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We model a sonic black hole analog in a quasi one-dimensional Bose-Einstein condensate, using a
Gross-Pitaevskii equation matching the configuration of a recent experiment by J. Steinhauer. The
model agrees well with important features of the experimental observations, demonstrating their
hydrodynamic nature. We find that a zero-frequency bow wave is generated at the inner (white
hole) horizon, which grows in proportion to the square of the background condensate density. The
relative motion of the black and white hole horizons produces a Doppler shift of the bow wave at the
black hole, where it stimulates the emission of monochromatic Hawking radiation. The mechanism
is confirmed using temporal and spatial windowed Fourier spectra of the condensate. Mean field
behavior similar to that in the experiment can thus be fully explained without the presence of
self-amplifying Hawking radiation.

I. INTRODUCTION AND SUMMARY

Hawking radiation [1, 2] is a pair creation process, re-
sulting from a vacuum instability of quantum fields at a
black hole horizon. The radiation is thermal, with tem-
perature, T = 62 nKM⊙/M , for a spherical black hole
of mass M , where M⊙ is the mass of the Sun. Such low
temperature Hawking radiation (HR) from solar mass or
larger black holes will likely never be observed. However,
sonic analogs of HR can exist in hydrodynamic systems
possessing a “sonic horizon,” where the flow transitions
from subsonic to supersonic [3]. In such systems, the
Hawking temperature is proportional to Planck’s con-
stant times the velocity gradient at the horizon. To pro-
duce observable quantum HR, the system must not be
much warmer than this temperature, and for this reason
Bose-Einstein condensates (BECs) are a natural candi-
date [4–9]. In a sonic analog, the experimenter has access
to the regions both inside and outside of the horizon, thus
enabling measurements of correlations that could exhibit
quantum entanglement of Hawking quanta and their in-
terior partners [10–15].

In 2014, Steinhauer [16] reported on a remarkable ex-
periment that implements a sonic analog black hole in
a needle–shaped BEC of 87Rb. The BEC is swept by
a negative step potential with the energy equivalent of
a few nK. The sweep generates a low-density “cavity”
of supersonic flow in the interior of the BEC, bounded
by BH and WH horizons (Fig. 1(a-c)). Steinhauer ob-
served exponential growth of a standing wave between
the horizons, and measured the density-density, two-
point, connected correlation function, which displayed
correlations between points within the cavity, as well as
between a point in the cavity and a point outside the
BH. He interpreted the latter as a signal of Hawking ra-
diation phonons correlated with their partners behind
the horizon, and he interpreted the growing standing
wave and internal correlation function as evidence for

self-amplifying Hawking radiation.

In a flow with a supersonic cavity bounded by BH and
WH horizons, Hawking radiation can be self-amplifying
if the phonon group velocity becomes supersonic at high
wavenumbers[17]. The negative energy partner of a
Hawking phonon is trapped in the cavity, so that the par-
ent state for subsequent Hawking radiation is no longer
the vacuum, but instead is an excited state. This pro-
duces stimulated emission of Hawking radiation, which
amplifies the trapped negative energy mode. The repe-
tition of this process leads to exponential growth of the
negative energy mode and the associated Hawking emis-
sion. This is called the “black hole laser” mechanism[17].
The behavior of this lasing mechanism, and its potential
role in laboratory realizations of Hawking radiation has
been extensively investigated[18, 19] It could enhance the
signal of Hawking radiation but, even if the initial trig-
ger for the lasing were spontaneous emission of Hawking
radiation, the amplified signal, once it had grown sig-
nificantly, would be a coherent state of phonons which
would be difficult to distinguish from a classical wave.
Moreover, a lasing mode could be excited by a classical
seed.

In the work reported here, we have investigated the dy-
namics of the condensate of the experiment of Ref. [16],
using primarily the one dimensional, time-dependent
Gross-Pitaevskii (GP) equation. (We used the three-
dimensional GP equation only to check that the quali-
tative features of the dynamics are the same as for the
one-dimensional case.) The GP equation is a nonlinear
Schrodinger equation, approximating the behavior of the
expectation value of the many body field operator, which
captures the classical, hydrodynamic aspects of the BEC,
as well as interference phenomena. Effects of quantum
fluctuations can be treated approximately by adding to
the GP wavefunction an initial distribution of random
fluctuations with the Gaussian statistics of the zero point
fluctuations, and averaging over an ensemble of realiza-
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FIG. 1. (a) potential-step structure at the start of its sweep through the BEC with number density n(x), chemical potential
µ and confining potential U(x); (b) windowed wavevector spectrum of a BEC during the sweep, showing an accelerated flow
generated by the moving step, edge at x = 0; the peak location is denoted by kbf(x); (c) flow speed in the step frame −v(x) and
speed of sound c(x), which (in a globally stationary flow) are equal at the horizons, WH and BH; (d) illustration of a standing
wave (BCR) against an obstacle (subsonic BEC) near the WH; (e) growth of the standing wave amplitude (nk) resulting from
the increase of background density (nbf) and obstacle strength (Vob).

tions. That is called the truncated Wigner approxima-
tion (TWA). In the present paper we do not include the
fluctuations, because our purpose here was to understand
first the mean field behavior entailed by the experimental
conditions.
Our study has revealed the importance, in configura-

tions similar to those in the experiment, of two features
that are not present in previous, idealized studies of sonic
analog black holes: (i) the condensate density increases
towards the center of the atom trap and, (ii) as a result of
this inhomogeneity, and the shape of the trap potential,
there is no single inertial frame in which the condensate
is stationary. A key consequence of the latter feature is
that the white hole horizon, defined in the locally rele-
vant sense explained below, is not at rest with respect to
the black hole horizon.
As a result of these features, growth of a standing wave

and emission of Hawking radiation both occur purely hy-
drodynamically, in a way that appears to be similar to
what was observed in the experiment. As described be-
low, we have identified the mechanisms producing these
simulated phenomena, and we find that the black hole
laser mechanism plays no role. This raises doubts con-
cerning whether lasing actually plays any role in the
experiment. Even though our simulations do not take
quantum fluctuations into account, the mean field behav-
ior they reveal would persist in the presence of quantum
fluctuations, and it already seems to account for the ob-
served mean field behavior. On the other hand, even if
the conditions for lasing existed in the system, we may
not have seen that instability because of the absence of
the necessary seed fluctuations.
There is an important feature of the experimental mea-

surements that our simulations in this paper do not ad-
dress, and that is the connected density-density correla-
tion function. This is because our simulations are deter-
ministic. In order to understand the relation between this
correlation function and the mean field behavior, as well

as to check for lasing instability in the presence of quan-
tum fluctuations, in another paper [20] we have studied
the system in the presence of both quantum fluctuations,
and fluctuations in atom number from one run to the
next. We find there that the correlation function is en-
gendered by fluctuation-induced modulation of the deter-
ministic standing wave. In fact, it results primarily from
the varying number of atoms in the condensate. When
averaging over GP simulations with a 10-20% variation
in the number of atoms, and no quantum fluctuations, a
correlation function similar to the measured one is pro-
duced. The addition of quantum fluctuations improves
the agreement, but their effect is sub-dominant. That is,
we find that the observed correlation arises by modula-
tion of the standing wave, and is unrelated to the intrinsic
quantum correlations that would be present without the
standing wave. In particular, we find that the quantum
fluctuations do not trigger any instability.
Returning now to the results of the simulations re-

ported here, let us summarize our findings. As the po-
tential step is swept through the condensate, a growing
hydrodynamic standing wave (Fig. 2) arises between the
horizons, which appears similar to the one observed in the
experiment. This wave is Bogoliubov-Čerenkov radiation
(BCR) [21], generated at the WH [22–24] (see Fig. 1(d-
e)). It is also known as a zero-frequency undulation, and
is reminiscent of a ship’s bow wave.
Three independent lines of evidence all indicate the

BCR nature of this standing wave. First, the growth
rate of the standing wave (Fig. 3) matches very closely
the square of the background density, which changes as
the step sweeps into denser parts of the BEC, as would
be expected from the BCR mechanism. (The time de-
pendence of this growth also appears roughly compat-
ible with that observed in the experiment.) Second, a
spacetime plot of the magnitude of the deviation of the
GP wave function from the background flow (Fig. 4(b))
shows that the standing wave first arises at the WH, and
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then propagates to the BH (as illustrated in Fig. 4(a)).
And third, the standing wave has zero frequency in the
WH frame. This is evident by inspection of Fig. 4(b),
which shows that the lines of constant phase are parallel
to the WH horizon worldline.

Figure 4(a-b) also reveals that the WH horizon has a
smaller velocity than the BH horizon. The BCR is there-
fore Doppler shifted to a nonzero frequency in the BH
frame (which is the rest frame of the potential step), as
can also be seen in the figure. Although the relative ve-
locity of the horizons is small, this Doppler shift is larger
than might be expected, because the BCR has a very
large wave vector. With its nonzero frequency in the BH
frame, the BCR classically stimulates emission of Hawk-
ing radiation at the BH horizon, i.e. “pair production” of
an outgoing wave and partner radiation inside the hori-
zon, as seen in Fig. 4(b). We verified that the partner has
the same frequency as the Doppler shifted BCR, using a
temporal windowed Fourier transform, Fig. 4(c,d). This
shows that only two frequencies are present: that of the
background flow, and that of the BCR. It may be pos-
sible to perform a similar analysis on the experimental
data.

We also explored trap parameters near those that
roughly matched the experiment, seeking a regime that
could yield a more distinct signal both for our analy-
sis and in future experiments, We identified a slightly
modified regime, in which all features are qualitatively
the same as those in the experimental regime, only much
sharper (see Fig. 5(b)). In the modified regime we made
a thorough spectral analysis of the condensate, using
both temporal and spatial windowed Fourier transforms
(Fig. 6(b-c)). This enabled us to establish that, de-
spite the significant inhomogeneity in the system, the
Bogoliubov-de Gennes dispersion relation gives a remark-
ably accurate prediction for the temporal and spatial
spectral content of the BEC, with the only inputs be-
ing (1) the assumption that the BCR has zero frequency
in the WH frame, and (2) the local sound speed and flow
velocity. [We used spatial windowed Fourier transform of
the density and of the GP wave function to identify the
background flow and determine its density (for the sound
speed) and wavevector (for the velocity).] This detailed
spectral analysis gives us confidence that there is noth-
ing going on beyond the mechanisms we have identified.
It also allows us to establish that the Hawking tempera-
ture prediction is consistent with the relative amplitude
of the Hawking radiation and partner waves, insofar as
would be expected. More generally, it reveals the utility
of windowed Fourier transform in characterizing the local
structure of an inhomogeneous BEC flow.

Finally, we conclude this introduction by mentioning
that related studies having some overlap with ours have
been reported in Refs. [25, 26]. We comment on the rela-
tion between that work and our conclusions in Sec. VB.

II. METHODS

Reference [16] reported a step-sweeping experiment on
a quasi-1D condensate. A detailed discussion of our ap-
proach to simulating this experiment is given in Ap-
pendixA. We describe a 3D model of the experimental
potential and condensate in A1, while in A 3 we discuss
and evaluate the criteria for applicability of the reduction
to a 1D model, and compare with a simulation using the
3D GPE. We find that the qualitative features in the
1D simulation are consistent with the results of 3D sim-
ulation. This indicates that the results of our detailed
analysis of the 1D simulation should apply as well to the
3D system.
The GP wavefunction, Ψ(x, t), in our simulation in-

volves a condensate component and the excitation modes
generated during the sweep:

Ψ(x, t) = Ψbf(x, t) +
∑

j

ψj(x, t), (1)

where Ψbf indicates the background condensate flow, and
ψj denotes its excitation mode satisfying the Bogoliubov-
de Gennes (BdG) equation [27]. In our simulation, there
are three modes that we observed: the BCR mode, the
HR mode, and the HR partner (labeled by j = BCR, HR,
and p, respectively). The role of each mode will be ex-
plained in the later sections. In regions where the flow is
slowly varying, each component in Eq. 1 behaves locally
as a WKB plane wave with a characteristic frequency ω
and wavevector k. Here we introduce two techniques to
resolve individual components and their spectral proper-
ties.

