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Polarization quasiprobability distribution defined in the Stokes space shares many important prop-
erties with the Wigner function for position and momentum. Most notably, they both give correct
one-dimensional marginal probability distributions and therefore represent the natural choice for
the probability distributions in classical hidden-variable models. In this context, negativity of the
Wigner function is considered as a proof of non-classicality for a quantum state. On the contrary,
the polarization quasiprobability distribution demonstrates negativity for all quantum states. This
feature comes from the discrete nature of Stokes variables; however, it was not observed in previ-
ous experiments, because they were performed with photon-number averaging detectors. Here we
reconstruct the polarization quasiprobability distribution of a coherent state with photon-number
resolving detectors, which allows us to directly observe for the first time its negativity. Furthermore
we derive a theoretical polarization quasiprobability distribution for any linearly-polarized quantum

state.

PACS numbers: 03.65.Wj, 42.25.Ja, 42.50.Xa

I. INTRODUCTION

Non-commuting observables do not exist in classical
physics, but arise in quantum mechanics and optics.
They lead to difficulties in attempts to describe quan-
tum states in a semiclassical way, because it is impos-
sible to define a joint probability distribution for such
observables. As a remedy, quasiprobability distributions
have been proposed, which can take negative values and
therefore violate one of the main axioms of the probabil-
ity theory.

The most well-known example of non-commuting ob-
servables is the canonical pair of position and momentum,
and the most remarkable corresponding joint quasiprob-
ability distribution is the Wigner distribution [1]. Its
major distinctive feature is that, in contrast to e.g.
the Glauber-Sudarshan P-representation [2, B] or the
Husimi-Kano Q-representation [4, [5], it gives correct
marginal distributions for position and momentum [6].
Therefore, it represents the natural choice for the prob-
ability distributions in classical hidden variables mod-
els. Because of this property, it is widely accepted that
the negativity of a Wigner distribution means the non-
classicality of the quantum state [GHIT].

Mathematical objects with properties similar to that
of the Wigner function have been defined for many differ-
ent systems and observables due to its unique features.
In particular, it was done for discrete-valued position and
momentum [12]; for the Hermite-Gaussian and Laguerre-
Gaussian modes of an optical beam [13]; and for the
canonical pair of the angle and the angular momentum
of vortex states [14].

The analog of the Wigner distribution for the three
non-commuting Stokes observables [see Egs. (3)] — the
polarization quasiprobability distribution (PQPD) —

was developed in Refs. [I5] [16]. Although PQPD rep-
resents only part of the density matrix, so-called polar-
ization sector [I7H20], it remains a powerful tool. PQPD
fully describes the polarization properties of a quantum
state and gives correct one-dimensional marginal prob-
ability distributions for all Stokes observables and their
linear combinations.

Note also that the Wigner function quantum tomog-
raphy requires an additional beam phase-locked with the
light under study. It could be either the local oscillator
beam in the standard implementations, or an additional
coherent beam in the method which involves displace-
ment the state under investigation and then measure-
ment of the photon number parity [21] 22], or a coherent
beam in another polarisation, see [I1], section V. At the
same time, polarization tomography does not require it.
This is a great advantage in experiments, especially in
the experiments with broadband light [23].

Because Stokes observables commute with the photon-
number operator, PQPD for a quantum state can be de-
scribed as a sum of PQPDs for photon-number (Fock)
states with certain weights. Therefore, in principle, each
subspace with a fixed photon-number can be represented
separately. This property of PQPD was used to find ex-
tremal quantum states [19] or to investigate polarization
squeezing in each photon-number subspace [20].

An unusual feature of PQPD is that it takes nega-
tive values for all quantum states of light, even for the
“most classical” coherent ones. The physical origin of
this behavior was explored theoretically in Ref. [I1]. The
negativity appears because the Stokes observables are
discrete-valued, that is their single-dimensional marginal
disributions are defined only for the integer values of the
arguments. On the other hand, the full PQPD as well
as its two-dimensional marginal distributions could pos-



sess simmetry features impossible for the discrete argu-
ment functions. Their negativity resolves this contra-
diction. At the same time, this feature was never ob-
served in polarization tomography experiments [15] 23
20], because all these experiments were performed with
photon-number averaging detectors, which smoothed the
measured photon-number statistics and washed out the
non-classical features of PQPD.

