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We propose a two-step experimental protocol to directly engineer Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) states in a cold two-component Fermi gas loaded into a quasi-one-dimensional
trap. First, one uses phase imprinting to create a train of domain walls in a superfluid with equal
number of ↑- and ↓-spins. Second, one applies a radio-frequency sweep to selectively break Cooper
pairs near the domain walls and transfer the ↑-spins to a third spin state which does not interact
with the ↑- and ↓-spins. The resulting FFLO state has exactly one unpaired ↓-spin in each domain
wall and is stable for all values of domain-wall separation and interaction strength. We show that
the protocol can be implemented with high fidelity at sufficiently strong interactions for a wide
range of parameters available in present-day experimental conditions.

I. INTRODUCTION

Ever since Fulde and Ferrell [1] and Larkin and
Ovchinnikov [2] (FFLO) predicted translational symme-
try breaking in superconductors with magnetic impuri-
ties, there has been an intense search for physical exam-
ples of the phenomenon [3]. Although thermodynamic
evidence has been found in certain heavy-fermion super-
conductors [4–13], layered organic superconductors [14–
24], and cold Fermi gases in elongated traps [25, 26], the
phase space for the FFLO state is generically small. As
we suggested in a recent Letter [27], one can enlarge this
parameter space by circumventing thermodynamics, and
directly engineering the FFLO state. There we argued
that such an engineered FFLO superfluid would be long-
lived. Here we give a detailed protocol for this engineer-
ing, thereby greatly extending the ability to produce and
study the FFLO phase.

In a two-component system of fermions, superconduc-
tivity typically occurs when spin-↑ particles form Cooper
pairs with spin-↓ particles. Magnetic impurities can
change the relative chemical potentials of the ↑- and ↓-
spins, breaking pairs and frustrating superconductivity.
In cold Fermi gases, where the spin-relaxation time ex-
ceeds the timescale of the experiment, similar physics oc-
curs when more ↓-spins than ↑-spins are placed in a trap,
making an imbalanced (or spin-imbalanced) gas. In 1964,
Fulde and Ferrell [1] argued that one could find exotic
pairing in such systems, where the Cooper pairs condense
into a state with finite momentum, ∆0(x) ∼ eik0x. At the
same time, Larkin and Ovchinnikov [2] proposed that
such systems will have an oscillatory order parameter,
∆0(x) ∼ cos k0x, an ansatz which is energetically more
favorable. Subsequent work found that one generally ex-
pects a train of domain walls (solitons), where the or-
der parameter periodically changes sign [28–34]. Larkin
and Ovchinnikov’s wavefunction is viewed as a special
case, where the width of the domain walls is comparable
to their separation. In all cases the spin imbalance is
concentrated near the order-parameter nodes, where the
density of pairs vanishes (Fig. 1). These FFLO states
have been predicted to occur in a wide range of physical
systems, including heavy-fermion superconductors [35],

FIG. 1. Spatial variation in the FFLO state. Solid blue
curve shows the order parameter or pair wavefunction ∆0(x).
Dashed red curve shows the density of unpaired fermions,
δn(x) ≡ |n↑(x)−n↓(x)|. The unpaired fermions are localized
near the domain walls.

organic supercoductors [36–39], ultracold Fermi super-
fluids [40–49], and high-density quark matter [50–56].

In this paper, we present a simple and robust ap-
proach to generating an FFLO state in a superfluid of
cold fermionic atoms. We build upon the fact that ex-
perimentalists routinely produce superfluids of fermionic
lithium or potassium atoms [57], control their environ-
ment through optical traps [26], control their spin states
with radio waves and microwaves [58], and tune their
interactions through Feshbach resonance [59]. After en-
gineering these exotic superfluids, they can probe the or-
der parameter using both in-situ techniques [25, 26] and
time-of-flight imaging [60–62].

Our approach differs from the conventional method of
simply cooling an imbalanced gas into the FFLO phase.
By coherently driving the system into this state, we over-
come the hysteresis and metastability issues which can
thwart the traditional prescriptions [45].

II. OVERVIEW

We envision a two-component gas of fermionic atoms
(two hyperfine states of 6Li or 40K) with attractive inter-
actions, loaded into a quasi-one-dimensional (quasi-1D)
optical trap consisting of an array of weakly-coupled 1D
tubes (Fig. 2). The 1D nature of each tube leads to
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Fermi-surface nesting, stabilizing the FFLO states [42–
45]. The small intertube tunneling helps establish long-
range superfluid order [46, 47]. To produce FFLO states
in each tube, we propose a two-step protocol. In the first
step, one creates an array of domain walls (solitons) in
a balanced superfluid. To this end, one loads an equal
mixture of ↑- and ↓-fermions into the trap and cools the
system near a Feshbach resonance to form a superfluid, as
demonstrated experimentally in [25, 26]. One can create
solitons in these superfluids by phase imprinting [60–68],
whereby one shines an off-resonant laser pulse on selected
portions of the superfluid, which rotates the local phase
of the order parameter by π. Working in a 3D geom-
etry, past experiments [60–62] have demonstrated that
one can create solitons in Fermi superfluids by phase im-
printing. The same technique has been used extensively
in Bose gases [69–73]. A train of solitons can be formed
in each tube by imprinting a π phase in alternate regions
of the trap, as illustrated in Fig. 2. The tight radial
confinement in each tube will prevent the solitons from
decaying into vortices and sound waves via the snake in-
stability [62, 74–77]. This first step is straightforward
and we do not model it in detail.