A. Windowed Fourier transform

A windowed Fourier transform (WFT) [28] is a method
that brings out the “local” spectral elements of a func-
tion in the neighborhood of a given position or time. It
differs from the normal Fourier transform by including a
Gaussian function certered at the position (x) or time (t)
of interest. The spatial WFT F (k, x) of a function f(x)
is defined as:

F (k, x) =

∫ ∞

−∞

dy f(y)w(y − x;D)e−iky , (2)

where w(y − x;D) = exp(−(y − x)2/D2)/ (
√
πD) is a

Gaussian window function of width D. With the fil-
tering of the window, the transformed function F (k, x)
constitutes a local Fourier transform of f(x), capturing
features that vary on length scales much smaller than D.
For instance, given a function, f(x) = fq(x) exp(iqx),
with wavevector q and slowly varying amplitude fq(x),
the transformed function is F (k, x) ≈ fq(x) exp(−(k −
q)2(D/2)2) : a Gaussian in k-space, centered at k = q
with width 2/D, and the peak height is the local ampli-
tude, fq(x).
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The WFT is able to resolve locally (at a given x or t)
the Fourier components in Eq. 1 as peaks in the resulting
wavevector (or frquency) spectrum, in which peak posi-
tion and height indicate the wavevector and amplitude of
each component. Specifically, for a backgound conden-
sate flow, Ψbf ∼ |Ψbf(x)|eikbf (x)x, its spatial WFT ex-
hibits the local wavevector kbf(x) for each x, which deter-
mines the local flow velocity in the lab frame, ~kbf(x)/m.
This is shown as the main streak in Fig. 1(b). Similarly,
the spatial WFT of the density, n(x) = |Ψ(x)|2, sepa-
rates the background condensate density nbf(x) (k = 0)
from the superimposed spatial oscillations (with nonzero
k). An example is shown in Fig. 3(b), which is the spatial
WFT of density profile in Fig. 2(g), evaluated at the cen-
ter of the oscillatory region. The spectrum has a central
peak nbf as the background density, and two side peaks
nk, indicating the oscillatory component.

B. Moving average of the GP wavefunction

To separate fast-oscillating components in Eq. 1 from
the slowly-varying parts, we implement a smoothing pro-
cedure on the GP wavefunction. The procedure is equiva-
lent to calculating the moving average of a discrete data
set, which smooths out short-range fluctuations. Here
the moving average of wavefunction Ψ(x) is defined as

Ψ̄(x) =
1

2Ds

∫ x+Ds

x−Ds

dyΨ(y), (3)

where the integral serves as a square window of width
2Ds centered at x, over which Ψ(x) is being averaged.
For components in Ψ(x) with wavelength shorter than
Ds (i.e. Ds > π/k), the integral would give rise to an
average of zero, leaving those that are slowly varying in
space (i.e. π/k > Ds) in Ψ̄(x), and the difference δΨ ≡
Ψ − Ψ̄ characterizes the part of Ψ composed roughly of
wavevectors k & π/Ds. Later in Sec. III C 3, we use the
above procedure at each time and exhibit a spacetime
diagram of |δΨ(x, t)|, in which the slowly-varying part
of the background flow (Ψbf with k ∼ 0) is removed to
bring out ψHR.

III. ANALYSIS OF THE SIMULATED

EXPERIMENT

A. Formation of the BH-WH cavity

In the experiment of [16] a BH-WH cavity is estab-
lished in a quasi-one-dimensional, laboratory BEC held
by a confining potential, U(x), as shown in Fig. 1(a). By
sweeping a potential step of depth Us at uniform speed
vs across the BEC, BH and WH are established (Us is on
the order of 10−9 K, and vs is 0.21 mm/s). Atoms are
accelerated in the direction opposite to the step motion
due to the precipitous drop in the potential. This creates

a supersonic flow behind the step and forms a BH at the
step edge, xBH. The accelerated atoms gradually slow
as they recede from the step, due to the rising potential.
This causes the flow to become subsonic at a critical dis-
tance L behind the step, forming a WH, xWH. Not far
beyond xWH the flow velocity in the lab frame drops to
zero, roughly where U(x) − Us = U(xBH) (this implies
that L increases slightly as xBH moves toward the center
of the trap). This procedure produces the flow structure
shown in Fig. 1(c).
To determine the flow structure, we implement the

spatial WFT described in Sec. II A. Figure 1(b) is a lo-
cal wavevector spectrum |Ψ(k, x)|2 with D = 5 µm, de-
fined in the lab frame at a moment during the sweep
(Fig. 2(e)). There is a dominant streak, indicating the
background condensate flow, Ψbf , for which the peak
position at each x defines the background wavevector,
kbf(x). The regions with zero wavevector, kbf ∼ 0,
correspond to the non-accelerated, subsonic BEC; the
region behind the step with kbf ∼ −1.4 µm−1 corre-
sponds to the accelerated, supersonic flow. The blue
(dark gray) curve in Fig. 1(c) is minus the flow velocity
in the rest frame of the step, v(x) = vbf(x) − vs, where
vbf(x) = ~kbf(x)/m is the background flow velocity in
the lab frame. The green (light gray) curve is the local

speed of sound c(x) =
√

gnbf(x)/m, where g is a coupling
constant defined in Appendix A1, and nbf(x) is the local
density of the background flow, which we identify here
using a WFT of the density n(x) (see Appendix B 2 for
details).

1. Locating the black and white hole horizons

The black hole horizon is defined as the location where
a right moving phonon is at rest in the step frame. This
corresponds to the right intersection of c(x) and −v(x)
in Fig. 1(c). The step frame is distinguished as the one
in which the system is closest to being stationary near
the step. In particular, c(x) and v(x) are nearly steady
where the trapped BEC spills over the moving step.
The definition of the WH horizon is not as simple, be-

cause the step frame is not a global stationary frame of
the system, due to the spatial variation in the trap poten-
tial and background condensate density. Instead, what
is dynamically important is the location of the transition
from super- to subsonic in the frame in which conditions
are locally stationary. In particular, this is the locus of
Čerenkov radiation, which arises from the accessibility
of negative energy modes in a frame in which energy is
conserved, i.e. in which conditions are stationary.
At early times in the sweep of the step, the WH hori-

zon so defined is located where the BEC density, and
therefore the sound speed, is significantly smaller. It
therefore starts out moving much more slowly than the
step. As the sweep progresses it accelerates smoothly,
until it reaches a uniform velocity slightly less than that
of the step. It is then approximately located at the left
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intersection of c(x, t) and −v(x, t), and the distance L
between the two horizons grows slowly and uniformly in
time. This behavior can be seen in Figs. 4(b) and 5(b).

B. Cavity standing wave

Figure 2 shows comparisons of the simulated density
profile with experiment. Panels (a-g) show the BEC den-
sity for Us = k × 6 nK after the launch of a sweep at 20
ms intervals, where k is the Boltzmann constant. Panel
(h) corresponds to the density profile at t = 120 ms for
Us = k × 3 nK. The coordinate origin in each panel has
been displaced to coincide with xBH.
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FIG. 2. (a-g) Density vs. time of a swept BEC at 20 ms
intervals with step Us/k = 6 nK, scaled by a common factor
to match experiment, and viewed in the moving frame where
x = 0 defines the step edge; panel (h): Us/k = 3 nK at 120
ms. Blue (dark gray): experiment [16]; Red (gray): present
simulation.

The density exhibits a standing-wave pattern behind
the step, with amplitude growing in time. Considering
that the experimental observations involve an average
over any quantities that fluctuate from one run to an-
other, the GP simulation qualitatively matches the over-
all evolution seen in the experiment. In particular, the

growth, wavelength, and phase of the wave pattern are
similar to each other.

C. Čerenkov mechanism

In the following, we present multiple lines of evi-
dence showing that the standing wave results from the
Bogoliubov-Čerenkov radiation (BCR) effect, in a pro-
cess closely analogous to the flow past an obstacle stud-
ied in [21]. This evidence is based on the wavevector and
frequency spectra of the standing wave, and the growth
rate of the standing wave, which we will show is due to
the increasing BEC density. We also establish that the
Hawking radiation emitted by this system and that the
partner mode slightly modulates the standing wave.

As illustrated in Fig.1(d), an obstacle in a station-
ary supersonic flow produces an upstream, Bogoliubov-
Čerenkov standing wave [21, 29], analogous to a bow wave
on water [30]. It was observed in Ref. [24] that such a
standing wave is generated at a WH, triggered by an in-
cident wavepacket on the stationary flow, and saturating
at an amplitude determined by nonlinear effects. A simi-
lar standing wave, generated by inhomogeneity at a WH
horizon, can be seen in Fig. 4 of Ref. [31]. In our case, the
subsonic component to the left of the WH serves as an
obstacle in the supersonic flow, generating a Bogoliubov-
Čerenkov wave.

1. Wavevector spectrum

In the WFT spectrum in Fig. 1(b), we observe in the
cavity region an excitation mode at k ∼ 1.4 µm−1 com-
ing from the WH, which is roughly the reflection of the
supersonic flow Ψbf with k ∼ −1.4 µm−1. The interfer-
ence of the two results in the standing wave in the density
profile shown in Fig. 2(e), which has a wavevector with
twice the above value, k ∼ 3 µm−1.

The relation kBCR ∼ −kbf is expected from energy
conservation: the flow structure is approximately time-
independent in the rest frame of the WH horizon, so we
expect that the BCR production process should conserve
energy. One way to view it is that incoming atoms reflect
from the flow transition at the horizon. The velocity
of the WH horizon is quite low compared to the flow
velocity upstream, so to a good approximation energy
conservation in the WH frame implies that the lab frame
wavevector should simply reverse sign. A more precise
account of this given in Sec. IV below, using a linearized
mode analysis.

Another consequence of the approximate local time in-
dependence in the WH frame is that the frequency of
the standing wave generated there should have zero fre-
quency in that frame. Indeed it does, but we postpone
the demonstration of that to later in this section.
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FIG. 3. (a) Simulated growth of the standing-wave pattern in
the supersonic region for Us/k = 6 nK. Solid green: normal-
ized standing-wave amplitude n̄k(t), n̄k(t) = nk(t)/nk(0), for
which ln[n̄k(120)] ∼ 4.4. Dashed black: the square of back-
ground density, n̄bf(t), scaled to match the final standing-
wave amplitude, n̄2

bf(t) = n2
bf(t)[n̄k(120)/n

2
bf (120)]. The

growth of nbf and nk is determined from a spatial WFT of
n(x) at x = −12 µm with window width D = 6.5 µm. Inset
(b) shows the windowed wavevector spectrum at t=120 ms.

2. Growth of the standing wave

Reference [16] reported exponential growth of the os-
cillatory density pattern in the BH-WH cavity, and sug-
gested that it results from the black hole laser effect.
Our simulations exhibit similar growth, but lead us to
attribute it to a different mechanism. Figure 3 displays
the growth of the background flow density nbf and of a
standing wave, nk, defined by the peaks of the WFT of
the density at xBH − 12µm, as shown in the inset. Note
that this spectrum is different from the one in Fig. 1(b),
which is the squared modulus of the spatial WFT of the
wavefunction. Over 120 ms the standing wave density
grows by ∼ exp(4.4). Figure 3 shows that nk grows in
proportion to n2

bf . The two oscillation features superim-
posed on the growth curve coincide with the variations
seen in Fig. 4(b), and will be discussed in Sec. VB.
To understand this quadratic relationship between the

standing wave amplitude and the background flow den-
sity, we begin by noting that the step moves toward the
region of higher BEC density [see Fig. 1(a)], so the back-
ground density nbf also grows in the cavity. Now the sat-
urated amplitude (nk) of a BCR standing wave should be
proportional to both the strength of the obstacle (Vob),
and the density of the background flow (nbf) [21, 27]
(see Fig.1(e)). The “obstacle” in the present case has a
strength proportional to the BEC density to the left of
the WH, which grows similarly to that on the right, so
it follows that the saturated wave amplitude nk should
grow as n2

bf .