Thus, photon-number resolving detection is crucial for
observing the intrinsic negativity of PQPD. This is a non-
Gaussian operation, and it can be used to prepare states
with a negative Wigner function [27, 28]. At the same
time, PQPD is defined in terms of Stokes observables
and therefore photon-number resolving detection is an
essential part of its measurement. In other words, nega-
tivity is not just an (inconvenient) mathematical feature
of PQPD but has a deep physical meaning.

In this work, we have performed, for the first time,
the polarization tomography for a coherent state of light
using single-photon detectors. To this end, we have
developed a procedure for the high-quality reconstruc-
tion of the PQPD using a limited data set. The re-
constructed distribution demonstrates well-pronounced
negative-valued areas.

Moreover, we have derived the PQPD for any linearly-
polarized quantum state. Being in general quite compli-
cated, the PQPD expression can be drastically simplified
for many important quantum states.

II. STOKES OBSERVABLES AND PQPD

A quantum state of light can be fully described by
its density operator p. For states with two polariza-
tion modes the PQPD W (S, Ss,S3) is defined as the
Fourier transform of the polarization characteristic func-
tion x (a1, uz, 43),

oo

X(Ul, U2, U3)

W (Sh, Sa, Ss) :/

3
. duldUQd’U,3
X exp —zZuij B (1)
j=1
where
3 A
X(ur, ug,usz) = Tr {pexp [ i) u;S; ||, (2)
j=1

uj € R. The Stokes operators S; are defined as

S'1 = ﬁH - TALVa

Sy =i(al,am — al,av),
where ay and ay are the photon annihilation opera-
tors for the horizontal (H) and vertical (V) polarization

modes, Mgy = dL yvan,v are photon-number operators
in these modes. All Stokes operators can be represented
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FIG. 1. Left: the experimental setup. A weak coherent state
is prepared by attenuating the second harmonic of a Nd:YAG
laser (Nd:YAG 2w) with neutral density filters (NDF). A stan-
dard setup for polarization tomography consists of a quarter-
and a half-wave plates (A\/4 and \/2), a polarizing beam split-
ter, and two detectors (D1 and D2). We use a Glan-Taylor
prism (GP) as a polarizing beam splitter and two avalanche
photodiodes as detectors. Right: the points at which to-
mographic measurements are performed are shown on the
Poincaré sphere.

as the differences of photon-number operators in cer-
tain modes, therefore the corresponding Stokes observ-
ables,e.g. S1, can only take integer values n € Z.

III. PQPD RECONSTRUCTION

A standard setup for polarization tomography (see
Fig.|1)) consists of a quarter- and a half-wave plates (\/4
and A/2), a polarizing beam splitter and two detectors
(D; and Ds). For each pair of settings of the quarter-
wave () and half-wave (@) plates, such a setup measures
a different arbitrary Stokes operator S’ag =71 —ng. The
operators 7 o correspond to the photon numbers in the
mode transmitted or reflected by the polarizing beam
splitter and are measured by D; or Do, respectively.

The angles a € [0, 27] and 8 € [—7/2,7/2] that define
a point on the Poincaré sphere (see Fig.[l) are determined
by the settings of the wave plates,

a=4a—28, B=28. (4)

An arbitrary Stokes operator Sag can be represented
in Cartesian coordinates (S, Se,S53) as

Ses = (S1cosa+ Sysina)cos B+ SzsinB.  (5)

It is clear that this operator possesses inversion symmetry
S(a+tm)(—p) = —Sap, thus measurements only on the half
of the Poincaré sphere suffice for the full reconstruction
of any state.

In the experiment, for each point on the Poincaré
sphere (for each o and f3), acquisition of many S, 3 values
is needed. From these values we calculate the probabili-
ties Wy (n) that S,p are equal to n.

From these probabilities we restore the polarization
characteristic function ys(A) in spherical coordinates
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Xap(\) = Y Was(n)e™, Xe0,00).  (6)

n—=—oo

These spherical coordinates (A, a, 3) are related to the
Cartesian ones (u1,u2,us) by the following transforma-
tions:

U1 = A\ cos a cos f3, ug = Asin a cos 3, (7)
uz = Asin .