FIG. 2. Schematic experimental set-up for producing bal-
anced soliton trains in an array of weakly-coupled tubes.
First, uniform superfluids are prepared in each tube by cooling
an equal number of attractively interacting ↑- and ↓-fermions
near a Feshbach resonance. Then solitons (domain walls) are
imprinted by shining off-resonant lasers in alternate regions
labeled ‘−’ to reverse the sign of the local order parameter.

The subject of this paper is analyzing the second step.
Once the domain walls (solitons) are formed, we propose
using radio waves to selectively break up Cooper pairs in
the soliton cores, transferring spin-↑ atoms at these lo-
cations to a third spin state |φ〉 which does not interact
with the |↑〉 and |↓〉 spin states, thus leaving behind an
FFLO state with unpaired ↓-spins at the nodes. For ex-
ample, in 40K one could use |↑〉 = | 92 ,− 7

2 〉, |↓〉 = | 92 ,− 9
2 〉,

and |φ〉 = | 92 ,− 5
2 〉, where the two numbers denote the

total atomic spin F and its projection mF [78]. The fre-
quencies for the atomic transitions are sensitive to the

local environment, and, as we will show, one can select
frequencies such that the transitions only occur near the
cores of the domain walls.

In a recent paper [27], we showed that when each soli-
ton in a given tube is filled with exactly one unpaired
fermion, the resulting commensurate FFLO (C-FFLO)
phase is stable for all values of soliton spacing and in-
teraction strength. In this paper, we will demonstrate
that one can produce such long-lived C-FFLO states in a
controlled manner by shining radio waves on a balanced
soliton train and performing a frequency sweep.

As we describe in Sec. III B, a soliton train has gapped
bulk modes that are delocalized, and gapless bound
states that are localized in the soliton cores. Our proto-
col utilizes the separation of energy scales between these
localized and bulk excitations. The C-FFLO state differs
from a balanced soliton train only in the occupation of
the bound states. In our protocol we change these oc-
cupations by sweeping the energy of radio waves which
couple the | ↑〉 and |φ〉 states. As in other applications
of Rapid Adiabatic Passage ideas [79–84], the sweep rate
must be slow enough to satisfy adiabaticity. However, the
sweep duration is limited by the finite lifetime of the bal-
anced soliton train [27]. This lifetime increases sharply
with interactions. Therefore, one can achieve higher fi-
delities when the interactions are stronger. Unwanted
bulk excitations caused by the sweep can be eliminated
by Pauli blocking if one starts with an appropriate den-
sity of |φ〉-atoms. Even without Pauli blocking, our ap-
proach gives relatively few bulk excitations when the bulk
gap is large. A larger bulk gap also yields a higher critical
temperature [31–34], thus reducing thermal fluctuations.
These arguments further suggest that it is beneficial to
work in the strongly interacting regime. We analyze this
protocol in detail in Sec. IV, showing that current exper-
iments are in a parameter range where one can generate
long-lived C-FFLO states with high fidelity.

Our results are based on a mean-field self-consistent
Bogoliubov de-Gennes (BdG) formalism which gives an
accurate description of quasi-1D Fermi gases for mod-
erate to weak interactions, and is semiquantitative for
stronger interactions [40, 43, 85–94]. In addition, past
theoretical studies have shown that 1D BdG equations
correctly models the equilibrium properties of an array
of tubes [33, 34, 90]. As we will show, our protocol de-
pends primarily on a separation of energy scales between
the localized and bulk excitations of a soliton train. It is
not contingent on the quantitative details.

The rest of the paper is organized as follows. In Sec. III
we describe the Bogoliubov modes of a train of solitons
(or domain walls) and show how the generation of a C-
FFLO state from a balanced soliton train is equivalent
to changing the mode occupations. In Sec. IV, we model
the radio-frequency sweep which implements this change.
We carefully analyze different processes that could affect
the generation of the C-FFLO state, finding parameter
regimes where the protocol has high fidelity. We conclude
with a summary and outlook in Sec. V.
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III. QUASIPARTICLE MODES

In this section, we cast the problem of generating the
C-FFLO state from a balanced soliton train in terms of
the occupation of the Bogoliubov modes. This formalism
is convenient for modeling the population transfer by the
radio-frequency sweep.

There are at least two competing conventions in the
literature for defining the Bogoliubov operators: in the
most common one, the spectrum has only positive en-
ergies, but there are two types of Bogoliubov modes, γ̂j
and ζ̂j . We use a somewhat less common convention in
which the quasiparticle spectrum is symmetric for pos-
itive and negative energies, and there is only one type
of Bogoliubov mode γ̂j . This latter convention is par-
ticularly convenient for polarized gases. To avoid any
confusion later on, we first summarize both conventions
in the next subsection, discussing how they relate to one
another. We provided a similar discussion in the Supple-
mental Material for [27].