The very close agreement with this scaling relation dis-
played in Fig.3(a), gives further compelling evidence that
the standing wave observed inside the supersonic cavity is
in fact BCR, and indicates that its growth results from
the increase of background density, rather than from a
black hole laser instability. Moreover, effects due to clas-
sical or quantum fluctuations, not included in our sim-
ulation, could not remove this robust, large BCR wave,
but rather would have to appear in addition to it.
The absence of fluctuations in our simulation here im-

plies that we are unable to capture the behavior of the
density-density correlation function. That correlation
function was measured in the experiment [16], and dis-
plays a checkerboard pattern with periodicity very close
to that of the standing wave. The growth of the checker-
board pattern was quantified in [16] via the Fourier power
spectrum of the correlation, and found to grow by a fac-
tor ∼ exp(3.3). In [20] we have shown, by introducing
quantum and atom-number fluctuations into our simu-
lations, that this checkerboard pattern results directly
from the presence of the underlying BCR standing wave,
modulated by the fluctuations.

3. Spacetime portrait

In this subsection we present a spacetime portrait for
the evolving BEC. This portrait illustrates by visual in-
spection that the standing wave is generated from the
WH, and has zero frequency in the WH reference frame.
Its frequency in the step frame is nonzero, due to a
Doppler shift arising because the WH recedes from the
BH as the system evolves. The spacetime portrait also
reveals a signal of Hawking radiation, which is stimulated
by the BCR at the BH. We further verify this mechanism
quantitatively through a windowed frequency spectrum
evaluated inside the cavity, which reveals that the only
frequencies present are those of the background conden-
sate and the BCR.
The spacetime portrait for the simulated experiment,

Fig. 4(b), displays |δΨ| = |Ψ − Ψ̄|. To resolve the HR
outside the cavity, we subtract the moving average Ψ̄.
using the procedure described in Sec. II B. Ψ̄ approx-
imates the dominant, slowly-varying background (with
k ∼ 0 as in Fig. 1(b)). We choose the smoothing window
Ds = 5.4 µm, such that it is large enough so that Ψ̄ ≈ 0
between the horizons, yet small enough to capture the
slow variations of the background outside the horizon.
The portrait displays an interference pattern between

the background supersonic flow and excited modes of δΨ.
The evolution of the BH is indicated by the diagonal or-
ange (right) line. To clearly display HR upstream of the
horizon, we have multiplied |δΨ| there by a factor of ten.
At the beginning of the evolution, as the condensate spills
over the step, a left-moving flow develops, indicated by
the growing light gray area. When this flow reaches the
WH, at t ≈ 10 ms, a standing wave (BCR) is generated.
In Fig. 4(b), it is clear by inspection of the dashed red
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FIG. 4. Pair production, stimulated by a Doppler-shifted BCR mode. (a) Spacetime portrait (viewed in the lab frame) of HR
(ψHR) and its partner (ψp) created at the BH by right-propagating BCR (ψBCR) generated at the WH as a standing wave.
The BCR standing wave has zero frequency in the WH frame, but since the WH is receding from the BH by velocity difference
∆v, the BCR in the BH frame has a nonzero frequency, ∆ω = −∆kBCR∆v, as can be seen by the phase change of the standing
wave along the solid red (left) line. The Hawking pair is stimulated by the BCR at this nonzero frequency at the BH. Panel
(b): time evolution of |δΨ(x, t)| in the experimental regime [16], multiplied by 10 for x > xBH. As in panel (a), the dashed
red line is parallel to the WH worldline, and the solid red (left) line is parallel to the BH worldline, indicated by the diagonal
orange (right) line. Panel (c): windowed frequency spectrum evaluated along the solid red (left) line in (b); panel (d) is the
cut-through of the spectrum at t = 100 ms.

line and solid red (left) line (which is parallel to diagonal
orange (right) line) that the standing wave has zero fre-
quency in the WH rest frame, but nonzero frequency in
the BH rest frame. Since its frequency is nonzero in the
BH frame, the BCR can stimulate production of Hawk-
ing pairs at the BH horizon. (Zero frequency Hawking
pairs do not exist.)

The stimulated HR is seen in the spacetime portrait
Fig. 4(b). The BCR first reaches the BH at t ≈ 20 ms,
stimulating emission of HR. Hawking radiation first ap-
pears at around 25 ms, but is not visible on the greyscale
plot until around 40 ms. The left–moving partner radia-
tion (p-mode) resulting from the “pair creation” forms a
“V”-shape with the HR, and makes an interference pat-
tern with the BCR that can first be seen around t ≈ 40
ms. (Were there no mode present to stimulate the pair
creation, it would nevertheless occur spontaneously, as in
the Hawking effect for an astrophysical black hole.)

Figure 4(a) is a schematic illustration of the mecha-
nism just described. This is viewed in the lab frame,
where the BH moves at velocity vs and the WH with
a slightly smaller velocity, vs − ∆v, as indicated by the
dashed red line. As seen by inspection of Fig. 4(b), the
BCR (i.e. the standing wave) has zero phase velocity with
respect to the WH, corresponding to zero frequency in
the WH frame. Since the WH velocity is less than the
BH velocity (as shown in Fig.4(a-b)), this gives rise to
a nonzero frequency in the BH frame. Note that, al-
though the relative velocity of the BH and WH is rather
small, the BCR wavelength is rather short, so that the
BCR frequency in the BH frame is not small. As the
BCR mode (ψBCR) propagates to the BH, stimulates the
emission of HR (ψHR) and its partner (ψp) at the latter

frequency, with the associated wavevectors determined
by the Bogoliubov-de Gennes (BdG) spectrum.

4. Frequency spectrum

In Fig. 4(c-d), we show the windowed frequency spec-
trum in the experimental regime in the supersonic region.
The frequency is computed in the rest frame of the mov-
ing step, along the solid red (left) line in Fig. 4(b). The
long streak, which starts from the beginning of the evo-
lution, corresponds to the background flow, Ψbf . The
short streak, which is separated from the long streak by
∆ω ∼ 0.11(3) rad/ms, corresponds to the BCR and the
p-mode. ∆ω is nonzero because of the Doppler shift be-
tween the WH and BH frames.
The Doppler effect due to the recession of the WH can

be estimated using the velocity difference between the
two horizons, ∆v ∼ 0.03 mm/s. The shifted frequency is
the product of ∆v and the BCR wavevector, ∆kBCR,

∆ω = −∆kBCR∆v = −0.09 rad/ms. (4)

We find that the WFT frequency agrees with the predic-
tion in Eq. 4 to within the uncertainty.
The quantitative agreement with zero WH frequency

shifted to the BH frame establishes that the mechanism
illustrated in Fig. 4(a) is operative. In particular, the
Doppler shifting of frequency between the two horizons
plays an essential role in the process, and the partner
mode of the Hawking radiation has the same frequency
as that of the BCR. The fact that the partner waves
match this frequency shows that they are stimulated by
the BCR, rather than being self amplifying.
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IV. ENHANCED PARAMETER REGIME

In addition to simulating the system using parame-
ters close to those of the experiment, we have explored
a different parameter regime, in which the phenomena
observed in the experiment, in particular the Hawking
radiation, are more sharply displayed. This was helpful
in developing an understanding of the behavior of the sys-
tem, and it may prove useful for optimizing the Hawking
radiation signal in future experiments.
In the experimental regime, the signal of HR is too

weak to be directly seen in the density profile in Fig. 2.
With the help of the spacetime portrait in Fig. 4(b), one
observes emission from the BH that resembles HR, but
with irregularity. This irregularity may be due to the
long wavelength of the p-mode, λp, relative to the cavity
size, L. Since λp ∼ L, the p-mode does not behave as
a WKB mode on a slowly-varying background. This, in
concert with the time dependence of the cavity size, may
lead to the irregular emission of the HR mode.
In the enhanced parameter regime, we lower the λp/L

ratio by modifying the parameters of the trapping po-
tential (axial trap frequency ωx) and the step potential
(Us , vs). Fig. 5(a) shows the density profile in one such
modified regime (case M2), from which sharper signals
of HR and p-mode have been observed, with suppressed
λp/L ratio. In this case, the BEC is twice as long as
in the experiment of [16], the step size is halved relative
to the 6 nK step, and the step speed is about the same.
The details of the investigation of parameter regimes are
summarized in Appendix D.
The spacetime portrait of the modified regime is shown

in Fig. 5(b). The BCR-stimulated pair production mech-
anism illustrated in Fig. 4(a) can be seen very clearly,
with more distinct features than in the experimental
regime (Fig. 4(b)): (i) the BCR, with phase parallel to
the WH, which grows substantially prior to the pair cre-
ation, (ii) the “V”-shaped HR pair, stimulated by the
BCR. Note that the frequency of |δΨ| appears doubled
outside the BH compared to that inside. This is because
δΨ contains very little background flow component with
which to interfere outside the BH, so the visible inter-
ference is between the positive and negative relative fre-
quency parts of the HR.
Furthermore, since the HR and the p-mode have en-

hanced signals and regular wavelengths here, their spec-
tral properties can be captured by WFTs. In the follow-
ing, we analyze the properties of the modes based on the
Bogoliubov-de Gennes theory.

A. BdG mode analysis

The BdG theory of linearized modes [27] (Appendix E)
can be used to predict the temporal and spatial WFT
spectra of the BEC, starting from only one input assump-
tion: that the standing wave has zero frequency in the
WH frame. This will further verify the mechanism we

FIG. 5. Stimulated pair production in the enhanced regime,
M2. Panel (a): density n(x) at t = 650 ms, along the hori-
zontal green line in (b); panel (b): spacetime portrait. The
diagonal red (left) and blue (right) lines indicate the paths on
which the windowed frequency spectra of Fig. 6(b) are calcu-
lated. The wavevector spectrum along the horizontal green
line is shown in Fig. 6(c). The magenta (left) dot and cyan
(right) dot correspond to a correlated Hawking pair, for which
the thermal prediction is being tested.

have proposed for the excitations of the BEC. In addi-
tion, it will demonstrate the remarkable accuracy of BdG
analysis when combined with WFT in an inhomogeneous
setting.
To make contact with the notion of linearized, BdG

modes and their dispersion relation, we locally factor the
full GP wavefunction Ψ(x, t) into a homogeneous back-
ground Ψbf and the deviation ψ, so that the deviation is
locally a superposition of harmonic modes of the form

ψj =
(

uje
−i∆ωjt+i∆kjx + v∗j e

+i∆ωjt−i∆kjx
)

× e−iωbf t+ikbfx, (5)

where j =p, HR, BCR. Each BdG mode is composed of
two components, with opposite frequency and wavevec-
tor, ±(∆ωj ,∆kj), relative to those of the background
flow, (ωbf , kbf). The BdG dispersion relation is given by

∆ω =
√

c2∆k2 + (~∆k2/2m)2 + vbf,o∆k, (6)

where vbf,o is the velocity of the condensate with respect
to the “observer” frame in which the frequency is defined.
The square root term gives the frequency in the comov-
ing frame of the condensate, ∆ωcm. The first term in
the square root describes long wavelength sound modes,
while the second term corresponds to the kinetic energy
of the atoms, and dominates at large wavevectors. The
amplitudes of two components of ψj are given by

(uj , vj) =
1

2π

√

∣

∣

∣

∣

d∆k

d∆ω

∣

∣

∣

∣

(

1√
1−D2

,
D√

1−D2

)

, (7)
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FIG. 6. Dispersion relations and WFTs of Ψ(x, t) (δΨ(x, t) for x > xBH) along the lines indicated in Fig. 5(b). (a) dispersion
relations at xI in the WH (dashed red) and BH (solid red, or gray) reference frames, and at xO in the BH reference frame (solid
blue, or dark gray), evaluated at t = 650 ms. ∆ω and ∆k are the frequency and wavevector relative to those of the background
flow. (b) frequency spectrum along the diagonal red (left) (xI) and blue (right) lines (xO); (c) wavevector spectrum along the
horizontal green line (t = 650 ms).

where D = [~∆ωcm − ~
2∆k2/2m−mc2]/mc2 [19]. Note

that D goes to zero for ∆k ≫ mc/~ = 1/
√
2ξ, where ξ is

the healing length.

