the NV
center is denoted as z′ (see Fig 1). The Hamiltonian of
the NV center is HNV = DS2

z′ +gµBB ·S, where D = 2.8
GHz for typical NV center. Sz(z′) is the spin-1 operator
along z(z′) direction. If we use the eigenvectors of Sz′ to
expand HNV , and define ∆ = −gµB|B|, the Hamiltonian
becomes [41]

HNV =









D −∆cos θ ∆ e−iφ

√
2
sin θ 0

∆ eiφ√
2
sin θ 0 ∆ e−iφ

√
2
sin θ

0 ∆ eiφ√
2
sin θ D +∆cos θ









z′

.

(1)
If the gradient of B is large, the strong coupling between
the translational motion of the diamond and the spin S

could be achieved [9, 17].
Here we suppose thatB is homogeneous, and θ changes

with the torsional motion. The angles θ0 and φ0 denote
the equilibrium orientation. The eigenvalues for HNV is
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FIG. 2. (Color online). (a) An example of eigenenergies of
an NV center in a magnetic field as a function of the relative
angle θ. The magnetic field is B = 0.05 T. Energy levels
E+1,0,−1 correspond to states |Sz′′ = +1, 0,−1〉. (b) Spin-
torsional coupling strength gN/2π of a nanodiamond as a
function of θ and B. Its long(short) axis is 80(40) nm, its den-
sity is 3500 kg/m3, and the torsional frequency is 2.52 MHz.
The color shows the value of gN/2π in unit of Hz. The red
line corresponds to the θ with the largest gN for a given B.

determined by the following cubic function,

z3 − 2Dz2 + (D2 −∆2)z +D∆2 sin2(2θ) = 0, (2)

which is independent of phase φ. The calculated eigen-
values z = Ei (i = −1, 0, 1) for a modest magnetic field
as a typical example is shown in Fig 2(a). We only
deal with two spin states, |Sz′′ = −1〉 and |Sz′′ = 0〉,
where Sz′′ is the spin operator in whose representation
HNV (θ0, φ0) is diagonal. We change the energy zero
point to E0 and define the energy of |Sz′′ = −1〉 as
E(θ, φ) = E(θ) = E−1(θ)− E0(θ).

The total Hamiltonian for the NV center and the tor-
sional oscillator reads

H = ωθb
†b+

E(θ0)

2
σz′′ +

gN
2
σz′′ (b† + b), (3)

where σz′′ = |Sz′′ = −1〉〈Sz′′ = −1|−|Sz′′ = 0〉〈Sz′′ = 0|.
We let |Sz′′ = −1〉 ≡ | − 1〉 and |Sz′′ = 0〉 ≡ |0〉. This is
the representation that we will focus on in the rest of this
paper. The coupling between the torsional mode and NV
center electron spin is

gN =

√

1

2Iωθ

∂E(θ)

∂θ

∣

∣

∣

θ=θ0
, (4)

where I is the moment of inertia, and ωθ is the angu-
lar frequency of the torsional mode [21]. As shown in
Fig. 2(b), gN/2π could be about 300 kHz at 0.05 T, which
is much larger than both torsional mode decay (< kHz)
[21] and the NV center decay (< kHz ) and dephasing (∼
kHz) rates [42]. Therefore the strong coupling condition
is fulfilled. In experiments the value of gN can be tuned
in a wide range by controlling either the trap potential or
the external uniform magnetic field. The typical energy
scales used in this paper are summarized in Table I.
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III. THE LMG MODEL WITH LEVITATED NV

CENTERS

Here we show that this novel platform provides an ex-
cellent opportunity to simulate the LMG model[24–26].
For the nanodiamond considered here, the mean separa-
tion between NV centers is assume to be d > 15 nm and
the direct dipole-dipole interactions between NV centers
(Jd-d < 20 kHz [44]) are much smaller than the spin-
torsional coupling (∼ 300 kHz at 0.05 T). The coherence
time of NV centers in nanodiamond at such low concen-
tration could be around ms [11, 42, 43]. As multiple NV
centers are coupled to the same torsional mode coherently
in a uniform magnetic field, the torsional mode mediat-
ing coupling between NV centers can be strong using a
proper experimental scheme. To realize the LMG model,
a microwave driving field with frequency ωl and Rabi fre-
quency Ω is added. The Hamiltonian of the system that
contains multiple NV centers and the microwave drive is,