A. Convention for Bogoliubov operators

A system of spin-1/2 fermions with short-ranged at-
tractive interactions is described by the Hamiltonian

Ĥ =

∫
dx
[ ∑

σ=↑,↓
Ψ̂†σ(x)(Ĥ0 − µσ)Ψ̂σ(x)

+ g1DΨ̂†↑(x)Ψ̂†↓(x)Ψ̂↓(x)Ψ̂↑(x)
]
, (1)

where Ψ̂σ(x) denote the fermion field operators, Ĥ0 is the
single-particle Hamiltonian, µ↑,↓ ≡ εF ∓ h are the chemi-
cal potentials of the two spins, εF being the Fermi energy,
and g1D denotes the 1D coupling constant whose relation-
ship with the 3D scattering length is well studied [42, 95–
97]. Attractive interactions (g1D < 0) lead to Cooper
pairing, which gives rise to the superfluid order param-
eter ∆0(x) ≡ g1D〈Ψ̂↓(x)Ψ̂↑(x)〉. Ignoring quadratic fluc-
tuations about ∆0(x) yields the mean-field Hamiltonian

ĤMF =

∫
dx

[(
Ψ̂†↑ Ψ̂↓

)(Ĥ0 − µ↑ ∆0(x)

∆∗0(x) −Ĥ0 + µ↓

)(
Ψ̂↑
Ψ̂†↓

)
− g−1

1D

∣∣∆0(x)
∣∣2]+ Tr

(
Ĥ0 − εF − h

)
, (2)

where Ψ̂σ ≡ Ψ̂σ(x). The mean-field Hamiltonian can be
diagonalized by solving the BdG equations(

Ĥ0 − εF ∆0(x)

∆∗0(x) −Ĥ0 + εF

)(
uj(x)
vj(x)

)
= εj

(
uj(x)
vj(x)

)
, (3)

which has a symmetric spectrum: if (uj(x) vj(x))T

is an eigenvector with eigenvalue εj , then
(−v∗j (x) u∗j (x))T is an eigenvector with eigenvalue
−εj . The eigenvectors form an orthonormal set, i.e.,∫
dx(u∗j (x)uj′(x) + v∗j (x)vj′(x)) = δjj′ .

We define the Bogoliubov operators γ̂j as(
Ψ̂↑(x)

Ψ̂†↓(x)

)
=
∑
j

(
uj(x)
vj(x)

)
γ̂j , (4)

where the sum is over both positive and negative energies.
The orthonormality of the eigenvectors ensures that the
modes γ̂j are fermionic, i.e., {γ̂j , γ̂†j′} = δjj′ . Substituting
Eq. (4) into Eq. (2) we find

ĤMF =
∑
j

(εj+h)γ̂†j γ̂j+Tr
(
Ĥ0−εF−h

)
−g−1

1D

∫
dx
∣∣∆0(x)

∣∣2.
(5)

The occupation of the modes is given by 〈γ̂†j γ̂j〉 =
nF(εj + h) where nF denotes the Fermi function. Thus
at zero temperature, all quasiparticle modes with energy
εj < −h are occupied, and all other modes are empty. In
particular, for h ≡ µ↓ − µ↑ = 0 (no spin imbalance), all
negative energy modes are occupied and positive energy
modes are empty. When µ↓ > µ↑ (h > 0), one has to re-
move quasiparticles from the modes with energy between
0 and −h, resulting in a net excess of ↓-spins. Similarly,
if µ↑ > µ↓, one populates the modes between 0 and |h|,
resulting in a net excess of ↑-spins.

One arrives at the other convention by noting that
Eq. (4) can be written as(

Ψ̂↑(x)

Ψ̂†↓(x)

)
=
∑
εj>0

(
uj(x)
vj(x)

)
γ̂j +

∑
εj<0

(
uj(x)
vj(x)

)
γ̂j

=
∑
εj>0

(
uj(x)
vj(x)

)
γ̂j +

∑
εj>0

(−v∗j (x)
u∗j (x)

)
ζ̂†j

=
∑
εj>0

(
uj(x) −v∗j (x)
vj(x) u∗j (x)

)(
γ̂j
ζ̂†j

)
, (6)

where we have used the fact that for each state (uj vj)
T

with energy εj , there is a state (−v∗j u∗j )
T with energy

−εj , and defined new fermionic operators ζ̂j ≡ γ̂†j for
εj < 0. The operators γ̂j and ζ̂j in Eq. (6) represent
the Bogoliubov modes in this other convention. Substi-
tuting Eq. (6) into Eq. (2), we obtain

ĤMF =
∑
εj>0

[
(εj + h)γ̂†j γ̂j + (εj − h) ζ̂†j ζ̂j − (εj − h)

]
+ Tr

(
Ĥ0 − εF − h

)
− g−1

1D

∫
dx
∣∣∆0(x)

∣∣2 . (7)

The occupations of the modes are given by 〈γ̂†j γ̂j〉 =

nF(εj + h) and 〈ζ̂†j ζ̂j〉 = nF(εj − h). At zero tempera-
ture, only the γ̂ modes with εj < −h and the ζ̂ modes
with εj < h are occupied. However εj > 0, so there are no
negative energy modes, which means in the balanced case
(h = 0), all Bogoliubov modes are empty. Excess ↓-spins
(h > 0) are incorporated by filling up only the ζ̂ modes
with 0 < εj < h, whereas excess ↑-spins (h < 0) are incor-
porated by filling up only the γ̂ modes with 0 < εj < |h|.
Although the two conventions yield different descriptions
of a state, they are formally equivalent.
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B. Quasiparticle spectrum of a soliton train

Here we summarize a few important features of the
fermionic quasiparticle spectrum of a soliton train that
are relevant for analyzing the effect of a radio-frequency
sweep. We also establish the connection between the oc-
cupation of the Bogoliubov modes with the generation
of C-FFLO states. Further details on the spectrum of a
soliton train can be found in [27–34].