In the enhanced regime, the dispersion relations evalu-
ated inside and outside the BH at t = 650 ms are shown
in Fig. 6(a). The red (gray) and blue (dark gray) solid
curves indicate the dispersion relation in the BH frame
(vbf,o = vbf,BH), at xI = xBH−26 µm and xO = xBH+26
µm, respectively. These points correspond to the inter-
sections of the diagonal red (left) and blue (right) lines
with the horizontal green line in Fig. 5(b). The dashed
red curve also indicates the dispersion relation at xI, but
referred to the WH frame (vbf,o = vbf,WH). We use the
numerically measured values of the local flow velocity and
sound speed, determined from the background flow Ψbf ,
which can be identified by a spatial WFT (despite the
appearance of additional excitations). The WH velocity
is approximated by the speed of the left edge of |δΨ(x, t)|
(see Fig. 5(b) and Appendix E 2), while the BH velocity
is that of the step.

The BCR has zero frequency in the WH frame, so the
BCR wavevector should satisfy ∆ω(∆kBCR) = 0 in that
frame. This is indicated graphically by the intersection
of the dashed red dispersion curve in Fig. 6(a) with the
∆k axis, which yields ∆kBCR ∼ 2.5µm−1.

Due to the recession of WH relative to the BH, the
frequency of BCR in the BH frame corresponds to ∆ω =
−∆kBCR∆v = −0.2rad/ms, where ∆v is the BH velocity
relative to the WH. This frequency is indicated by the
lower dashed horizontal line, which intersects the solid
red (gray) curve at the vertical line, ∆kBCR. (Note that
similar reasoning can be applied for the upper dashed
horizon line, which intersects the the component, v∗BCR,
at the opposite frequency and wavevector.) If the HR and
partner modes are indeed stimulated by the BCR, they
should share the same frequency with the BCR in the BH
frame, so their wavevectors should lie at the intersections
of the shifted BCR frequency (dashed black) lines with

the solid blue (dark gray) and solid red (gray) dispersion
curves, respectively.
As the BCR mode propagates toward the BH horizon,

the dispersion curve lifts upwards due to the change of
flow velocity and sound speed, and the wavevector “red-
shifts”, until the mode coincides with the local minimum
of the dispersion relation. At that stage the WKB de-
scription breaks down, and the mode converts to a super-
position of other modes that share the same frequency.
These are the Hawking radiation and partner modes. The
modes are labeled by “u” or “v∗”, according to the corre-
sponding component of the BdG mode (5). Modes whose
u-component has negative (positive) relative frequency in
the step frame have negative (positive) energy relative to
the condensate [6]. The BCR and partner modes thus
have negative energy, while the Hawking mode has posi-
tive energy.

B. Spectral comparison with BdG prediction

To capture the spectral properties of the modes ob-
served in Fig. 5(b), and compare with the prediction in
Fig. 6(a), we apply the spatial and temporal WFTs on
Ψ(x, t) and δΨ(x, t). On the LHS of the BH (x < xBH),
we calculate the WFTs of Ψ(x, t); on the RHS of the BH
(x > xBH), we take δΨ(x, t) and multiply it by 10 to
subtract the background and bring out the HR. The left
panel of Fig. 6(b) shows the windowed frequency spec-
tra of Ψ(xI(t), t) (ω = 0-0.5 rad/ms) and δΨ(xO(t), t)
(ω = 0.5-0.7 rad/ms), in the BH frame, along the diago-
nal red (left) and diagonal blue (right) lines in Fig. 5(b)
with Gaussian width T = 55 ms. The streak in the cen-
ter corresponds to the background flow Ψbf , and indicates
the frequency ωbf ∼ 0.36 rad/ms. The two other streaks
located symmetrically about the center correspond to
HR (ω ∼ 0.56 rad/ms), and the BCR and the p-mode
(ω ∼ 0.15 rad/ms). The full frequency spectra at t =
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650 ms for xI(diagonal red line, left) and xO(blue, right)
are shown on the right panel.

The left panel of Fig. 6(c) shows the windowed
wavevector spectrum as a function of position, in the
laboratory frame. It is defined by WFTs of Ψ(x, t0)
(x < xBH) and δΨ(x, t0) (x > xBH) at t0 = 650 ms,
along the horizontal green line in Fig. 5(b), with width
D = 21 µm for Ψ, and 12 µm for δΨ. The background
flow spectrum between the horizons is centered on a large
negative wavevector at each x, and extends from the BH
to the WH. As in the experimental regime (Fig. 1(b)),
the BCR spectrum is roughly the reflection of the back-
ground flow, Ψbf . This feature was explained qualita-
tively in Sec. III C 1. Here we can explain it quantita-
tively, using the dispersion relation (6). As can be seen
in Fig. 6(a), the point at ∆ω = 0 in the WH frame is close
to the single-particle regime (i.e. ∆ωcm ∼ ~∆k2/2m), so
that ∆kBCR ∼ −2mvbf,WH/~. The flow velocity vbf,WH

relative to the WH is approximately the same as the
velocity in the lab frame, which is ~kbf/m. Therefore
∆kBCR ∼ −2kbf , hence the wavevector of ψBCR in Eq. 5
becomes kbf +∆kBCR ∼ −kbf .
The HR and p-mode spectra extend outward and in-

ward from the BH, with positive and negative wavevec-
tors, respectively. The wavevector spectra at xI(diagonal
red line, left) and xO(diagonal blue, right) are shown on
the right panel, with the modes labeled (except for v∗BCR)
in the figure.

We compare the WFT spectra (Fig. 6(b-c)) with the
BdG dispersion relations (Fig. 6(a)) at xI and xO, cor-
responding to the intersections of the diagonal red (left)
and diagonal blue (right) lines with the horizontal green
line in Fig. 5(b). The numerical values of ∆ω and ∆k
obtained from the WFT spectra of the GP solution are
displayed in Table I, along with those predicted from the
BdG dispersion relations. The inputs to the BdG predic-
tion are just (i) the assumption of zero frequency in the
WH frame, and (ii) the velocity of the BH frame relative
to the WH frame. The GP spectra and BdG predictions
agree to within 5%. Note that the flow is not perfectly
stationary, so that the zero frequency of the initial BCR
is not perfectly conserved. Also, the speed of the WH
changes slightly over time, which gives rise to the uncer-
tainty in ∆ωBdG and ∆kBdG.

TABLE I. Numerical values of relative mode frequency
∆ω(rad/ms) and wavevector ∆k(µm−1) from the GP Fourier
spectra (FT) and from the WH-zero-frequency BdG disper-
sion relation (BdG). The uncertainty for the former is es-
timated by the widths of the Gaussians fitting the spectral
peaks in Fig. 6(b-c), and the uncertainty for the latter is due
to the variation of the speed of WH.

Modes ∆ωFT ∆ωBdG ∆kFT ∆kBdG

uBCR -0.21(3) -0.20±0.01 2.42(8) 2.45±0.02
up -0.21(3) -0.20±0.01 0.26(8) 0.26±0.01
uHR 0.20(3) 0.20±0.01 0.65(12) 0.65±0.02

C. Hawking temperature

The spontaneous emission from a black-hole horizon
is thermal, with temperature TH = ~κ/(2πk), where κ
is the surface gravity [1, 2]. In the sonic analog, the
surface gravity becomes κ = d(v + c)/dx, evaluated at
the horizon [3]. The Hawking mode of the stimulated
radiation is excited with a coefficient β, and the partner
mode with a coefficient α, corresponding, in effect, to
transmission and reflection coefficients. The ratio |β/α|
carries the signature of the thermal prediction [32, 33],

|β|
|α| =

|VHR/vHR|
|Up/up|

= exp(−π∆ω/κ). (8)

Here (Up, VHR) are the full mode amplitudes, which can
be captured from the WFT spectra, and (up, vHR) are
the normalized BdG amplitudes defined in Eq. 7.
To test the thermal prediction we evaluate the mode

amplitudes at a pair of points xp and xHR with a com-
mon retarded time, defined by phase velocity, at the BH.
These points are denoted by the magenta (left) and cyan
(right) dots on the horizontal green line in Fig. 5(b). The
common retarded time on the horizon is t = 588 ms, for
which we find the surface gravity κ ∼ 350 s−1 (using v
and c computed directly from the GP wavefunction, see
Appendix E 3. The thermal prediction for ω = 200 rad/s
is |β/α| = 0.17+.05

−.04, allowing for a 5% uncertainty in ω
and a 10% uncertainty in κ. This agrees reasonably well
with the ratio 0.21 computed directly from the ampli-
tudes according to the thermal prediction. The Hawk-
ing temperature for the case M2 depicted in Fig. 5(b) is
TH = 0.43 nK. The temperature equivalent of the chem-
ical potential, µ, in that case is µ/k = 2.5 nK.
Several factors could play a role in causing the GP

ratio |β/α| to differ from the thermal prediction. First,
the latter is exponentially sensitive to the value of κ,
so the time dependence of κ can introduce a significant
effect. Second, phonon dispersion can produce deviations
that depend on how large are κ and ω compared to the
sound speed over the healing length, c/ξ ∼ 320s−1, and
on how wide is the linear regime of the function c + v
around the BH (∼ 6 µm), compared to c/κ ∼ 1.2 µm
[34]. And third, nonlinearity of the GP modes could lead
to deviations from the linear prediction.

V. DISCUSSION

A. Comments on the lasing mechanism

The results in this paper, together with those of [20]
which includes fluctuations, establish that the BH laser
phenomenon is not present, or at least not significant, in
our simulations of the experiment of Ref. [16]. Instead,
we have traced the standing wave and its growth to the
BCR mechanism. But the question remains as to why
lasing does not occur, given that the system exhibits a
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flow structure of the type that can lead to the laser in-
stability.
We can suggest two factors that may lie behind this:

one is that the growth rate of the instability may be too
slow to show any significant growth during the timespan
of the step sweep. The other is that the time depen-
dence of the flow structure and cavity size may lead to a
detuning of the instability.
Regarding the time available for the laser instability,

what matters is both the number of “cycles” that oc-
curs, and the amplification factor in each cycle. We es-
timate using the dispersion relation a “round trip” time
for modes propagating between the BH and WH of ∼ 50
ms. This is consistent with Fig. 4(b), from which one can
see that the p-mode that is created at the BH at t ∼ 60
ms (Fig. 4(b) takes ∼ 30 ms to reach the WH, and that
the BCR takes ∼ 20 ms to propagate from the WH to
the BH. An initial partner mode excitation that reaches
the left end of the cavity just after the WH has formed at
t ∼ 20 ms, i.e. at the earliest possible time, would thus
have time for no more than two return trips to the BH
before t = 120 ms.
Regarding the time-dependent flow, the black hole

laser scenario was originally introduced, and has been
studied, in the setting of stationary flow structure. In the
experiment, however, the background density changes
significantly as the step moves from the edge of the con-
densate to the center, changing the sound speed. In ad-
dition, the size of the supersonic cavity is time depen-
dent due to the receding WH. This causes a repetitive
Doppler shift (∝ ∆k∆v) on the modes inside the cavity.
The Doppler shift is greater for modes possessing a larger
wavevector, for which the frequency shift in one cycle is
comparable to the initial frequency. This is explained in
more detail in Appendix B4, where the detuning effect is
illustrated on the dispersion relation graph in Fig. 12(c).
The upshot is that the effect of moving WH horizon can-
not simply be treated as an adiabatic evolution of the
static case.
An unstable mode responsible for the laser effect con-

tains right-moving components with large wavevector,
arising from mode conversion of the left-moving p mode
at the WH horizon, which suffer a significant Doppler
shift relative to the frequency of the incoming p mode.
When the cavity is small, the lasing can be dominated
by a single, fastest growing unstable mode [18]. In that
setting, the above time-dependent effects might “detune”
the laser, inhibiting the self-amplification mechanism.