Thus, using these transformations, Eq. can be
rewritten as

1 27 /2
W(S1, S2,S3) :fw/o da/o dB cos 3

X Y Wap(n)d®(Sag —n),  (8)

n=—oo

where §(2) () is the second derivative of the Dirac delta
function. Here we exploit the symmetry of 5'0,5 and per-
form integration over the radial coordinate A. As a re-
sult, we obtain the equation for reconstructing the PQPD
W (S, S2,S3) from the experimentally measured proba-
bilities Wo(n).

The reconstruction of PQPD W(S1, Se,S3) from the
experimentally acquired data set [Eq. } requires some
approximation d.(z) for the Dirac delta function §(z).
Here € is the smoothing parameter. We choose the Gaus-
sian approximation,

1 24,2
—x*/4e 9
e, (9)

and similarly for the derivatives of §(z). The value of
the smoothing parameter € should be chosen properly
depending on the reconstructed state, the acquired data
set and the interpolation method (see below). On the one
hand, it has to be small enough to represent all features
of the PQPD (a large € masks them), but on the other
hand, small values of € lead to a lot of artifacts in the
reconstructed distribution (the so-called reconstruction
noise).

0 ()

IV. EXPERIMENT AND DATA PROCESSING

We have performed the polarization tomography of
a horizontally polarized weak coherent state |y). This
state was produced by strongly attenuating a coherent
beam at the wavelength 532 nm generated by a pulsed
Nd:YAG laser (Nd:YAG 2w) with 10 ns pulse duration
and 10 kHz repetition rate (see Fig. . The laser power
stability was about 2%.

Attenuation (or any other linear losses) does not
change the statistical properties of a coherent state: the
state remains coherent, but the mean number of photons
|v|? is reduced.

The attenuation to a single-photon level was performed
by a neutral density filter (NDF). The resulting proba-
bility of a single-photon detection event p; ~ |y|? was
equal to 0.189. In this case, p; was at least one order of
magnitude higher than the probabilities of two-photon
and higher-order detection events. Therefore we ignored
such events and considered only single-photon and no-
photon detection events (with the probability pg).

We used avalanche photodiodes as single-photon de-
tectors (D; and Dj). The photodiodes were gated elec-
tronically synchronously with the laser pulses. The gat-
ing led to considerable reduction of dark count rate of
the detectors, so the latter was only 0.1% from the total
mean count rate. Nevertheless it was subtracted from
the measured count rate. The data for each tomographic
measurement were acquired for 120 s.

The points (ag, ;) on the Poincaré sphere where to-
mographic measurements were performed cover the up-
per hemisphere (8 > 0) with a step of 8° (see Fig. .
These points have been accessed by different combina-
tions of the settings for the quarter- and half-wave plates
with the steps equal to 4° and 2°, respectively (and for
B = 45°, the ‘north’ pole of the Poincaré sphere was ac-
cessed). For each point from this discrete set we have cal-
culated the experimental probabilities W,, 5,(n), where
n={-1,0,1}.

The full experimental dataset W, s, (n) is not suitable
for the final integration over o and (3 in Eq. , because
it is defined on a discrete set {ay,8;}. Thus it should
be interpolated by a continuous function. The interpo-
lated function W,g(n) is given by the convolution sum

of the data points Wi, 5, (n) with the interpolation kernel
u(a, B),

W(xﬁ(n) = Z Wakﬂl (n)u(a — Qk, B - 51) (10)

g, B

Various interpolation kernels can be used. The sim-
plest one is a rectangular function u(«, 5) = H(a)II(B),
where

e ={ g (11 a

The integration of such an interpolated function (e.g.,
as part of the Fourier or Radon transform) gives exactly
the same result as when the integration is replaced by
the summation. Such a replacement was always used for
reconstruction in the polarization tomography [2326].
Unfortunately, with this interpolation, the transforma-
tions are accompanied by rather high noise. One can
overcome this problem by collecting more experimental
points (ay, 8;) or by using different interpolation kernels.

Interpolation methods are well-developed for image re-
sampling [29] B0]. It has been shown that several inter-
polation kernels could suppress the reconstruction noise
by more than 30 dB better than the rectangular-function
kernel.



In our case, the probabilities W,z(n) could not be neg-
ative; hence we needed a strictly positive kernel. We
chose a positive cubic spline kernel u(c, 8) = u(a)u(f)

[29], where

[ 2z =3lzP+ 1, |z| <1,
u(z) = { 0, ol>1 (12
This kernel suppresses the noise very well and is at the
same time quite simple. For each interval between the
data points, e.g. [vk,Tk+1], the interpolation requires
only the experimental data from the endpoints of the
interval (23 and xj11). Hence this kernel has the same
simplicity as the linear interpolation kernel, but a better
performance.