Following our approach in [27] we use the Andreev ap-
proximation [98], whereby one linearizes the dispersion
about the Fermi points and considers right-moving and
left-moving modes separately. With this approximation
one can solve the BdG equations analytically, which is
particularly useful to obtain a qualitative understanding
of the physics and estimating the variation of physical
quantites, such as the bulk gap, with the experimental
parameters. However, this approximation is strictly valid
only for weak interactions where pairing is limited to the
vicinity of each Fermi point. As we will see in Sec. IV, the
validity of our protocol does not depend on making the
Andreev approximation. It only rests on a few generic
features, such as a separation of energy scales between lo-
calized and bulk excitations, that are also present in the
full model. We will only use the Andreev approximation
to estimate the range of parameters over which the proto-
col has high fidelity. We find good numerical agreement
of these estimates with the full BdG equations.

The BdG equations [Eq. (3)] for the coherence factors
in a 1D tube can be expressed as

(
−∂2

x/2− εF ∆0(x)
∆∗0(x) ∂2

x/2 + εF

)(
uj(x)
vj(x)

)
= εj

(
uj(x)
vj(x)

)
, (8)

where we have set ~ = m = 1, m being the mass of
each fermion. For sufficiently weak interactions, only the
modes near the Fermi points contribute to pairing. Thus,
as already explained, we make the Andreev approxima-
tion, where we write the fermion fields as a sum over
right-moving and left-moving Bogoliubov modes γ̂±j [see

Eq. (4)],

(
Ψ̂↑(x)

Ψ̂†↓(x)

)
=
∑
s=±,j

eiskFx
(
usj(x)
vsj (x)

)
γ̂sj , (9)

where

(
−∂

2
x

2
−εF

)[(u±j (x)

v±j (x)

)
e±ikFx

]
≈
[
∓ikF∂x

(
u±j (x)

v±j (x)

)]
e±ikFx

(10)

and {γ̂sj , γ̂s
′†
j′ } = δss′δjj′ where kF is the Fermi momen-

tum. The BdG equations for the right-moving and left-
moving Bogoliubov modes can be obtained be substitut-
ing (uj(x), vj(x)) = (u±j (x), v±j (x)) e±ikFx in Eq. (8) and

using Eq. (10), which yield(
∓ikF∂x ∆0(x)
∆∗0(x) ±ikF∂x

)(
u±j (x)

v±j (x)

)
= ε±j

(
u±j (x)

v±j (x)

)
, (11)

where ∆0(x) = g1D

∑
s=±,j

nF(εsj + h)usj(x)vs∗j (x) . (12)

For real ∆0(x), the right- and left-moving branches are
related by a complex conjugation: (u−, v−) = (u+, v+)∗

and ε− = ε+ = ε. Thus we can rewrite Eq. (12) as

∆0(x) = 2g1D

∑
j
nF(εj + h) Re

[
u+
j (x)v+∗

j (x)
]
. (13)

A periodic solution to Eqs. (11) and (13) has the soli-
ton train profile ∆0(x) = ∆1k1sn(∆1x/kF, k1), where
∆1 = 2kFk0K(k1)/π [28–34]. Here 2π/k0 denotes the pe-
riod, sn is a Jacobi elliptic function [99], K denotes the
complete elliptic integral of the first kind, and k1 ∈ (0, 1)
parametrizes the sharpness of each soliton. The modes
are characterized by the parameter k1 which is in turn
set by the self-consistency condition in Eq. (13). Many
of our results are conveniently expressed in terms of
w ≡ (k0/kF) exp(πkFa1D/2) where a1D denotes the 1D
scattering length (a1D = −2/g1D [95]). The parameter w
corresponds to the width of each soliton in units of the
separation between solitons (k−1

0 ). This ratio quantifies
the effects of interactions in a soliton train. The width of
a soliton is determined by the interaction strength, and
for fixed k0, decreasing the interactions increases w (re-
call, g1D < 0). If the interactions become too weak, the
superfluid becomes too frail to support the soliton train
and the system is driven normal. Thus for balanced soli-
ton trains (h = 0) one must have w . 4. For w . 1, one
enters the strongly interacting regime.

Since ∆0(x) is periodic, each Bogoliubov mode can be
labeled by a quasimomentum lying in the first Brillouin
zone. The energy spectrum ε(k) is most conveniently
expressed in the extended zone representation as

k

k0
= ± 1

π

ε

ε+
Re

[√
ε2− − ε2
ε2+ − ε2

Π

(
ε2+ − ε2−
ε2+ − ε2

,

√
1− ε2−

ε2+

)]
,

(14)
where ε± ≡ 1

2 (1 ± k1)∆1 and Π denotes the complete
elliptic integral of the third kind. As per our convention,
the spectrum is symmetric for positive and negative ener-
gies. It has a continuum of bulk modes with |ε| > ε+ and
a band of midgap modes for with |ε| < ε−, as seen in the
boxed region of Fig. 3(a). Describing the region outside
the box requires going beyond the Andreev approxima-
tion. Those modes are not relevant to the processes which
we are studying. For sufficiently strong interactions (w .
2), ε+ ≈ 4kFk0/w and ε− ≈ 16kFk0w

−1e−4π/w � ε+.
Hence, the bulk gap increases as 1/w.