B. Comparison with other simulated results

A study having some overlap with ours was reported
by Tettamanti et. al [25]. They established the hydro-
dynamic character of the experimental observations, and
identified the Bogoliubov-Čerenkov (BCR) mode as re-
sponsible for initiating the instability, both of which are
consistent with our findings. Our accounts differ, how-

ever, regarding the subsequent evolution. They report
that the resulting Hawking radiation is self-amplifying,
and that the growing wave pattern between the horizons
results from this amplification and the interference be-
tween counter-propagating waves. However, it is hard
to glean from the paper on what basis that conclusion
was drawn. The local wavevector spectrum in the stand-
ing wave region is shown in (Fig. 1(b)), and discussed
Sec. III C. We find that the standing wave pattern is
simply the result of interference between the BCR mode
and the background flow, and grows due to the grow-
ing condensate density. An additional, long wavelength,
left-propagating partner mode of Hawking radiation is
evident in the spacetime portrait (Fig. 4(b)). However,
this appears well after the standing wave has formed, and
has much smaller amplitude.
Another numerical investigation of this system, by

Steinhauer and de Nova [26], appeared while we were
preparing revisions of our manuscript. They report find-
ings indicating that the BCR component to the standing
wave can not be generated at the WH horizon because it
appears before the WH horizon forms. We suspect that
this discrepancy with our findings may be traced to their
use of a definition of the WH horizon that does not coin-
cide with the location of the stationary, super-to-subsonic
transition, as explained more fully in Sec. III A 1.
In addition, Ref. [26] argues that self-amplifying Hawk-

ing radiation can be distinguished from what they call
the “background ripple” by the presence of time depen-
dence, since the power in a monochromatic traveling wave
such as the BCR would not oscillate in time. To exhibit
the time dependence, they evaluate a temporal Fourier
transform of the spatial Fourier transform of the density,
normalized by the square of the spatial average of the
density in the cavity. This has a peak at a character-
istic frequency which, they assert, is a signature of the
self-amplifying Hawking radiation.
We also find time dependence associated with the

standing wave in the cavity, which can be seen in the
oscillatory features in Fig. 3(a). These oscillations result
from interference with the Hawking partner mode, as can
be seen in Fig. 4(b). This might be the source of the time
dependence found in Ref. [26]. The dominant period for
this time dependence, which can be read from Fig. 3(a),
is of order 40 ms. This corresponds to an angular fre-
quency of order 0.16 rad/ms, i.e. ω/ωmax ∼ 0.2 (where
ωmax ∼ 0.75 rad/ms is the maximum allowed frequency
in the cavity region), which is not far from the values
found in Ref. [26].

VI. CONCLUSION

To conclude, we summarize the evidence that the black
hole laser effect plays no role in our GP simulations.
First, we find only one unstable mode, the BCR mode,
which grows in proportion to the square of the back-
ground flow density. Lasing action, by contrast, would
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have no reason to satisfy this relation. Second, this grow-
ing mode has zero frequency in the WH frame, which dif-
fers from the BH frame due to a nonzero relative motion
of the two horizons. And, third, the windowed Fourier
spectrum in the cavity reveals no other frequency com-
ponents. The Hawking partner radiation has the same
frequency as the BCR mode, as would be expected if it
results from stimulation by the monochromatic BCR.
Our simulations did not include quantum fluctuations

capable of spontaneously producing Hawking radiation.
However, in a related paper [20] we have studied the ef-
fect of quantum fluctuations using the truncated Wigner
approximation, and we found no evidence there of any
mode growth beyond that found here. Moreover, the
results of Ref. [20] reveal that the key features of the ob-
served density correlation function can all be produced
by modulation of the BCR standing wave caused by atom
number variations and quantum fluctuations.
Finally, we investigated various regimes of potential

experimental parameters, and found a regime where a
sharper signal of HR is obtained, and in which a BdG
mode description is valid. This enabled us to carry out
a detailed quantitative check of our proposed mecha-
nism, stimulation of the Hawking radiation by a Doppler
shifted, zero frequency BCR standing wave. This en-
hanced parameter regime could provide a useful guide for
future experimental investigations of stimulated Hawking
radiation in this setting.
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Appendix A: Characterization of the experimental

condensates and description of simulation

procedures

The condensate the in the experiment of Ref. [16] is
tightly confined in two transverse dimensions, and elon-
gated in the third dimension, with a scale ratio ∼ 1 : 20.
It is thus approximately one-dimensional, and for all the
simulations in this paper we have employed the one-
dimension description, except for some comparative sim-
ulations described in this appendix. Here we begin by
describing a three-dimensional model of the system, and
then proceed to explain the reduction to an effective, one-
dimensional model. We also compare this 1D model to a
3D one, and find that the 1D model accurately captures
the important features of the 3D dynamics.
The Gross–Pitaevskii (GP) equation, giving the mean

field description of a BEC in three dimensions, takes the
form

i~
∂Ψ(r, t)

∂t
=

(

− ~
2

2m
∇2 + V (r, t) + g3DN |Ψ|2

)

Ψ(r, t),

(A1)
where N is the number of condensate atoms, m is the
mass of a condensate atom, g3D = 4π~2a/m where a
is the s–wave scattering length, and V (r, t) is the full
external potential. In the case of the experiment, the
potential is given by

V (r, t) = U(r) + Ustep(r, t). (A2)

The potential in which the initial condensate was formed
in the experiment of Ref. [16] is denoted by U(r), and
Ustep(r, t) is the potential for the step that was swept
along the length of the condensate, as shown schemati-
cally in Fig. 1 of our paper. The wave function for the
initial condensate, Ψ0(r), satisfies the time–independent
GP equation:

(

− ~
2

2m
∇2 + U(r) + g3DN |Ψ0(r)|2

)

Ψ0(r) = µ0Ψ0(r),

(A3)
where µ0 is the chemical potential of the ground-state
condensate.
We begin by describing the most accurate 3D GP

model, given the information in Ref. [16] about the ex-
periment. We first found the potential, U(r), that is
produced by the red–detuned trapping laser specified in
Ref. [16]. There, the laser beam characteristics are stated
in terms of its wavelength, λ = 812 nm, and the beam
waist, w0 = 5 mm. We used this data to model the trap-
ping laser light as a focused ideal Gaussian laser beam.
Thus the trapping potential is proportional to the beam
intensity:

U(r) = U0

[

1−
(

w0

w (x)

)2

exp

( −2ρ2

w2 (x)

)

]

. (A4)

where x is the axis of light propagation, ρ =
√

y2 + z2 is
the transverse (axial) radial coordinate, w0 is the beam
waist, U0 is proportional to the peak laser intensity and

w(x) = w0

√

1 +

(

x

x0

)2

, where x0 =
πw2

0

λ
. (A5)

We have chosen the origin of energy so that U(r) van-
ishes at the center of the trap, U(0) = 0. Reference [16]
also states that, since the long axis of the needle–shaped
condensate lies in a horizontal plane, the effect of gravity
is mostly (all but 9%) compensated for by an external
magnetic field with a vertical gradient. For simplicity, in
our model we take the gravitational and compensating
magnetic forces to cancel exactly.
Specification of the wavelength and beam waist fixes

all the parameters in U(r) except for U0. Reference [16]
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gives the axial trap frequency as ωρ/2π = 123 Hz. We
used this frequency to determine U0 by expanding U(r)
to second order about r = 0 :

U(r) ≈
(

2U0

w2
0

)

ρ2 +

(

U0

x20

)

x2 ≡ 1

2
mω2

ρρ
2 +

1

2
mω2

xx
2.

(A6)
Thus U0 = (1/4)mω2

ρw
2
0 ≈ 39 k nK, where k is the Boltz-

mann constant. This completes our determination of
U(r) from the experimental parameters.

To determine the number of atoms in the condensate
(which was not explicitly stated in Ref. [16]) we simulate
the initial condensate for different atom numbers N , as
shown in Fig. 7. We find that N = 6000 gives a best
match of the axial length to that determined experimen-
tally. Note that the chemical potential for N = 6000 is
µ0/k = 10.8 nK, which includes the radial kinetic and
potential energies, and is greater than the reported ex-
perimental value, µ0/k = 8 nK. It is not reported in
[16] how this value was determined; however, for other
quasi-low-dimensional BECs, a chemical potential usu-
ally refers to the maximal interaction energy determined
by the maximal integrated density in the loosely-confined
direction [27, 35]. In the simulated condensate with
N = 6000, the maximal interaction energy in the ax-
ial direction is about 7.3 nK, which is comparable to the
reported experimental value, 8 nK.

FIG. 7. Optical densities of the condensate ground states from
3D GP simulations for atom numbers 2000 < N < 6000. Each
plot is also labeled with its associated chemical potential. Full
horizontal and vertical scales are 100 and 12 micrometers,
respectively, and the color box scale denoting optical density
is graduated in arbitrary units.

TABLE II. Parameters of the trapped BEC as reported in,
or inferred from (*), Ref. [16]. Uncertainties are not stated
in Ref. [16], and we do not attempt to estimate them in this
work.

Parameter Value Units
atom 87Rb
atomic state F = 2,MF = 2
trapping laser wavelength λ 812 nm
beam waist w0 5 micron
radial trap frequency ν 123 Hz
transverse energy level spacing E 6 nK k
healing length ξ 2 micron
nominal chemical potential µ 8 nK k
*actual chemical potential µ 10.4 nK k
*axial length scale x0 from eq. (A5) 97 micron
*number of condensate atoms N 6000 atoms

1. Reduction to a one-dimensional system

When a condensate is tightly confined in the radial
direction, and the integrated density n in the axial di-
rection satisfies na ≪ 1, it can be viewed as quasi-one-
dimensional [36, 37]. For the experimental configuration,
the axial to radial frequency ratio is given by ωx/ωρ =

w0/(
√
2x0) = 4.5Hz/123Hz, which is much smaller than

unity. This shows that the system is tightly-confined
in the radial direction. Using the maximum of the in-
tegrated density from the 3D simulation, nmax ∼ 120
µm−1, we estimate that the integrated 1D density sat-
isfies anmax ≈ 0.65, which is less than, but not much
smaller than, unity. It is therefore not guaranteed that
the 1D system is truly quasi-one dimensional. However,
as discussed in Sec. A 3, we compared the 3D and 1D
simulations and found the essential features to be quite
similar.
To implement the simplest sort of 1D reduction, we

approximate the wavefunction in the radial direction by
the solution of a harmonic oscillator, so that

Ψ(r, t) =
exp

[

−ρ2/
(

2d2
)]

d
√
π

Ψ1D(x, t), (A7)

where d =
√

~/ (mωρ). Integrating the 3D GP equa-
tion over the Cartesian coordinates y and z, we obtain a
1D GP equation with an effective interaction coefficient
g1D = g3Dmωρ/h:

i~
∂Ψ1D(x, t)

∂t
=

(

− ~
2

2m

∂2

∂x2
+ V (x, t)

)

Ψ1D(x, t)

+ g1DN |Ψ1D(x, t)|2 Ψ1D(x, t), (A8)

where h is the Planck constant and V (x, t) is the full
external potential V (r, t) evaluated at y = z = 0. We
define the coefficient of the nonlinear term as, g = g1DN ,
which is used extensively in the paper.
We take the number of atoms determined by the 3D

GP equation, N = 6000, and use the 1DGPE (Eq. A8)
to simulate the step-sweeping experiment. Note that
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FIG. 8. (a-g) Evolution of integrated density from a 3D simulation at 20 ms intervals with step Us/k = 5 nK, and viewed
in the moving frame where x = 0 defines the step edge. (h) Simulated growth of the standing-wave pattern in the supersonic
region for Us/k = 5 nK. Solid green: normalized standing-wave amplitude n̄k(t), n̄k(t) = nk(t)/nk(0), for which ln[n̄k(120)] ∼
4.8. Dashed black: the square of background density, n̄bf(t), scaled to match the final standing-wave amplitude, n̄2

bf(t) =
n2
bf(t)[n̄k(120)/n

2
bf(120)]. The growths of nbf and nk are determined from a spatial WFT of n(x) at x = −12.5 µm.