H = ωθb
†b+

E0

2
Sz′′+

gN
2
Sz′′(b†+b)+(

Ω

2
e−iωltS++h.c.),

(5)

where Sα =
∑N

j=1 σ
j
α for α = x′′, y′′ and z′′ are the total

spin operators for a system with N NV centers in z′ di-
rection. S+ = (Sx′′ + iSy′′)/2 and S− = (Sx′′ − iSy′′)/2.
NV centers along other directions (see Fig 1) can be
neglected as they have very different energy levels. In
our model, the torsional mode mediated spin flip is for-
bidden in the x′′ − y′′ − z′′ coordinate. Thus the last
driving term should be included to realize the long-
range LMG model. The above time-dependent model,
in which E0 and ωl are the dominante frequencies, can
be transformed to the low-frequency stationary Hamil-
tonian Heff = U †HU − U †i∂tU via a unitary rotation
U = e−iωltSz′′/2. We obtain

Heff = ωθb
†b+

Ω

2
Sx′′ +

E′
0

2
Sz′′ +

gN
2
Sz′′(b† + b), (6)

where E′
0 = E0 − ωl. So the microwave driving field

only affects the effective Zeeman field along the z′′ di-
rection. We suppose resonant driving condition fulfilled
with E′

0 = 0, in which case an isotropic LMG model can
be realized.

To adiabatically eliminate the influence of the torsional
mode, we need to go into a rotating frame. Let us define
Heff = H0 + V . Here H0 = ωθb

†b+ Ω0

2 Sx′′ defines which
rotating frame we use, where Ω0 is the frequency of the
rotating frame for NV centers. In an experiment, it could
be adjusted by changing the frequency of a local reference
oscillator. V is treated as perturbation, which is a quite
good approximation regarding that Ω ∼ Ω0 ∼ ωθ is the
leading term in Eq. (6), while all the other coefficients are
much smaller than these energy scales (see Table I). After
the transformation the Hamiltonian Heff is represented
by the interaction term

TABLE I. Typical parameters. All the frequencies are in unit
of 2π× MHz.

(E0, ωl) Size ωθ gN Ω0 g λ |h0|

∼ 2000 (80, 40) nm 2.52 0.1 1.0 0.42 0.01 ∼ 0.01

Vint =
gN
2
[S̃+b

†ei(Ω0+ωθ)t+ S̃+be
i(Ω0−ωθ)t+h.c.]+

h0
2
S̃z.

(7)

where S̃+ = (S̃x + iS̃y)/2, S̃
− = (S̃x − iS̃y)/2 and h0 =

Ω−Ω0. Notice that here we have adopted the notations:
Sx′′ = S̃z, Sy′′ = −S̃y, and Sz′′ = S̃x.
Here we consider many NV centers in a single nan-

odiamond. The single spin-torsional coupling strength
gN ∝ 1/

√
Iωθ depends on the torsional frequency ωθ and

the size of the nanodiamond. We suppose the concen-
tration of NV center is kept as a constant. As the size
of nanodiamond increases, both I and N will increase.
However, the coupling strength gN decreases. We sup-
pose that gN ∝ 1/

√
N . In the following discussion, we

define g =
√
NgN as the collective spin-torsional cou-

pling strength. The effective Hamiltonian can be derived
using the method in Refs. [45–47]. In the limit that
Ω0 ± ωθ ≫ gN , h0, we get

HLMG =
λ

N
(S̃xS̃x + S̃yS̃y) + hS̃z, (8)

where λ = g2

8 · ωθ

Ω2
0−ω2

θ

, h = h0

2 + Ω0

Ω2
0−ω2

θ

· (b†b+ 1
2 )g

2/2N .