V. RESULTS

Using this interpolation and the approximation @D
with € = 0.02, we have reconstructed the PQPD
We(S1, 52, S3). Its cross-sections along the (Ss, S3) plane
at different values of S; and 1D-cut along Ss (S = 0 and
S3 = 0) are shown in Fig.

In general, each distribution contains a central
peak at the origin of the Stokes space (S =
V/(51)%2 + (52)% + (S3)2 = 0) and a jump from negative
values to positive ones at S = 1. The central peak, which
appears because of the no-photon detection events, is
more than two orders of magnitude higher than the jump,
which happens because of the single-photon ones. At val-
ues S > 1 there is only the reconstruction noise (Fig. [2g).

The reconstructed distribution W¢(S, S2,S3) is in
agreement with the theoretical one for our case (see Ap-
pendix for derivation of the full theoretical distribution):

_ p1cosf
W(S’0a¢) _p063(5) + 471_32

p1(1 4 cosb) ,

-5 (5-1 1
where 03(S) = §(51)5(S2)d(S3), ¢'(x) is the first deriva-
tive of the Dirac delta function. Here we use spherical
coordinates (5,0, ¢):

5(S—1)

S1 = Scosd, So = S'sin 6 cos ¢, (14)
S5 = S'sin fsin ¢.

From these formulas we have calculated the theoretical
PQPD W, (51, S2,53) for the same probabilities of single-
photon (p; = 0.189) and no-photon detection events
(po = 0.811) as in the experimental case. We used
the same approximation @ and the same value of the
smoothing parameter e = 0.02. The same cross-sections
are shown for both distributions (Fig. [3). The experi-
mental and theoretical distributions are almost indistin-
guishable. The only differences are caused by the recon-
struction noise (Fig. k) and imperfections of the half-
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FIG. 2. Cross-sections of the reconstructed PQPD
We(S1,S2,S3) (with e = 0.02) along the (S2,S3) plane at
Sl =1 (a), S1 = 0.5 (b), Sl =0 (C,d), Sl = —0.5 (e),
S1 = -1 (f) and S1 = —1.5 (g). In panel (d), color code is
changed to highlight the jump at S = 1. In panel (h) 1D-cut
of the reconstructed PQPD along Sz (S1 = 0 and S3 = 0) is
presented.

and quarter-wave plates (Fig. [2f). We want to stress
here that the plotted theoretical PQPD is not a simula-
tion of any kind, it is just smoothed exact distribution
[Eq. (13)]-

It is clear that the distribution W,(S1, S2, S3) possesses
a rotation symmetry in the plane (S, .S3). Thus it is con-
venient to use cylindrical coordinates (S7, Sas, ¢), with
the radial coordinate So3 = 1/(52)2 + (53)2 = Ssin 4, in-
stead of the Cartesian ones (57, S, S3). Due to this sym-
metry, up to experimental imperfections a cross-section
at some angle ¢ (e.g. ¢ = 0) demonstrates all features of
the PQPD (Fig. [4]).

Our experimental reconstruction shows that in realistic
cases we are interested only in the main ¢’-contributions
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FIG. 3. Cross-sections of the theoretical PQPD

We(Sh, S2,S3) smoothed by e = 0.02 along (S2,S3) plane
at Sl =1 (a), Sl = 0.5 (b), Sl =0 (C,d)7 Sl = —0.5 (e),
S1 = —1 (f) and S; = —1.5 (g). In panel (d), color code is
changed to highlight the jump at .S = 1. In panel (h) 1D-cut
of the reconstructed PQPD along Sy (S1 = 0 and S3 = 0) is
presented.

of Eq. (Al23)). Moreover in most cases py is much higher
than p,, for n > 2, therefore [see Egs. (Al9) and (AR5)]

W(Sa 05 ¢) ~ p053(5)

n—lJ

535 Z 12)—: Z <k> Z B 6 (S — n + 27) cos” 6,
n=1" k=0 =0
(15)

where B}; is a constant value defined in Eq. (A24).

From Eq. it is evident that a n-photon state gives
contribution not only around S & n, but also around
S~n-2n0<n < |(n—1)/2]. This has a simple
physical meaning: n photons split by a beam splitter
into (n —7) and 7 photons give Soz = n — 2.