FIG. 9. Spacetime diagram and WFT frequency spectrum for the 3D simulation. Panel (a): time evolution of |δΨ(x, t)|. Panel
(b): windowed Fourier spectrum evaluated along the diagonal red (left) line in (b); panel (c) is the cut-through of the spectrum
at t = 100 ms. Note that the Doppler-shifted frequency ∆ωpair ∼ 0.23 rad/ms, which is about twice the value from the 1D
GPE.

Ref. [25] simulated the dynamics by using a 1D non-
polynomial nonlinear Schrodinger equation (NPSE) [38],
which incorporates the effect of a variable axial density on
the transverse shape of the GP wave function (under the
condition that the axial derivative of the transverse wave
function is much smaller than the transverse derivative).
Here we use a simpler 1D GP equation, which assumes
a fixed transverse shape of the wave function. In the pa-
per, and in other sections of the Appendix, we drop the
subscript “1D” in Ψ1D(x, t) when referring to the 1D GP
wavefunction.

2. Solution of the time–dependent 1D GP equation

The time-dependent 1D GP equation is solved by us-
ing the split-step Crank-Nicholson algorithm [39] on a

1D spatial grid of 320 µm with 4800 points, first propa-
gating in imaginary time to obtain the initial stationary
condensate, then propagating in real time with the given
initial state to simulate the dynamics. To simulate the
step-sweeping experiment [16], we use a step potential
Ustep(x, t), which takes the form

Ustep(x, t) = −UsΘ(xs(t)− x), (A9)

where Θ is the Heaviside step function, Us is the step
strength, which takes the values of Us/k = 3 nK and 6
nK, and xs(t) represents the step location, moving at a
constant speed, vs = 0.21 mm/s.
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3. Growing standing wave, spacetime portrait, and

frequency spectrum from a 3D simulation

To test the accuracy of the 1D simulation, we also sim-
ulated the step-sweeping experiment using the 3D GP
equation, with the potential (A4), assuming the conden-
sate shares the axial symmetry of the potential. Figs. 8(a-
g) show the integrated density profiles with a potential
step, Us/k = 5 nK, which is adjusted slightly to match
the cavity size with the experiment. The growth of the
standing wave amplitude, n̄k, and that of the background
density, n̄bf , are shown in Fig. 8(h). The standing wave
grows by ∼ exp(4.8), which is greater than in the 1D sim-
ulation (∼ exp(4.4)), but the growth relation, n̄k ∝ n̄2

bf ,
is preserved in the 3D simulation.
Similarly, we calculate the spacetime portrait and the

local frequency spectrum using the GP wavefunction at
the center of the radial trap, ρ = 0. The spacetime por-
trait in Fig 9(a) shows very similar features as those in
the 1D simulation, including the standing wave parallel
to the WH, and the stimulated Hawking pair. The WH
recession can also be seen in the portrait, which gives rise
to a Doppler-shifted BCR frequency in the WFT spec-
trum in Fig 9(b-c), ∆ω ∼ 0.23 rad/ms.
Although there are some quantitative differences with

the 1D simulation, all the qualitative features found in
the 1D GPE are preserved here: (i) the growth relation
between the standing wave and the background density,
(ii) the stimulated HR pair by the BCR, and (iii) the
Doppler shift due to the WH recession.

Appendix B: Windowed Fourier transform

Here we summarize the basic ideas of the windowed
Fourier transform (WFT), and explain our use of it. In
B 1, we give the definition of WFT used here, and provide
a few basic examples to show how it can resolve spectral
information on non-stationary phenomena. In B2, we
describe the the application of the WFT to the determi-
nation of flow and sound speeds, v(x) and c(x), in inho-
mogeneous media. In B3, we discuss calculations of the
wavevector and frequency spectra displayed in Fig. 6(b-
c), and the additional spectra that distinguish the part-
ner and BCR modes. In B 4, we show the windowed
frequency spectrum for the experimental regime, and a
comparison with the dispersion relation.

1. Definition and examples

A windowed Fourier transform [28] f(k, x) of a function
f(x) is defined as:

f(k, x) =

∫ ∞

−∞

dy f(y)w(y − x;D)e−iky , (B1)

where w(y − x;D) = exp(−(y − x)2/D2)/ (
√
πD) is a

Gaussian window function of width D. With the fil-

tering of the window, the transformed function f(k, x)
constitutes a local Fourier transform of f(x), capturing
features that vary on length scales much smaller than
D. For a plane wave with wavevector q and ampli-
tude fq , f(x) = fq exp(iqx), the transformed function
is f(k, x) = fq exp(−(k − q)2(D/2)2) : a Gaussian in
k-space, centered at k = q with width 2/D and peak
amplitude fq.
Suppose now that f(x) = fq(x) exp(iqx), where fq(x)

has weak dependence on x, and can be adequately ap-
proximated near a point x0 by

fq(x) = fq(x0) + f ′

q(x0)(x − x0). (B2)

Then for sufficiently small values of D, the WFT of f(x)
near x = x0 is approximately

f(k, x0) ≈ fq(x0)e
−(k−q)2(D/2)2

+ f ′

q(x0) i
k − q

2
D2 e−(k−q)2(D/2)2 . (B3)

Note that the second term vanishes at the peak position
k = q, so that f(q, x0) ≈ fq(x0).
Finally, let f(x) be composed of a number of such

slowly–varying modes,

f(x) =
∑

n

fqn(x)e
iqnx, (B4)

so that Eq. B3 becomes

f(k, x0) ≈
∑

n

[

fqn(x0) + f ′

qn(x0)

(

i
k − qn

2
D2

)]

× e−(k−qn)
2(D/2)2 . (B5)

In k–space, each mode presents a Gaussian distribu-
tion centered on its respective qn, whose peak value of
f(qn, x0) defines the local mode amplitude. This is how
we make quantitative determinations of the mode ampli-
tudes that are discussed in our paper.

2. Determination of the profiles of flow speed and

the speed of sound

As shown in the paper, during the sweep of the step,
the time-dependent GP wavefunction Ψ(x, t) exhibits ex-
citation modes on top of the background condensate. To
calculate the speed of sound c(x) and flow speed v(x) as-
sociated with the background condensate, we extract the
condensate from the full GP wavefunction with the help
of a WFT.
First, the amplitude of the background flow at a given

time t0 can be calculated by applying a spatial WFT on
the GP density |Ψ(x, t0)|2 = n(x) , where t0 is suppressed
for brevity.

n(k, x) =

∫ ∞

−∞

dy n(y)w(y − x;D)e−iky . (B6)
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Fig. 10(a) shows the result of a spatial WFT of density
n(x) (which corresponds to Fig. 2(e) in the paper) with
width D = 5 µm. The central streak at k ∼ 0 corre-
sponds to the background flow, whose peak value gives
rise to the background density nbf(x) = |n(k ∼ 0, x)|, as
shown in Fig. 10(b). The local speed of sound can then

be expressed as by c(x) =
√

gnbf(x)/m. In Fig. 10(b),
we see that WFT method is appropriate in the slowly
varying regions away from the two horizons: in the ex-
terior region, nbf(x) matches the GP density n(x); in
the interior region, nbf(x) is at about the average value
of the density oscillations. Near the event horizons, on
the other hand, the background density changes rather
quickly, so that WFT introduces an unwanted averaging.
In these regions, it is more appropriate to use the local
GP wavefunction directly to define v(x) and c(x), since
there are no significant excitations on the background
flow, and the definition is strictly local.
Second, the flow velocity can be calculated by a WFT

of the GP wavefunction

Ψ(k, x) =

∫ ∞

−∞

dyΨ(y)w(y − x;D)e−iky , (B7)

where again t0 is suppressed for brevity. Figure 10(c)
shows the windowed wavevector spectrum |Ψ(k, x)|2 with
width D = 5 µm. The dominant streak is the back-
ground flow, whose peak location kbf(x) gives rise to
the flow velocity in the rest frame of the step, −v(x) =
~kbf(x)/m − vs, as shown in Fig. 10(d); the peak value
of the streak also corresponds to the background den-
sity nbf(x) = |Ψ(kbf , x)|2. In addition, we calculate
the velocity profile by using the full GP wavefunction,
vGP(x) = ~/(mn(x)) Im [Ψ∗(x)dΨ(x)/dx] − vs. We can
see that WFT works well in regions apart from the event
horizons, and effectively projects out the spatial oscilla-
tion present in vGP(x).
Figure 10(e-f) compares v(x) and c(x) from the win-

dowed spectra (panel (e)) with those obtained from the
full GP wavefuntion (panel (f)). In short, near the event
horizon, the approach of directly adopting the GP wave-
function gives more accurate speed profiles, with the cor-
rect horizon locations and the respective surface gravity;
yet away from the horizons, the WFT effectively removes
excitations from the background flow, and hence gives a
more suitable definition for v(x) and c(x).

3. Spectral analysis with windowed Fourier

transform

The spectral properties of excitation modes can be
obtained by performing spatial and temporal WFTs on
the condensate wavefunction. Given a GP wavefunction,
Ψ(x, t), we calculate its local wavevector spectrum and
frequency spectrum by applying the WFTs. To obtain
a local wavevector spectrum, we perform a spatial WFT
on the wavefunction Ψ(x, t0) using Eq. B7 at a time t0

in which excitation modes are present. The result is pre-
sented in Fig. 6(c) in the paper, in which the excitation
modes are resolved in addition to the background flow.
Note that for the region on the RHS of the step, we per-
form the WFTs on the variation function δΨ(x, t) rather
than Ψ(x, t) (see Sec. C), in order to subtract the back-
ground component and bring out the excitation mode in
that region.
For a local frequency spectrum, we apply a temporal

WFT at position x0(t) moving at constant speed vs with
the potential step:

Ψ(ω, t) =

∫ ∞

−∞

dτ Ψ(x0(τ), τ)w(τ − t;T )eiωτ , (B8)

where w(τ − t;T ) represents a Gaussian window func-

tion of width T , w(τ − t;T ) = e−(τ−t)2/T 2

/
√
πT ; x0 is

selected to be both inside (xI) and outside the BH cavity
(xO), which is indicated by the red (left diagonal) and
blue (right diagonal) lines in Fig. 5(b). The result is pre-
sented in Fig. 6(b). In the figure, there are two modes
(ψp and ψBCR) overlapped in the frequency spectrum
(ω ∼ 0.15 µm) evaluated at position xI(t). To resolve
the two modes, we perform a spatial WFT evaluated at
xI(t) for various times

Ψ(k, t) =

∫ ∞

−∞

dyΨ(y, t)w(y − xI(t);D)e−iky . (B9)

The result is presented in Fig. 11(a), from which ψBCR

and ψp are separated at different k values, kBCR (solid red
line) and kp (dashed red line). Furthermore, by perform-
ing a temporal WFT on Ψ(k, t) at the two wavevectors,
we resolve the overlapped streaks in the initial frequency
spectrum at ω ∼ 0.15 rad/ms, as shown in Fig. 11(b-c).

4. Windowed frequency spectrum and dispersion

relation for the experimental regime

Here we present the frequency spectrum for the exper-
imental regime, in comparison with the prediction from
the BdG dispersion relation as in Sec. IVA. This shows
that no black hole laser effect is apparent in our simula-
tion of the experiment of Ref. [16].
We apply the temporal WFT on Ψ(x, t) at a position

about the center of the cavity, xI = xBH − 12 µm, indi-
cated by the diagonal red (left) line in Fig. 4(b). The
resulting frequency spectrum is given in Fig. 12(a-b).
The streak that appears from early times shows the fre-
quency of the background flow wavefunction Ψbf . The
lower streak corresponds to the superposition of the BCR
and the partner mode. The cut-through at t = 100 ms is
shown in panel (b), from which can be seen the relative
frequency (of the u-components), ∆ω ∼ -0.11(3) rad/ms.
We also predict this relative frequency using the dis-

persion relation, as in Fig. 6(a) for the enhanced regime.
The assumption that the BCR is the zero-frequency mode
in the WH frame determines ∆kBCR = 2.9 µm−1. Tak-
ing into account the velocity difference between the WH
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and the BH, ∆v ∼ 0.03 mm/s, the relative frequency
of BCR (and p-mode) in the BH frame is given by
∆ω = −∆kBCR∆v ∼ −0.09 rad/ms (for the compo-
nents uBCR and up), which is indicated by the lower
dashed black line in Fig. 12(c). This predicted frequency
is within the uncertainty of the measured WFT value.