We mainly focus on the condition of ferromagnetic cou-
pling (λ < 0) when ωθ > Ω0. The effective Zeeman field
is consisted of two parts: the contribution from the ex-
ternal Zeeman field inherent from the original Hamilto-
nian and the contribution from phonons. Notice that the
second part is due to the fact that the interaction Vint
breaks the time-reversal symmetry. This term will be-
come unimportant if the total number of NV centers N
is large enough. The first term h0 will play primary role
for the phase transition near torsional ground state or
whenN is much larger than the torsional thermal phonon
number 〈b†b〉. For h ≪ Ω0 the change of h will not sig-
nificantly change the coupling strength λ, thus these two
parameters may be treated as independent parameters.
In the above calculations, we focused on the resonant ex-
citation (E′

0 = 0). Thus the two orthogonal directions (x
and y) are equivalent. When E′

0 6= 0, the equivalence be-
tween these two directions is broken and the asymmetric
LMG model may also be realized. If there is no driving
field, the spin-flipping is forbidden thus only long-range
classical Ising model can be realized [48], which may also
support phase transition belonging to a totally different
universal class due to the fact that a d (here d = 1) di-
mensional quantum spin model is equivalent to the (d+1)
dimensional classical model. This system also has the po-
tential to study antiferromagnetism [49].
In the thermodynamic limit, the LMG model hosts

phase transition at h = λ. In realistic systems, the num-
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FIG. 3. (Color online). Phase transition of multiple NV spins
in a levitated nanodiamond in a magnetic field. A small num-
ber of NV centers is sufficient to see the signature of phase
transition. (a) mxy and (b) mz are the in-plane and out-of-
plane polarizations, respectively. The square and circle sym-
bols represent results obtained from exact diagonalization of
the Hamiltonian, while solid and dotted lines are the analyt-
ical results in Eq. 9. The dashed line is the exact result in
the thermodynamic limit.

ber of NV centers in a diamond nanocrystal is always
finite and can be controlled by doping. For a 80 nm-
diameter diamond, the total number of NV color centers
can be in the range of N ∼ 0− 100, which is sufficient to
observe the phase transitions [50, 51]. In this model the

order parameters are defined as mxy = 2
N

√

〈S̃2
x + S̃2

y〉

for the in-plane polarization, and mz = 2
N

√

〈S̃2
z 〉 for the

out-of-plane polarization[52–54]. For a finite system, we
find mz = 1 when |h/λ| ≥ 1, and otherwise,

mz =

{

1
N + [hN2λ ] 2N , N is odd

[hN2λ + 1
2 ]

2
N , N is even

(9)

where [x] takes the integer part of x. The in-plane po-

larization can be determined via mxy =
√

1 + 2
N −m2

z.

We see that the discontinuous jump of mz and mxy can

be observed at h
λ = 2k

N for k = 1, 2, 3, · · · , [N2 ] when N

is odd and h
λ = 2k−1

N for k = 1, 2, 3, · · · , [N2 ] when N is
even. The jump of these quantities arises from the quan-
tization of the spin. These two polylines will collapse to
the well-known continue limit, mxy =

√

1− (h/λ)2 and

mz = h
λ for |h/λ| < 1, when N → ∞.

Both analytical results and numerical results for mxy

and mz (see Fig. 3) suggest that the strong signature of
quantum phase transition can be observed even in a small
system. When |h/λ| > 1, the out-of-plane polarization
mz exactly equals to one, while the in-polarization can

still be finite (mxy =
√

2
N ≈ 0.3 when N = 18). This is

different from the proposal for classical phase transition
in Ref. 48, where an experimentally observable effect
requires an extraordinary large number of NV centers.
To observe the phase transition, we can measuremz as

a function of h/λ. We prepare the NV centers in ground
state, then adiabatically tune the parameter h/λ. The
exact degeneracy at the jumping point should be removed
by a modest in-plane Zeeman field. Experimentally, we

measure the population of the spin in the intrinsic quan-
tization direction z′. We can first apply a microwave
pulse that rotates the state S̃z to the state Sz′ , and then
measure the spin state in the intrinsic frame.

IV. SCHRÖDINGER’S CAT STATE AND

TORSIONAL MATTER-WAVE

INTERFEROMETRY

Schrödinger’s cat state is generally considered as an
entangled state between a microscopic quantum system
and a macroscopic system. It can be prepared with an
optically levitated nanodiamond using the coupling be-
tween the center-of-mass motion and the electron spin
with a strong magnetic gradient [17]. Here we show how
to realize Schrödinger’s cat state with torsional motion
and spin in a uniform magnetic field.
First we need to cool the torsional motion near ground

state |0〉θ by sideband cooling [21, 55, 56]. Then we adi-
abatically lower the trapping frequency from ωθ to ω′