This property provides a possibility to infer proba-
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FIG. 4. Cross-sections of the experimental (left) and theoret-
ical (right) PQPD W,(S1, S23, ) (with e = 0.02) at ¢ = 0.
In all figures, color code is changed to highlight the jump at
S=1.

bility p, by comparing the experimental and theoreti-
cal PQPD in an experimental setup that does not allow
measuring Sqog = n. In case of significant p,, the exper-
imental PQPD will have a contribution proportional to
a noticeable cos™ @ factor around S ~ n — 2n, Vn > 1,
that cannot be produced by contributions from the lower
photon-number probabilities p, 7.

Furthermore Eq. can be even more simplified
in case of strongly decaying photon-number distribution,
e.g. for coherent or thermal light with low mean number
of photons, p, > pn4j, {Vn > 0,5 > 2}:

W(5,60,0) = pods(S) — 5 D pad(5 — ) cos? (0/2)
n=1

(16)
In such form it looks simple and extremely convenient for
the comparison with experimental results.

VI. CONCLUSION

We have shown experimentally the full reconstruction
of the PQPD from measurements using photon-number
resolving detectors. As a result we observed the intrinsic
negativity of PQPD originating from the discrete nature
of the Stokes observables. This feature has been never
observed before because previous experiments were real-
ized with photon-number averaging detectors.

For our reconstruction we have elaborated a procedure
that leads to a high-quality PQPD from a relatively small
dataset.

Finally, we derive the theoretical PQPD distribution
that is valid for any linearly polarized state, which is
especially interesting for states with low photon numbers.

The PQPD reconstruction with photon-number resolv-
ing detectors is very promising because of novel detectors
of this kind that can resolve up to tens of photons with



more than 90% quantum efficiency [3IH35]. These detec-
tors can push forward this direction in the polarization
tomography and make it a useful tool for quantum state
characterization.
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VIII. APPENDIX: CALCULATION OF THE

THEORETICAL PQPD

To describe the reconstructed PQPD W (S, S, S3) we
calculate the theoretical distribution. In the general case
of linearly (horizontally) polarized state the density op-
erator is

[) = an |n> <n‘H & |O> <0‘V .

n=0

(A1)

Similarly to the case of the experimental data process-
ing, the starting point is the definition of the PQPD and
the polarization characteristic function [Egs. (1)) and (2)].

The derivation of the theoretical distribution requires
the use of spherical coordinates (A, &, p) that differ from
(A, o, B) used in the experimental data processing:

u1 = Acosé, ug = Asin € cos p,
ug = Asin ¢ sin p.

(A2)

The polarization characteristic function for the density
operator (A[l]) is equal to [11]

Xep(A) = an(cos)\ +isinAcos&)™.

n=0

(A3)

We expand the binomial and replace the sine and cosine
by exponentials:

SEr(MHES ()
X (=1)™(cos&)Fer,

X&p(/\) =

(A4)
where r =n — 2] — 2m and (Z) is a binomial coefficient.

In contrast to previous works, e.g. Ref. [I6], here we
use the characteristic function without an approximation
of large n. Therefore the obtained PQPD will be valid
for any n.

For the future integration of Eq. ( in Eq. we
specify three different groups of summation terms. In

the first one r = 0 and £ = 0, in the second one » = 0
and k£ > 0, and in the third one 7 # 0. We denote the
corresponding parts of PQPD as W, Wy and W. So

W (S, S9,S53) = Wo + Wo + W. (A5)
As numerical calculations show, Wy is a trivial J-
contribution around S = 0, Wy is non-tririal around
S =0, and W is the main (most interesting) contribution
for S > 0.

The first group can be directly integrated in Eq. :

2f

Wo(S1, Sa, S5) = WQ

92f )5(51)5(52)5(53). (A6)
=0

For the second contribution we obtain

Wo (S, S2,85) =

00 f min(2g, f)
S (30) 52 (420 () o,
f=0

—1\29/ =
=1 max(0,29—f) (A7)
AT
where
3
o0 , duydusd
If:/ (cos &)k exp fiZuij %
. 2 )
(A8)

Here we removed combinations that give zero contribu-
tion. Only terms with even n and k give non-zero con-
tribution around S = 0.