The wavelength of the partner mode predicted using
the dispersion relation is λp ∼ 57 µm, which is greater
than the width of the supersonic cavity L ∼ 25 µm.
Therefore the partner cannot be treated in the WKB ap-
proximation, and the discrete spectrum of cavity modes
modifies the emission, unlike in the M2 regime where the
ratio λp/L is smaller. This may explain the irregular
wavelength of the HR in the experimental regime seen in
Fig. 4(b).

When the p-mode scatters at the WH, it creates a pair
of positive-norm (ψ+) and negative-norm (ψ−) modes
[16] (here we only show the former, u+ in panel (c)),
whose frequency is the same as that of the partner in
the WH frame. Due to the relative velocity between BH
and WH, u+ has a shifted frequency in the BH frame

(the horizontal blue (bottom) line in Fig. 12(c)), lower
than the frequency of the first p-mode, and it stimulates

the second p-mode (u
(2)
p ) at that shifted frequency. The

repetitive scatterings at the horizons therefore do not oc-
cur at a single frequency, as they would in the static case,
i.e. with zero WH horizon velocity. For the BCR, it can
be seen in Fig. 12(c)) that the frequency shift per cycle
is comparable to the frequency itself, ∆ω/ω ∼ 1. The
motion of the WH is therefore not well within the adi-
abatic regime. Hence for large wavevectors, like that of
the BCR, the static analysis of the black hole lasing phe-
nomenon is not reliable for predicting what happens with
the moving WH horizon.

Appendix C: Separation of fast and slow oscillation

of condensate wavefunction

To separate the HR from the subsonic background flow,
we apply a smoothing procedure to separate fast oscilla-
tory modes from the slowly-varying components in the
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FIG. 12. Windowed frequency spectrum and dispersion relation for the experimental regime. (a) frequency spectrum evaluated
at x = xBH − 12 µm. (b) cut-through along the vertical red line in (a). (c) dispersion relations in the WH (dashed green
curve) and BH (solid red curve) reference frames, evaluated at t = 100 ms. The dashed black lines show the frequencies of the
BCR mode in the BH frame, which stimulates the first HR pair. The horizontal dashed blue [YH: (bottom)] line indicates the
frequency of a positive-norm mode ψ+ in the BH frame, which stimulates the second HR pair. Note that u+ represents the

u-component of ψ+ (Eq. 5); up and u
(2)
p denote the u-components of the first and the second p-modes, respectively.

GP wavefunction. The procedure is equivalent to calcu-
lating the moving average of a discrete data set, which
smooths out short-term fluctuations. Here the moving
average of wavefunction Ψ(x) is defined as

Ψ̄(x) =
1

2D

∫ x+D

x−D

dyΨ(y), (C1)

where the integral serves as a square window of width
2D centered at x, over which Ψ(x) is being averaged.
For components in Ψ(x) with wavelength much shorter
than D (i.e. D ≫ π/k), the integral would give rise to
an average of zero, leaving those that are slowly varying
in space (i.e. π/k ≫ D) in Ψ̄(x).
According to Fig. 10(c), the background flow in the

subsonic region (Ψsub
bf ) has k ∼ 0 and can be separated

from the GP wavefunction through Eq. C1, such that
Ψ̄(x) ≈ Ψsub

bf (x). Furthermore, highly oscillatory com-
ponents in the wavefunction, including all the excitation
modes (ψj) and the supersonic background flow (Ψsup

bf ),
can be obtained by subtracting the GP wavefunction with
the non-oscillatory component, δΨ(x) = Ψ(x) − Ψ̄(x).
Thus, the variation δΨ(x) can be expressed as

δΨ ≈ ψp + ψHR + ψBCR +Ψsup
bf . (C2)

Figs. 13(a)(c) show the application of Eq. C1 to obtain
a smoothed profile of |Ψ̄(x)| in the experiment of Ref.
[16], and for a simulation in the M2 enhanced regime.
A separate calculation using the spatial WFT is shown
in Fig. 13(b)(d), in which |Ψsub

bf | is evaluated by taking
the peak amplitude |Ψ(k, x)| at k ∼ 0. Both approaches
agree with the GP wavefunction at regions away from
the event horizons, capturing the background component
outside the supersonic cavity. This gives rise the varia-
tion function δΨ(x), which nicely approximates the com-
ponents in Eq. C2. Fig. 14 shows the variation δΨ(x) for
the M2 regime, which agrees with the GP wavefunction
inside the BH cavity. Note that in Fig. 14(b) we have
multiplied δΨ(x) by a factor of 10 for x > xBH to bring
out the the HR mode in the exterior region.

Appendix D: BEC parameter regimes in which

Hawking radiation has greater visibility

To find a more distinctive signature of HR, we study
the GP evolution in different parameter regimes where
the frequency of the trapping potential, ωx, and the
depth, Us, and speed, vs, of the potential step are varied
away from the values (ω0

x, U
0
s , v

0
s ) reported in Ref. [16],

which are recorded in Sec. A. We find that by choos-
ing an appropriate set of experimental parameters, the
HR can be observed with well-resolved wavelengths and
frequencies.
Fig. 15 shows four representative cases for our investi-

gation: E1, E2, M1, and M2. Regimes E1 and E2 use the
same trapping frequency as the experimental value ω0

x,
but adopt a greater step speed vs = 1.5v0s ; case E1 uses
the same step strength as Fig. 4(b) in the paper, Us/k = 6
nK; case E2 has a greater step strength, Us/k = 9 nK.
Note that ω0

x and v0s are the reference values taken from
[16], ω0

x = (2π)× 4.5 Hz, and v0s = 0.21 mm/s.
Regimes M1 and M2 are the cases equivalent to E1 and

E2 with a modified trapping frequency, ωx = (1/4)ω0
x.

Here we use some scaling relations to determine the step
speed vs and depth Us that give rise to an equivalent
flow structure with the modified trapping frequency. We
know that modifying ωx changes the speed of sound c
(due to the change of n(x)) and the chemical potential
µ, and subsequently changes the flow structure shown in
Fig. 10. Using the Thomas-Fermi approximation [27] for
a 1D condensate in a harmonic trap, we find that µ ∝
ω
2/3
x , and the maximal density nmax ∝ ω

2/3
x (i.e. cmax ∝

ω
1/3
x ). By keeping ratios Us/µ and vs/cmax fixed, we can

construct an equivalent flow structure under a different
trapping frequency. We define the scaling factor γ =
ωx/ω

0
x, and incorporate γ into the ratios. This gives rise

to the scaling relations, Us = γ2/3U0
s and vs = γ1/3v0s .

Regime M1 is the modified case for E1, such that Us/k =
γ2/3× 6 nK, vs = 1.5γ1/3v0s ; likewise, M2 is the modified
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spatial WFT (panels (b)(d)). Experimental regime (Fig. 2(e) in the paper): (a) smoothed wavefunction using Eq. C1 with
window width D = 5.4 µm; (b) spatial WFT |Ψ(k, x)| with Gaussian width D = 5 µm evaluated at k ∼ 0. Modified regime
(Fig. 5(a) in the paper): (c) smoothed wavefunction using Eq. C1 with window width D = 11.4 µm; (d) spatial WFT |Ψ(k, x)|
with Gaussian width D = 7 µm evaluated at k ∼ 0. Note that the dashed black curve in all the panels corresponds to the GP
wavefunction, |Ψ(x)|.
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case for E2, so Us/k = γ2/3 × 9 nK, vs = 1.5γ1/3v0s .

Our investigation shows that a clear mode structure oc-
curs in regimes where the background flow is sufficiently
homogeneous. Then the BdG modes can be described
as WKB modes with well-characterized frequency and
wavevector, as in Ref. [19]. In the experimental regime
(Fig. 4(b)), ψp has the longest wavelength, and is com-
parable to the width of the BH cavity, L (the distance
between the BH and WH). We find that the mode struc-
ture is improved when reducing the wavelength of the
partner mode ψp, relative to L.

To control the wavelength of ψp, one can refer to the
BCR mechanism and the stimulated Hawking effect, and
use the dispersion relation shown in Fig. 6(a) in the pa-
per. Overall, the wavelength of the p-mode decreases
with increasing step speed, vs. According to the dis-
persion relation, the BCR is the zero frequency mode
in the WH frame, ∆ω(∆kBCR) = 0. Increasing vs in-
creases the flow speed inside the supersonic cavity, which
lowers (raises) the positive-k (negative-k) branch of the
dispersion curve ∆ω(∆k), and displaces the intersection
∆ω(∆k) = 0 to a larger ∆k value. This further increases
the frequency |∆ω| of the Hawking pair, which is propor-

tional to kBCR, and displaces the root of the dispersion
curves for ψHR and ψp to greater |∆k| (see Fig. 6(a)). In
regime E1, we increase vs by 50% over the experimen-
tal value. This decreases the p-mode wavelength relative
to the cavity length, L, and the corresponding HR ap-
pears more periodic. We further extend L, by increasing
step depth, Us. Regime E2 in Fig. 15 corresponds to the
case with a greater step depth, in which the number of
oscillations of ψp doubles.

Regimes M1 and M2 adopt a smaller trapping fre-
quency, ωx = (1/4)ω0

x. Reducing ωx increases the size
of a BEC, and extends the flow structure, by which exci-
tation modes can be more easily observed and resolved in
the laboratory. We can see that cases M1 and M2 have
clear mode structures as in E1 and E2, with approxi-
mately twice the cavity length. Note that regime M2 is
reported in the paper, along with a mode analysis using
the spatial and temporal WFTs.
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FIG. 15. Time evolution for modified parameter regimes, characterized by modified trapping frequency ωx = γω0
x, step speed

vs = 1.5γ1/3v0s , and step strength Us. Note that ω0
x and v0s are the reference values taken from [16], ω0

x = (2π) × 4.5 Hz, and
v0s = 0.21 mm/s. Modified regimes: (E1) γ = 1, Us/k = 6 nK and vs = 1.5v0s ; (E2) γ = 1, Us/k = 9 nK, and vs = 1.5v0s ; (M1)

γ = 1/4, Us/k = γ2/3 × 6 nK, vs = 1.5γ1/3v0s ; (M2) γ = 1/4, Us/k = γ2/3 × 9 nK, vs = 1.5γ1/3v0s . Bottom: time evolution of
|δΨ(x, t)|; top: density profile n(x) at times indicated by the horizontal red (gray) or green (light gray) line in the lower panel.
Note that |δΨ(x, t)| is multiplied by 10 for x > xBH, where xBH is indicated by the diagonal orange lines.

1. Growth of the BCR mode in the M2 regime

In the paper, we found that in the experimental regime
the standing-wave amplitude nk inside the cavity (which
later proved to be the BCR) grows in proportion to the
square of the background density nbf , nk ∝ n2

bf . We use
the BCR mechanism to interpret this relationship. If it
is indeed the underlying mechanism that occurs in the
step-sweeping experiment, the same growth relationship
should be found in other parameter regimes.

In Fig. 16, we monitor the growth of the standing wave
at a position nearby the WH (indicated by the diagonal
red (left) line in panel (b)) . We find that the growth of
the standing wave nk (solid green curve in (a)) matches
that of the background flow n2

bf (dashed black curve in
(a)), which is consistent with the observation in the ex-
perimental regime. For both regimes, the relationship
nk ∝ n2

bf implies that the BCR mechanism along with
the increasing background density gives rise to the mode

growth inside the cavity, rather than the black-hole lasing
effect. Note that the p-mode propagates to the position
indicated the diagonal red (left) line at t ∼ 500 ms, which
causes some small oscillations on the growth plot nk(t).