The mode wavefunctions are of the Bloch form, la-
beled by a quasimomentum p ∈ [−k0/2, k0/2) and an
energy ε. The positive and negative energy modes are
related by a particle-hole transformation: (u(x), v(x))↔
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(−v(x), u(x)). In addition, one has the symmetry
(u±−p(x), v±−p(x)) = (v±∗p (x), u±∗p (x)) for modes with the
same energy. The midgap modes represent Andreev
bound states which are localized in the soliton cores
[100, 101]. For strong enough interactions (w . 3), they
are given by (for ε, p > 0)(
u+
p (x)

v+
p (x)

)
≈
√
ξ

L

( ∑
n even

−i∑n odd

)
ei(p+nk0)x

cosh
(
2ξ(n+ p

k0
)
) , (15)

where L denotes the length of the system, and ξ = πw/16
represents the width of a bound state around a soli-
ton core: to a good approximation, |u+

p (x)|2, |v+
p (x)|2 ∝

exp(−(k0x/
√

2ξ)2) for |k0x| < π/2.
The higher-energy bulk modes are relatively unaffected

by pairing. Hence, they are well described by plane
waves. The lowest-energy bulk mode (|ε| = ε+) is the
one most affected. For w . 2, this mode is given by (for
ε, p > 0)(
u+(x)

v+(x)

)
≈ w

8
√
L

( ∑
n even

−i∑n odd

)
ei(n+1/2)k0x

sinh
(
πw
8 (n+ 1

2 )
) . (16)

Note that the coherence factors u+
p (x) [and v+

p (x)] for
both midgap modes and bulk modes can be written in
the form u+

p (x) = (1/
√
L)
∑
n ū

j
p,ne

i(p+2nk0)x where n is
an integer and −k0 ≤ p < k0. This is because the soli-
ton train has an additional symmetry, ∆0(x + π/k0) =
−∆0(x), which decouples the even and odd Fourier
modes in the BdG equations, effectively doubling the size
of the Brillouin zone [27, 91].

For h 6= 0, the number of excess fermions per soliton
ns is simply related to the spectrum ε(k) in Eq. (14) as
ns = 2|kh|/k0 where ε(kh) = h. Hence, the C-FFLO
state, with ns = 1, is formed when ε− < |h| < ε+ [see
Fig. 3(a)]; i.e., when the chemical potentials lie in the gap
between bulk modes and midgap modes. Since µ↑,↓ ≡
εF ∓ h, a C-FFLO state with excess ↓-spins is formed
when ε− < h < ε+, whereas the one with excess ↑-spins
is formed when −ε+ < h < −ε−.

In our convention, detailed in Sec. III A, the occupa-
tion of a Bogoliubov mode γ̂j at zero temperature is given
by 〈γ̂†j γ̂j〉 = Θ(−εj − h), where Θ denotes the unit step
function. Therefore, a balanced soliton train (h = 0) is
formed by filling up all the negative energy modes. In a
C-FFLO state with excess ↓-spins, only the negative en-
ergy bulk modes, with ε < −ε+, are occupied. Therefore,
one can produce such a state by vacating all the occupied
midgap modes in a balanced soliton train. Conversely, to
produce a C-FFLO state with excess ↑-spins, one needs
to fill all the unoccupied midgap modes. This change of
occupation can be achieved by a radio-frequency sweep,
which we model in the next section.

IV. GENERATION OF C-FFLO STATES

Here we model the process of generating a C-FFLO
state from a balanced soliton train by a radio-frequency

sweep. We describe in detail the physics behind the pro-
tocol in Sec. IV 1. In Sec. IV 2 through IV 7 we explore
various processes which could interfere with producing
the FFLO state, explaining how to choose parameters.
We show that the protocol can be implemented with high
fidelity in present-day experimental conditions.

Our strategy is to use radio waves to selectively break
up pairs in the soliton cores, and convert the spin-↑ atoms
to a third noninteracting spin state |φ〉. As we described
in the last section, a balanced soliton train differs from
a C-FFLO state in the occupation of the Bogoliubov
modes. In our convention the quasiparticle spectrum of a
soliton train is symmetric for positive and negative ener-
gies, with delocalized bulk modes for |ε| > ε+ and local-
ized midgap modes for |ε| < ε− [Fig. 3(a)]. All negative
energy modes are occupied in a balanced soliton train.
The C-FFLO state with excess ↓-spins is formed by re-
moving all quasiparticles from the midgap modes. Our
key idea is to use a Rapid Adiabatic Passage protocol
which uses a radio-frequency (RF) sweep to vacate these
midgap modes by transferring the spin-↑ atoms to the
|φ〉 state. A preformed Fermi sea of |φ〉-atoms prevents
any bulk excitation, though even without the Fermi sea
the number of bulk excitations can be small.

1. Modeling the radio-frequency sweep

We model the coupling of the atoms to radio waves by

ĤRF = Ω

∫
dx Φ̂†(x)Ψ̂↑(x) e−i

∫
dtω(t) + h.c. , (17)

where Φ̂†(x) creates a fermion at position x in the spin
state |φ〉, Ω is the coupling strength, and ω(t) is the fre-
quency of the radio waves. In our protocol one sweeps ω
over a small frequency range (a few kHz) around ∆εhf,
where ∆εhf is the internal energy difference of the |↑〉 and
|φ〉 states (hundreds of MHz). Throughout the sweep the
coupling is far-off-resonant for the spin-↓ atoms. We can
write Eq. (17) in terms of the Bogoliubov operators γ̂j
as [see Eq. (4)]

ĤRF = Ω
∑
j

∫
dx Φ̂†(x)uj(x) γ̂j e

−i
∫
dtω(t) + h.c. . (18)