θ
so that |0〉ωθ

evolves to a new vacuum state |0〉ω′
θ
. The

spin is initialized to (|0〉 + | − 1〉)/
√
2. From t = 0, the

system evolves under the Hamiltonian (3) where ωθ is
replaced by ω′

θ. We find that the system splits into two
torsional oscillations centered at slightly different orien-
tations and coupled with the two spin states respectively
(see appendix A). At time t0 = π/ω′

θ, the separation of
orientation is the largest. The state at this time is

|ψ(t0)〉 =
1√
2

(

e−
iE(θ0)t0

2 | − 1〉 ⊗ e
− gN

ω′
θ

(b†−b)|0〉ω′
θ

+ e
iE(θ0)t0

2 |0〉 ⊗ e
gN
ω′
θ

(b†−b)|0〉ω′
θ

)

,

(10)

which is the Schrödinger’s cat state. For convenience
we define β = gN/ω

′
θ. With the displacement operator

D̂(β) = exp(βb† − β∗b), we get D̂(β)|0〉ω′
θ
= |β〉ω′

θ
, and

D̂(−β)|0〉ω′
θ
= | − β〉ω′

θ
.

We can use matter-wave interferometry to verify the
creation of the Schrödinger’s cat state. First, we im-
pose pulses to disentangle the spin and the oscillation
[17]. The torsional motion state becomes |ϕ′(t0)〉 =
1√
2
(|β〉ω′

θ
+ | − β〉ω′

θ
). Then we turn off the magnetic

field and the optical tweezer. The spin state |0〉 tends
to rotate to the lowest energy state adiabatically simi-
lar as the trend in Fig. 2(a) under the influence of the
earth magnetic field. Its timescale is larger than 0.1 s,
slow enough to be neglected. Suppose zn is the direction
perpendicular to oz and oz′ in Fig. 1(a). The Hamilto-
nian for the system is Hfree = L2

zn/2I, where Lzn is the
orbital angular momentum operator along zn. The ori-
entation of the nanodiamond evolves freely and creates
an interference pattern in θ direction (see appendix B).
Fig. 4 shows examples of the calculated interference

fringe. When the evolutionary time is not very long, the
longer the time is, the wider the fringe will be. But when
the time is too long, the wavefunction spreads over a full



5

0 100 200 300
0

0.5

1

1.5

2

θ(deg)

p
ro

b
a

b
ili

ty
 d

is
tr

ib
u

ti
o

n t=0.001s

(a)

0 100 200 300
0

0.2

0.4

0.6

0.8

θ(deg)

p
ro

b
a

b
ili

ty
 d

is
tr

ib
u

ti
o

n

(b)
t=0.003s

FIG. 4. (Color online). Interference fringes of a nanodia-
mond with long axis 80 nm and short axis 40 nm. The
external magnetic field is 0.05 T. The coupling strength is
gN = 2π × 331 kHz at the equilibrium orientation θ0 = π/4.
The trapping frequency is ωθ′ = 2π × 50 kHz. (a) Fringes at
t = 0.001 s. The wavefunction occupies half of the circle, and
the fringes are clear. (b) Fringes at t = 0.003 s. The spac-
ing between two fringes (30◦) is large enough to be detected
experimentally.

2π angle, the interference fringe becomes very complex.
We only need to focus on the region without the compli-
cate pattern.

V. CONCLUSION

We discuss the strong coupling mechanism between the
torsional motion of a nanodiamond and the spin of built-
in NV centers under a homogeneous magnetic field. This
novel system can used for simulating LMG model and
the many-body phase transitions. Strong evidence for
this phase transition can even be observed for a small
nanodiamond containing only a few tens of NV centers.
The system may also be used to realize Schrödinger cat
state and the corresponding torsional matter-wave inter-
ferometry.
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Appendix A: Generation of Schrödinger’s cat state

In this part, we provide a derivation of the Eq. (10).
Suppose the system evolves under the Hamiltonian

H ′ = ω′
θb

†b+
E(θ0)

2
σz′′ +

gN
2
σz′′ (b† + b) (A1)

What we would like to do is calculating e−iH′t(|0〉+ | −
1〉)/

√
2⊗|0〉ω′

θ
, but this cannot be done directly. Instead,

it is better to find a way to consider the effect of the parts
in H ′ separately. In a rotating frame, H ′ becomes

H ′
I =

gN
2
σz′′(b†eiω

′
θt + be−iω′

θt) (A2)