Unfortunately, the integral If:g 9 cannot be expressed
in any simple analytical form. However, in the cases rel-
evant for polarization tomography with photon-number
resolving detectors, this fact does not play a significant
role. Firstly, the most interesting is the behavior of
PQPD at S > 0. Secondly, in these cases quantum states
have large probability of no-photon detection events (pg)
that is much bigger than probabilities of two-photon and
higher order detection events (p,, for n > 2). Therefore,
the first group of summation terms [Eq. (A6)] can be sim-
plified and the second group does not play a significant
role. Thus we obtain for the contributions around S = 0

Wo (5,8, 6) + Wo(S,0,9) = pods(S5). (A9)

The other terms in Eq. ( form the main contribu-

tion

W&&@zi;i@b%7 (A10)
n=1" k=0
where

D = 5 Xk: (n ; k) <:1> (—1)™IF.,.  (Al1)



We can perform integration over A in Eq by re- where z = cos§ — ycosf/S, z =sinf/1 — (y/S)?, and
11]

combining the summation members in Eq. (Al11)) and us-
ing the Leibniz integral rule. So we obtain H(z) = 0, x <0, (A18)
11, >0
n—k k m+1 2
Z Z Z < k) (k> o 152 , is the Heaviside step function. We expand the binomial
Im == ! m) (9y) y=r#£0 and perform integration over z,
(A12)
where ot Lk/2] E\ (2t)!
) I = < Z <2t> e 5 (sin 6)% (cos )2 F(y),
i cos
I = d¢ ( _6) 15, (A13) (A18)
0 S'sin 6
where
y2\' y\ k2t
. F=as-1) (1-%) (3). a9
I; = / dpd(P — cos p), (A14)
0 Again from the summation we remove the terms that give
and zero contribution.
To take the second derivative in Eq. (Al12)) we open the
p_¥— S cos& cosb (A15) brackets in Eq. (All9)) and obtain
~ Ssinésinf PR
OPF(y) (sen(r Z Z < 2t>( >
At first we perform integration over p in Eq. (, (Oy)? 010090 U2 (A20)
72t v2 d2 Bt
I,= ———1 () . (A16) V" gowr (g (@™ HO)
V1— P2 2 where U = v1 + vg, sgn(x) is the sign function and § =
= lyl.
If S < |y| then P > 1 regardless of £ and 6, thus Iz =0 Therefore, using the fact that
and I = 0. If S > |y| then I; # 0 only if |P| < 1. The
last condition restricts the limits of integration in I¢. a2 ‘ & (z), j=0,
Using this result Eq. (A[L3) can be rewritten as (¢ H(z)] = (), J=1
(de)? JU = D 2 H @), =2,
z o\ * 9d (A21)
Ie =H(S—|y|) [2 <z + yc;s ) S\/Zzi—z?’ (A17)  we obtain an expression for ), -
Z ——Mnik i(—l)m n=kY (K 8 (g) — (2—(k—1)tan29)@ cos® @
Im 4rS — = l m 25
[k/2] k-2t ¢ _
2t\ (k=2 t\ (=17 2t k—2t g\"t'? H(y)
" Z Z Z (%) t)( vy )(vz) 2t+v2 (sin6)™ (cos ) (UH)(Htil)(s) sz || '
t=0 v1=0v2=0 g=S—|r|, r£0
(A22)

It is convenient to rewrite Eq. (A22]) using summation over 7 = [+m. In this case Eq. (A[10)) in spherical coordinates

(5,0, ¢) becomes
_ 1 = Pn o . , 5(Sx

W(S,0,¢) = %227 (Z) > By, <5(Sﬁ)k(2(k1)tan 0) (25>>(30s 0
k

(211) <2tt) (k; ;12t> (;) (2;12: (sin 0)2(cos )2 (5 4+ )(7 + £ — 1) (ng)v+t—2 %

(

where S; =5 — (n — 2n) and is a constant value that depends on n, k and 7.

P (oo (B e

m=
max(0,k+n—n)




_If we are interested only in the main ¢’-contributions,
W(S,0,¢) can be simplified

W(S,0,¢) ~
LS s ) (A25)
_%;p Z( ) Z BP.48'(S7) cos® 0.

tion pg > pn,n > 2, is obtained by combining Egs. (A@
and (A23) [or (ARE)) for ¢’-contributions only]. Note that
for our experimental case (single-photon and no-photon
detection events) the full PQPD is obtained rigorously
without any approximations.
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