As can be seen, within our convention, the RF coupling
removes quasiparticles from the superfluid while creat-
ing particles in the |φ〉 state, and vice-versa. There
are right-moving and left-moving Bogoliubov modes cen-
tered at the two Fermi points [Fig. 3(a)]. They re-
spond equally to the applied field, so we will only
consider the right-moving modes. As we showed in
Sec. III B, each right-moving mode can be labeled
by a quasimomentum p ∈ [−k0, k0), and an en-
ergy ε indexed by j, with wavefunctions of the form
ujp(x) = (1/

√
L)
∑
n ū

j
p,ne

i(kF+p+2nk0)x where n is an in-
teger. The noninteracting state |φ〉 is composed of plane-
wave eigenstates, Φ̂†(x) = (1/

√
L)
∑
k e
−ikxφ̂†k. As a re-
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FIG. 3. (a). Blue curves: Schematic of Bogoliubov spectrum of a soliton train, containing bulk modes with |ε| > ε+ and midgap
modes with |ε| < ε−, where ε is measured from the Fermi level εF. Red curve: quadratic dispersion of the noninteracting spin
state |φ〉. The internal energy difference ∆εhf � εF. (b) and (c). Blue curves: right-moving Bogoliubov modes [boxed
in (a)] in the repeated-zone representation. Red line: |φ〉 dispersion shifted by the radio frequency ω, which is swept from
ωmax = ∆εhf + kFk0/2 [in (b)] to ωmin = ∆εhf− 3kFk0/2 [in (c)]. Small dots indicate occupied states. The RF sweep couples a
filled quasiparticle state with an empty |φ〉 state at the same momentum, and vice versa. If the coupling is sufficiently adiabatic
(see Sec. IV 2), the sweep will transfer all particles from the midgap modes to the resonantly coupled |φ〉 states [as in (c)]. If
all |φ〉 states below a suitable momentum kφ ≡

√
2εφ are initially occupied, the sweep does not affect the bulk modes or the

vacant midgap modes.

sult, radio waves only couple |φ〉 states with momen-
tum kF + k to Bogoliubov modes with quasimomentum
pk such that pk + 2nkk0 = k for some integer nk, or
pk = k−2k0bk/2k0 +1/2c. Thus we can rewrite Eq. (18)
as

Ĥ+
RF = Ω

∑
k

∑
j

ūjk φ̂
†
kF+k γ̂

j
pk
e−i

∫
dtω(t) + h.c. , (19)

where the superscript ‘+’ indicates that we are work-
ing with the right-moving Bogoliubov modes, the k-
summation is over all momenta, the j-summation is over
different modes with the same quasimomentum pk, and
ūjk ≡ ūjpk,nk .

The effect of the coupling in Eq. (19) is best under-
stood in a repeated-zone representation of the Bogoli-
ubov modes. This is shown by the blue curves in Fig. 3(b)
where we also plot the spectrum of the |φ〉 states shifted
down by ω (red curve). Near the Fermi point, the |φ〉
spectrum is linear with slope kF. In this repeated-zone
picture, a |φ〉 state is coupled to the quasiparticle states
at the same momentum, and the coupling is on reso-
nance where the red curve intersects a blue curve. In
the experiment, one sweeps ω over a small range from
ωmax to ωmin such that all the occupied midgap modes
come on resonance at least once, as in Fig. 3(b). If the
sweep is sufficiently adiabatic, the RF coupling will va-

cate these modes, while populating the resonantly cou-
pled |φ〉 states [Fig. 3(c)]. Since the |φ〉-atoms are non-
interacting, or very weakly interacting, their momentum
distribution cannot change appreciably over the sweep
duration, so there is no possibility of refilling any of the
unoccupied midgap modes.

There may also be transitions from the bulk modes.
These unwanted transitions can be entirely eliminated
if all of the |φ〉 states below an energy threshold εφ are
initially occupied, so that the available |φ〉 states are far-
off-resonant with the bulk modes [Fig. 3(b)]. As we show
below, this can be achieved for a wide range of param-
eters. Alternatively, if it is inconvenient to pre-fill the
trap with |φ〉-atoms, one can tune the sweep rate so that
it is adiabatic for the midgap modes, but diabatic for
the bulk modes, thus only causing transition from the
midgap modes. This latter approach requires a separa-
tion of scales in the coherence factors |ūjk| in Eq. (19)
between the bulk and the midgap modes. As we will
show, this separation of scales exists and becomes larger
at stronger interactions.
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2. Adiabaticity requirements for midgap modes

We model a linear frequency sweep with ω decreasing
from ωmax = ∆εhf + kFk0/2 to ωmin = ∆εhf − 3kFk0/2
at a rate ν, as depicted in Figs. 3(b) and 3(c). Dur-
ing this evolution, each midgap mode is swept through
resonance with a |φ〉 state with k ∈ [−k0, 0]. The co-
herence factors |ūgk| (‘g’ refers to midgap modes) in this
interval are larger than those in any other interval. For
each value of k ∈ [−k0, 0], the RF coupling in Eq. (19) is
well-approximated by a two-level finite duration Landau-
Zener problem between a midgap state and a |φ〉 state
[83, 84]. In order for the transfer probability to be unity,
one needs both that the sweep rate is sufficiently small,
and that the frequency range of the sweep is sufficiently
large. For our system, these two requirements yield

kFk0 & 10 Ω |ūgk| and Ω |ūgk| &
√
ν for all k ∈ [−k0, 0] .