H ′
I is time-dependent, and its corresponding time evo-

lution operator is UI = T e−i
∫

H′
I (t)dt, T is the time-

ordering operator. UI can be expanded by Magnus ex-
pansion, UI = eΣ

∞
k=1Ωk(t). The first order is

Ω1 = −i
∫ t

0

H ′
I(t1)dt1

=
gNσz′′

2ω′
θ

(

(e−iω′
θt − 1)b− (eiω

′
θt − 1)b†

)

(A3)

The second order is

Ω2 =
1

2
(−i)2

∫ t

0

∫ t1

0

[H ′
I(t1), H

′
I(t2)]dt1dt2

= i
g2N
4

( t

ω′
θ

− sin(ω′
θt)

ω′2
θ

)

(A4)

As Ω2 does not contain any operators, it is just a global
phase of the state and can be neglected in our situation.

Moreover, Ω3 = Ω4 = · · · = 0. So UI = eβ(t)b−β(t)∗b† ,

where β(t) = gNσz′′

2ω′
θ

(

e−iω′
θt − 1

)

.

After we return to the original frame, the quantum
state at time t can be expressed as

|ψ(t)〉 =e−iω′
θb

†bte−
iE(θ0)t

2 σz′′ e
σ
z′′

gN

2ω′
θ

(

(e−iω′
θ
t−1)b−(eiω

′
θ
t−1)b†

)

1√
2
(| − 1〉+ |0〉)⊗ |0〉ω′

θ

=e−iω′
θb

†bte−
iE(θ0)t

2 σz′′

1√
2

(

| − 1〉 ⊗ e
gN
2ω′

θ

(

(e−iω′
θ
t−1)b−(eiω

′
θ
t−1)b†

)

|0〉ω′
θ

+ |0〉 ⊗ e
− gN

2ω′
θ

(

(e−iω′
θ
t−1)b−(eiω

′
θ
t−1)b†

)

|0〉ω′
θ

)

=e−iω′
θb

†bt 1√
2

(

e−
iE(θ0)t

2 | − 1〉

⊗ e
gN
2ω′

θ

(

(e−iω′
θ
t−1)b−(eiω

′
θ
t−1)b†

)

|0〉ω′
θ

+ e
iE(θ0)t

2 |0〉 ⊗ e
− gN

2ω′
θ

(

(e−iω′
θ
t−1)b−(eiω

′
θ
t−1)b†

)

|0〉ω′
θ

)

(A5)
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While exp
(

gN
2ω′

θ

(

(e−iω′
θt − 1)b − (eiω

′
θt − 1)b†

)

)

and

exp
(

− gN
2ω′

θ

(

(e−iω′
θt − 1)b− (eiω

′
θt − 1)b†

)

)

are likely dis-

placement operators, the effect of e−iω′
θb

†bt cannot be

seen directly. In fact, if e−iω′
θb

†bt first acts on the state
|0〉ω′

θ
, it will become just a time-dependent phase factor.

So we now develop how to “interchange” the first and
second factor.
Suppose eXeY = KeX , K is the operator we need to

find out.

K =eXeY e−X

=eX(1 + Y +
1

2!
Y 2 +

1

3!
Y 3 + · · · )e−X

=1 + eXY e−X +
1

2!
eXY e−XeXY e−X

+
1

3!
eXY e−XeXY e−XeXY e−X + · · ·

=1 + eXY e−X +
1

2!
(eXY e−X)2 +

1

3!
(eXY e−X)3 + · · ·

=ee
XY e−X

=eY+[X,Y ]+ 1
2! [X,[X,Y ]]+ 1

3! [X,[X,[X,Y ]]]+···

(A6)
In the last equality, we use the Baker-

Hausdorff lemma [57]. First we calculate

e−iω′
θb

†bt exp
(

gN
2ω′

θ

(

(e−iω′
θt − 1)b − (eiω

′
θt − 1)b†

)

)

|0〉ω′
θ
.