Appendix E: Bogoliubov-de Gennes mode analysis:

asymptotic modes, local dispersion relations, and

the thermal prediction

Here we present the Bogoliubov-de Gennes (BdG)
equations and the relevant calculations discussed in the
paper. In E 1, we introduce the standard BdG formalism,
and an asymptotic method (WKB) to describe modes on
a slowly varying background. In E 2, we use the dis-
persion relation to determine spectral properties of the
modes. In E 3, we compare the mode amplitudes of the
Hawking pair with the thermal prediction using the flow
profile at the BH.
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FIG. 16. Growth of the standing wave in the M2 regime.
Panel (a) simulated growth of the standing-wave pattern in
the supersonic region. Solid green: normalized standing-wave
amplitude n̄k(t), n̄k(t) = nk(t)/nk(0). Dashed black: the
square of background density, n̄bf(t), scaled to match the fi-
nal standing-wave amplitude, n̄2

bf(t) = n2
bf(t)[n̄k(tf )/n

2
bf(tf )].

Panel (b): time evolution of |δΨ(x, t)|, from which we select
a position nearby the WH, denoted by the diagonal red (left)
line, to monitor the mode growth. The growth of nbf and
nk is determined from a spatial WFT of n(x) with window
width D = 20 µm at the position indicated by the diagonal
red (left) line in (b). Inset shows the windowed spectrum at
t=650 ms.

1. BdG equations and asymptotic BdG modes

Here we summarize the BdG formulation presented in
[19, 27]. The BdG equations can be obtained by the
linearization of the condensate wavefunction:

Ψ(x, t) = Ψ0(x, t) + ψ(x, t) (E1)

where Ψ0(x, t) corresponds to a stationary condensate,

Ψ0(x, t) =
√

n(x)e−iµt, and ψ(x, t) corresponds to a de-
viation to the background condensate, which can be ex-
pressed as

ψ(x, t) = e−iµt
(

u(x)e−iωt + v∗(x)eiωt
)

, (E2)

where u(x) and v∗(x) satisfy the BdG equations:

[

~ω +
~
2

2m

d2

dx2
− V (x) − 2gn(x) + µ

]

u(x) = gn(x)v(x),

[

−~ω +
~
2

2m

d2

dx2
− V (x)− 2gn(x) + µ

]

v(x) = gn(x)u(x).

(E3)

For a homogeneous system, BdG modes can be expressed
as plane waves

u(x) = uk
eikx√
2π
, v(x) = vk

eikx√
2π
, (E4)

where the normalized mode amplitudes uk and vk are

uk =
1

√

1−D2
k

, vk =
Dk

√

1−D2
k

, (E5)

where Dk gives the ratio between vk and uk, and is de-
termined by the speed of sound c =

√

gn/m,

Dk =
1

mc2





√

~2c2k2 +

(

~2k2

2m

)2

− ~
2k2

2m
−mc2



 .

(E6)

This leads to the dispersion relation

ω(k)2 = c2k2 +
~
2k4

4m2
. (E7)

Note that here we use ω and k to indicate the rela-
tive frequency ∆ω and wavevector ∆k adopted in the
paper. Using Eq. E7, the BdG modes in the wavevec-
tor (k) representation can be converted to the frequency

(ω) representation, such that uω = uk/
√

dω/dk and

vω = vk/
√

dω/dk.

Suppose the background condensate is inhomogeneous
but varies smoothly in space, the BdG modes can be
approximated by the WKB method as described in [19].
The WKB-BdG modes in the ω-representation are

uω(x) =

√

∂kω(x)

∂ω

1
√

1−D2
kω(x)

ei
∫

x kω(x′)dx′

√
2π

,

vω(x) =

√

∂kω(x)

∂ω

Dkω(x)
√

1−D2
kω(x)

ei
∫

x kω(x′)dx′

√
2π

, (E8)

where kω(x) is determined by the local dispersion relation
using the local sound speed c(x)

ω2 = c(x)2k2 +
~
2k4

4m2
. (E9)
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2. Dispersion relations for the BCR mechanism

and stimulated pair production

Here we use the local dispersion relations to determine
the wavevectors and frequencies of the three BdG modes:
ψBCR, ψHR, and ψp. First, we transform the local disper-
sion relation from the comoving frame of the condensate
(Eq. E9, denoted by ωcm(k)) to an observer frame in
which the condensate has nonzero flow velocity

ω =

√

c(x)2k2 +
~2k4

4m2
+ vbf,o(x)k, (E10)

where vbf,o(x) is the local velocity of the condensate with
respect to the “observer” frame in which the frequency
is defined. Then we select two points of observation: xI
inside the BH cavity, and xO outside. The local speed
of sound and the flow velocity can be evaluated by the
spatial WFT of Ψ(x), in which the dominant peak loca-

tion gives the wavevector of background flow in the lab
frame kbf(x), and its peak value gives the local density
nbf(x) = |Ψ(kbf , x)|2. The flow velocity in the BH frame
is vbf,BH(x) = ~kbf(x)/m−vs. The WH is defined by the
point where v(x) + c(x) = 0. It is formed in the small
transition region that connects the accelerated flow and
the k ∼ 0 region on the left (see Fig. 1(b)), which can be
identified by the left edge of |δΨ(x, t)| in Fig. 17, xL(t).
Thus, we approximate the speed of WH by that of the
left edge, vL, as shown in Fig. 17. The flow velocity in
the WH frame is given by vbf,WH(x) = ~kbf(x)/m − vL.
The change of flow velocity from the WH frame to the
BH frame is equal to the velocity difference ∆v between
the two horizons, vbf,BH − vbf,WH = −∆v = −(vs − vL).

According to the BCR mechanism, the BCR mode has
zero frequency in the WH frame, ω(kBCR) = 0. We can
predict the value of kBCR by the local dispersion relation
at xI using c(xI) and vbf,WH(xI), as shown in Fig. 18(a).
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This further determines the frequency of the stimulated
pair production (see Fig. 18(b-c)); the HR and p modes
have the same frequency as that of the BCR mode in
the BH frame, given by ω = −∆vkBCR. This frequency
intersects the dispersion relation evaluated at xI to de-
termine kp, and the one evaluated at xO to determine
kHR, as indicated in Fig. 18(b-c).

3. Stimulated pair creation with the thermal

prediction

The Hawking temperature can be estimated by mea-
suring the amplitudes of the correlated HR and partner
mode. The mode mixing process at the BH is expressed
by

uBCR
−ω = αp

−ωu
p
−ω + βHR

ω

(

vHR
ω

)∗

, (E11)

where αp
−ω and βHR

ω are the positive-norm and negative-

norm amplitudes of the Hawking pair, and uBCR
−ω and up−ω

are the u component of the BCR and the partner mode,
(vHR

ω )∗ the v component of the HR mode. The ratio
of the amplitudes can be calculated using the thermal
prediction [4, 6]

∣

∣

∣

∣

βHR
ω

αp
−ω

∣

∣

∣

∣

= e−
πω
κ , (E12)

where κ is the surface gravity at the BH determining the
Hawking temperature TH = ~κ/(2πk),

κ =
d (v + c)

dx

∣

∣

∣

∣

xBH

. (E13)

In Fig. 5(b) in the paper, we trace a correlated Hawking
pair (indicated by the magenta (left) and cyan (right)
dots) generated at t = 588 ms. Using the spatial WFTs,

we obtain the mode amplitudes of the pair, vHR
ω,FT

∗
and

up
−ω,FT. Using Eqs. E8-E9, they can be expressed in

relation to
∣

∣βHR
ω /αp

−ω

∣

∣ as

∣

∣

∣

∣

∣

vHR
ω,FT

∗

up
−ω,FT

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

βHR
ω

αp
−ω

∣

∣

∣

∣

√

√

√

√

(

1−D2
kp

)

(

D2
kHR

1−D2
kHR

)

×
∣

∣

∣

∣

∂ω/∂k|kp

∂ω/∂k|kHR

∣

∣

∣

∣

1/2

. (E14)

where DkHR
(and Dkp

) can be evaluated using Eq. E6,
and ∂ω/∂k|k=kHR

estimated using the dispersion relation.
Fig. 19(a) shows the windowed wavevector spectra of

a correlated Hawking pair at t = 650 ms. The numeri-
cal values of the relevant quantities in Eq. E14 are given
in Table III. The ratio

∣

∣βHR
ω /αp

−ω

∣

∣ ∼ 0.21 . To estimate
how well the linear (BdG) approximation works, we mea-
sure the quantities |Dp| and |DHR| from the wavevector
spectrum (denoted by “FT” in Table III), which corre-
spond to the ratio between the u and v amplitudes of

each mode, as indicated in Eq. E8. They differ from the
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FIG. 19. Spatial WFT for a correlated Hawking pair, and sur-
face gravity near the event horizon. (a) windowed wavevector
spectrum of the correlated HR (solid cyan curve) and partner
modes (dashed magenta) at t = 650 ms. (b) flow velocity
vGP(x) and speed of sound cGP(x) at the time at which the
pair is created (t = 588 ms). The BH is indicated by the blue
circle, xBH. The flow velocity (dashed blue) and the speed
of sound (dotted green) calculated from the spatial WFT are
plotted for comparison. The surface gravity κ is calculated
from the speed slopes at the BH.

TABLE III. Numerical values of the relative mode amplitude
and the relevant quantities in Eq. E14.

Quantity Value

|vHR
ω,FT

∗

/up
−ω,FT| 0.11

|Dp| 0.47 (BdG) 0.40 (FT)
|DHR| 0.39 (BdG) 0.44 (FT)
∂ω/∂k|kp -744 µm/ms
∂ω/∂k|kHR

409 µm/ms
∣

∣βHR
ω /αp

−ω

∣

∣ 0.21

calculated (BdG) values by 13 % for the HR mode, and
15 % for the partner mode.

We also calculate
∣

∣βHR
ω /αp

−ω

∣

∣ using the thermal predic-
tion (Eq. E12) and the surface gravity κ from (Eq. E13).
From the data in Fig. 19(b), we calculate κ = 350 s−1.
This corresponds to a Hawking temperature of TH = 0.43
nK. The ratio

∣

∣βHR
ω /αp

−ω

∣

∣ ∼ 0.17, as determined by the
thermal prediction, differs from the WFT value (∼ 0.21)
by 24%.
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brook, and P. Ziń, Phys. Rev. Lett. 115, 025301 (2015).

[14] J. Steinhauer, Nature Phys. 12, 959 (2016),
arXiv:1510.00621 [gr-qc].

[15] J. Steinhauer, Phys. Rev. D92, 024043 (2015),
arXiv:1504.06583 [gr-qc].

[16] J. Steinhauer, Nature Physics 10, 864 (2014).
[17] S. Corley and T. Jacobson, Phys. Rev. D 59, 124011

(1999).
[18] A. Coutant and R. Parentani, Phys. Rev. D 81, 084042

(2010).
[19] S. Finazzi and R. Parentani, New J. Phys. 12, 095015

(2010).
[20] Y.-H. Wang, T. Jacobson, M. Edwards, and C. W. Clark,

(2017), arXiv:1705.01907.

[21] I. Carusotto, S. X. Hu, L. A. Collins, and A. Smerzi,
Phys. Rev. Lett. 97, 260403 (2006).

[22] A. Coutant, A. Fabbri, R. Parentani, R. Balbinot, and
P. Anderson, Phys. Rev. D 86, 064022 (2012).

[23] X. Busch, F. Michel, and R. Parentani, Phys. Rev. D
90, 105005 (2014).

[24] C. Mayoral, A. Recati, A. Fabbri, R. Parentani, R. Bal-
binot, and I. Carusotto, New J. Phys. 13, 025007 (2011).

[25] Tettamanti, M., Cacciatori, S. L., Parola, A., and Caru-
sotto, I., Europhys. Lett. 114, 60011 (2016).

[26] Jeff Steinhauer and Juan Ramón Muñoz de Nova, Phys.
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