(20)
In Sec. III B we showed that for sufficiently strong inter-
actions (w . 3, where w ≡ (k0/kF) exp(πkFa1D/2)), |ūgk|
is well-approximated by |ūgk| ≈

√
ξ sech(2ξk/k0), where

ξ = πw/16 measures the spatial width of a midgap state
around a soliton core. Thus we can rewrite the conditions
in Eq. (20) in terms of w as

kFk0 & 10 Ω
√
ξ and Ω

√
ξ &
√
ν cosh(2ξ) , (21)

where ξ(w) ≈ πw/16 . (22)

Note that Ω
√
ξ acts as the effective coupling strength.

This is sensible because the coupling strength involves
the inner product of a midgap state and a plane wave,
which is indeed proportional to the square root of the
width ξ of the midgap state.

3. Eliminating bulk excitations by Pauli blocking

As previously explained, if one starts with a Fermi sea
of |φ〉-atoms, Pauli blocking prevents any excitation from
the occupied bulk modes. This requires that the Fermi
energy εφ is sufficiently large. However, if it is too large,
one may transfer atoms from the |φ〉 states to the vacant
quasiparticle modes. Here we calculate the bounds on
εφ. We find that the lower and upper bounds are well
separated for strong enough interactions.

We can estimate a lower bound on εφ by calculating
the effect on the bulk mode b∗ with the smallest detun-
ing from resonance, which occurs at kF + k = kφ ≡

√
2εφ

when ω = ωmax [Fig. 3(b)]. The finite duration Landau-
Zener problem gives negligible transfer probability if

εF − εφ . ε+ − kFk0/2− 10 Ω
∣∣ūb∗kφ−kF ∣∣ . (23)

Similarly, the upper bound on εφ is set by requiring that
no particle is transferred from a filled |φ〉 state to an
empty midgap state. The smallest detuning for such a
coupling occurs at k = kφ−kF when ω = ωmin [Fig. 3(c)].

The transfer probability approaches zero if

εF − εφ & ε− + 3kFk0/2 + 10 Ω
∣∣ūgkφ−kF ∣∣ . (24)

The conditions in Eqs. (23) and (24) simplify for w . 2,
where ε− ≈ 0, ε+ ≈ 4kFk0/w, |ūgk| ≈

√
ξ sech(2ξk/k0),

and |ūb∗k | ≈ |k0/πk| for k <−k0/2 (details in Sec. III B).
Combining these estimates with Eq. (21) and using the
inequality kF − kφ & (εF − εφ)/kF > 0, we can write

Ω
∣∣ūgkφ−kF∣∣ < Ω

√
ξ . 0.1kFk0 , and (25)

Ω
∣∣ūb∗kφ−kF∣∣ . 1

π

ΩkFk0

εF−εφ
.

0.1

π
√
ξ

(kFk0)2

εF−εφ
≈ 0.4

π
3
2
√
w

(kFk0)2

εF−εφ
.

(26)

Substituting these upper bounds into Eqs. (23) and (24),
we find that the inequalities will be satisfied if

(5/2)kFk0 . εF−εφ .
(
4/w−1/2−√w/π3/2

)
kFk0 . (27)

Note that Eq. (27) gives only sufficient, not necessary,
conditions on the energy threshold εφ. In practice, the
bounds on εφ would be less stringent than in Eq. (27).

4. Bulk excitations without Pauli blocking

If all |φ〉 states are initially empty, the RF coupling will
excite particles from the occupied bulk modes to these
empty |φ〉 states. Here we estimate an upper bound on
the probability Pb of such excitations.

The coherence factors |ūjk| in Eq. (19) fall off as one
moves away from the Fermi point. Thus Pb is maxi-
mum for the bulk mode b+ which is resonantly coupled
to a |φ〉 state at the smallest magnitude of k, which oc-
curs for (kF + k)2/2 ≈ εF − ε+ [Figs. 3(b) and 3(c)], or

k ≈
√

2(εF − ε+) − kF . k+ ≡ −ε+/kF. For w . 2,
k+ ≈ 4k0/w (see Sec. III B). The corresponding coher-
ence factor is given by |ūb+k+ | ≈ |k0/πk+| ≈ w/(4π), which
is linear in w. In contrast, the coherence factors for res-
onantly coupled midgap modes (see Sec. IV 2) are given
by |ūgk| &

√
πw/16 sech(πw/8) ∼ O(

√
w) for small w.

Hence the coherence factors for bulk excitations fall off
much faster with stronger interactions (smaller w), which
means one can tune the coupling strength Ω so that the
RF sweep is adiabatic for midgap modes, but diabatic
for bulk modes.

In particular, at the lower bound of the coupling
strength for adiabaticity in Eq. (21), a Landau-Zener
analysis for the bulk mode b+ gives

Pb . 1−e−2π
∣∣ūb+k+ ∣∣2Ω2/ν ≈ 1−e−(2w/π2) cosh2(πw/8) , (28)

which falls toward zero as interactions are increased. For
w = 2, Pb . 0.5, and for w = 1, Pb . 0.2. Thus even
without Pauli blocking, one excites a small fraction of
the bulk modes at strong enough interactions.
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5. Condition for dynamical stability

In [27] we showed that a balanced soliton train has dy-
namical instabilities toward a uniform superfluid phase.
The instability consists of neighboring solitons approach-
ing one another and annihilating after a characteristic
lifetime set by the maximum instability rate ηmax. For
our protocol to work properly, the sweep duration τsw
must be short compared to this lifetime, i.e., τsw � η−1

max,
as otherwise the soliton train would decay before the
sweep is completed. In [27] we found an upper bound
on ηmax in the full BdG dynamics, ηmax . 2

√
ε+ε−.