We let X = −iω′
θb

†bt and Y = gN
2ω′

θ

(

(e−iω′
θt − 1)b −

(eiω
′
θt − 1)b†

)

to use Equation (A6). Then we can get

e−iω′
θb

†bte
gN
2ω′

θ

(

(e−iω′
θ
t−1)b−(eiω

′
θ
t−1)b†

)

|0〉ω′
θ

= e
gN
2ω′

θ

(

(1−eiω
′
θ
t)b−(1−e−iω′

θ
t)b†

)

e−iω′
θb

†bt|0〉ω′
θ

(A7)

The second term in Eq. (A5) can be dealt with under
similar process. So finally the state in Eq. (A5) is changed
to

|ψ(t)〉 = 1√
2

(

e−
iE(θ0)t

2 | − 1〉

⊗ e
gN
2ω′

θ

(

(1−eiω
′
θ
t)b−(1−e−iω′

θ
t)b†

)

e−iω′
θb

†bt|0〉ω′
θ

+ e
iE(θ0)t

2 |0〉 ⊗ e
− gN

2ω′
θ

(

(1−eiω
′
θ
t)b−(1−e−iω′

θ
t)b†

)

e−iω′
θb

†bt|0〉ω′
θ

)

=
1√
2

(

e−
iE(θ0)t

2 | − 1〉

⊗ e
gN
2ω′

θ

(

(1−eiω
′
θ
t)b−(1−e−iω′

θ
t)b†

)

e−iω′
θtn|0〉ω′

θ

+ e
iE(θ0)t

2 |0〉 ⊗ e
− gN

2ω′
θ

(

(1−eiω
′
θ
t)b−(1−e−iω′

θ
t)b†

)

e−iω′
θtn|0〉ω′

θ

)

(A8)

From the definition of displacement operator D̂(β) =

eβb
†−β∗b which displaces b to b + β and b† to b† + β∗,

we can see clearly that in our system when t0 = π
ω′

θ

, the

displacement of the equilibrium orientation is the maxi-
mum. Thus we get

|ψ(t0)〉 =
1√
2

(

e−
iE(θ0)t0

2 | − 1〉 ⊗ e
− gN

ω′
θ

(b†−b)|0〉ω′
θ

+ e
iE(θ0)t0

2 |0〉 ⊗ e
gN
ω′
θ

(b†−b)|0〉ω′
θ

)

.

(A9)

This is Eq. (10) in the main text.

Appendix B: Torsional matter waver interference

In this part, we discuss how to get the interference
fringes as shown in Fig. 4 in the main text. Initially, the
wavefunction expressed by the orientation θ is ψ0(θ, t =

0) =
(

ϕ+(θ) + ϕ−(θ)
)

/
√
2.

ϕ+(θ) = 〈θ|β〉0

=
4

√

Iω′
θ

π
e
− 1

2 Iω
′
θ

(

θ−(θ0+
√

2
Iω′

θ

gN
ω′
θ

)

)2

ϕ−(θ) = 〈θ| − β〉0

=
4

√

Iω′
θ

π
e
− 1

2 Iω
′
θ

(

θ−(θ0−
√

2
Iω′

θ

gN
ω′
θ

)

)2

(B1)

θ0 is the original equilibrium orientation. Normally
the normalization of a Gaussian distribution requires the
argument to range from −∞ to +∞. But here θ can only
take values between 0 and 2π. However, for a Gaussian
distribution with mean value µ and standard deviation
σ, the probability is almost 0 if the argument is out of the
range (µ−3σ, µ+3σ). So the lower and upper limits can
be extended to −∞ and +∞, respectively. We will show
later that this requirement is very easy to be fulfilled in
experiment.

As in the standard quantum solutions, if we want to
find the time evolution of a wave function, we should
decompose it to the linear superposition of the eigen-
functions of the Hamiltonian, because we know the time
evolution of the Hamiltonian’s eigenfunctions is just the
original state multiplied by a factor e−iEnt, En is the
eigenvalue. This applies to all time-independent Hamil-
tonian, so it is also suitable for our Hfree here.

We expand ϕ+(θ) with the eigenfunctions of Lzn in
spherical coordinates, 1√

2π
eimθ (m = 0,±1,±2, · · · ).

ϕ+(θ) =

+∞
∑

m=−∞
A+

m

1√
2π
eimθ (B2)
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According to the orthonormal property of eimθ, we have

A+
m =

∫ 2π

0

ϕ+(θ)
1√
2π
e−imθdθ

=
4

√

Iω′
θ

4π3

∫ +∞

−∞
e
− Iω′

θ
2

(

θ+
(

im 1
Iω′

θ

−(θ0+
√

2
Iω′

θ

gN
ω′
θ

)
)

)2

× e
− m2

2Iω′
θ e

−im

(

θ0+
√

2
Iω′

θ

gN
ω′
θ

)

dθ
(B3)

We have used the assumption above to extend the in-
tegral interval. Then we can use two formulae of inte-

gral for Gaussian distributions:
∫ +∞
−∞ e−kx2

dx =
√

π
k for

ℜ(k) > 0,
∫ +∞−iκ

−∞−iκ
e−

z2

2 dz =
∫ +∞
−∞ e−

z2

2 dz =
√
2π for ar-

bitrary real number κ. The equation above can finally
be simplified to

A+
m = 4

√

1

πIω′
θ

e
− m2

2Iω′
θ e

−im

(

θ0+
√

2
Iω′

θ

gN
ω′
θ

)

(B4)

So we get the expansion of ϕ+(θ).

ϕ+(θ) = 4

√

1

πIω′
θ

+∞
∑

m=−∞
e
− m2

2Iω′
θ

1√
2π
e
im

(

θ−
(

θ0+
√

2
Iω′

θ

gN
ω′
θ

)

)

(B5)
Similarly,

ϕ−(θ) = 4

√

1

πIω′
θ

+∞
∑

m=−∞
e
− m2

2Iω′
θ

1√
2π
e
im

(

θ−
(

θ0−
√

2
Iω′

θ

gN
ω′
θ

)

)

(B6)
For every fixed m, the time evolution factor is e−iEmt,

Em = m2

2I . So the time evolution of the superposition
state becomes

ψ0(θ, t) = 4

√

1

16π3Iω′
θ

+∞
∑

m=−∞

(

e
im
(

θ−(θ0+
√

2
Iω′

θ

gN
ω′
θ

)
)

+ e
im
(

θ−(θ0−
√

2
Iω′

θ

gN
ω′
θ

)
)

)

e
− m2

2Iω′
θ e−im

2

2I t

(B7)
The probability distribution ψ∗

0(θ, t)ψ0(θ, t) should
form an interference pattern around the 2π circle. As the
state is not the Hamiltonian’s eigenstate, the probability
distribution will change with time. So the interference
fringe will evolve with time, too. But to deal with this
expression, we need to truncate the summation of m at
some finite value. This can be determined from Equa-
tion (B5) (or (B6)). Each term in the summation has a

Gaussian part, e
− m2

2Iω′
θ . As a property of Gaussian distri-

bution, if m is larger than 3 ×
√

2Iω′
θ, the contribution

of e
− m2

2Iω′
θ will be only around 10−4. So this can be a

criterium to truncate the summation.
Now we can discuss an example and show the fringe

numerically (Fig. 4 in the main text). Consider a nano-
diamond with long semi-axis a = 40 nm and short semi-
axis b = 20 nm. If the external magnetic field is taken as

B = 0.05 T, the maximum coupling strength will be gB =
2π × 3.31 × 105 Hz, and the corresponding equilibrium
angle is θ0 = π/4. We relax the angular frequency of the
trap to ω′

θ = 2π × 50000 Hz.
When the angular separation of the two Gaussian

states is the largest, we remove the trap, and take this
time as t = 0. At this time, the center orientations of the
two peak are 45◦ − 1.01◦, 45◦ + 1.01◦. The width of the
distribution is very small (as can be seen from Fig. 5(a)).
So our approximation above is valid. The maximum of
m should be larger than 2000, we take the limit as 3000
here.
The whole evolution process of the interference fringe

is shown in Fig 5.
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FIG. 5. Time evolution of interference fringe for a nano-diamond with long semi-axis 40 nm and short semi-axis 20 nm. The
external magnetic field is 0.05 T. The coupling strength is gN = 2π × 331 kHz with the equilibrium orientation θ0 = π/4. The
trapping frequency is ω′

θ = 2π × 50 kHz. When t = 0, two original peaks are there, but no interference. At time t = 0.0005
s, two peak start to interference, but the distribution of fringes is still limited. At time t = 0.001 s, wavefunction continues
to expand, but they still do not occupy the whole circle. At time t = 0.0025 s, the wavefunction starts to occupy the whole
circle. At around 225◦, the “unwanted” meeting happens. The fringes become unclear around that region. But other regions
are not affected yet. When t = 0.003 s, wide regions are affected by the superposition effect on a circle. We can estimate that
the spacing between two fringes is around 30◦, which is large enough to be detected experimentally.
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