For w . 2, this upper bound can be expressed as (see
Sec. III B)

ηmax . 2
√
ε+ε− ≈ kFk0f(w) , (29)

where f(w) ≈ 16w−1e−2π/w . (30)

Note that ηmax decreases sharply with w, as stronger
interactions stabilize the soliton train. The sweep dura-
tion is given by τsw = 2kFk0/ν. Hence, the condition
τsw � η−1

max will be satisfied if

1/f(w)� 2(kFk0)2/ν . (31)

Note that Eq. (31) is again a sufficient condition, not a
necessary one.

6. Implication for interaction strength

Combining the adiabaticity requirements in Eq. (21)
and the stability condition in Eq. (31), we obtain

1

f(w)
� 2(kFk0)2

ν
& 200

Ω2ξ(w)

ν
& 200 cosh2(2ξ(w))

(32)
[Recall, w parametrizes the interaction strength, f(w)
is given by Eq. (30), and ξ(w) is given by Eq. (22)].
To satisfy this inequality, one must have 1/f(w) �
200 cosh2(2ξ(w)), which occurs for w < 3/4, i.e., in the
strongly interacting regime. Quantitative calculations in
this regime may require going beyond the Andreev ap-
proximation. Nevertheless, our estimates should be ro-
bust. Firstly, the procedure itself rests on very generic
features which do not depend on the specifics of the
model, such as (i) the principle of Rapid Adiabatic Pas-
sage to transfer particles between two states [79–84], (ii)
a separation of energy scales between the localized and
bulk quasiparticle modes, and (iii) symmetry properties
of a soliton train. Therefore Eqs. (21), (23), (24), and
(31) remain valid in the full model. We have only invoked
the Andreev approximation in writing down expressions
for ξ(w) and f(w) in Eqs. (22) and (30), and in estimat-
ing the bounds in Eqs. (27) and (28). By numerically
solving the full BdG equations, we find good agreement
with these estimates at strong interactions. Further, as
we discussed earlier, stronger interactions yield a large

bulk gap, which increases the critical temperature of the
superfluid [31–34], thus reducing the effect of thermal
fluctuations which we have ignored. Hence, our proto-
col will have a high fidelity in the strongly interacting
regime. Note that experimentalists routinely tune the
atomic interactions from very small to very large values
using a Feshbach resonance [59].

7. Typical experimental parameters

As a specific example, suppose we would like to create
a C-FFLO state where adjacent domain walls are sepa-
rated by π/k0 ∼ 10 µm. This lengthscale is compatible
with phase imprinting, where achievable lengthscales are
ultimately limited by diffraction. We consider the param-
eters in [25] where 6Li atoms were trapped in quasi-1D
tubes with εF = 1.2 µK, or kF = 5.4 × 106 m−1. Then a
10 µm soliton spacing corresponds to k0/kF ≈ 0.05. To
ensure the soliton train is stable thoughout the sweep,
we require ηmaxτsw ≈ 1/20. Then Eq. (32) gives

1

f(w)
� 40(kFk0)2

ν
& 4000

Ω2ξ(w)

ν
& 4000 cosh2(2ξ(w)) .

(33)
Comparing the first and last terms, we get w . 0.54 or
kFa1D . 1.5, which could be set by tuning a magnetic
field around a Feshbach resonance [59]. For compari-
son, in [25] kFa1D ≈ 0.6. For kFa1D = 1.5, the insta-
bility rate is ηmax . kFk0f(w) ≈ 3.8 s−1, which gives
a sweep duration τsw ∼ 1/(20ηmax) ≈ 13 ms. During
this interval the frequency is to be varied over a range
∆ω = 2kFk0 ≈ 5 kHz, at a rate ν ≈ 3.8 × 105 Hz/s.
Equating the middle terms in Eq. (33) yields a Rabi fre-
quency Ω ∼ kFk0/(10

√
ξ ) ≈ 0.77 kHz. To suppress un-

wanted quasiparticle excitations, one can fill up all |φ〉
states with energy below εφ where, from Eq. (27), 0.4 µK
. εφ . 0.9 µK. These numbers are well within reach of
present-day experiments. Even if one starts with no |φ〉-
atoms, from Eq. (28) we find that the sweep will only
excite less than 11% of the bulk modes.

V. SUMMARY AND OUTLOOK

We have described a simple experimental protocol to
engineer long-lived FFLO states in a two-component gas
of cold fermionic atoms loaded in a quasi-1D trap. The
protocol consists of first preparing a train of domain walls
in a balanced superfluid by phase imprinting, then using
a radio-frequency sweep to selectively transfer the spin-↑
atoms near the domain walls to a third noninteracting
spin state |φ〉, leaving behind an FFLO state with ex-
actly one unpaired fermion per domain wall. Prior work
has shown that this engineered configuration is stable
[27]. By analyzing the different limiting factors, we have
shown that the protocol can be implemented with high fi-
delity for sufficiently strong interactions which are readily
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attainable in current experimental set-ups. It provides a
route to directly produce FFLO states in experiments in
a controlled manner and study their properties. Such a
direct approach complements the thermodynamic search
of the exotic state and contributes to the larger goal of
engineering many-body quantum states.

In describing the protocol, we have analyzed the case
where the frequency is swept over an interval ∆ω = 2kFk0

[Figs. 3(b) and 3(c)], as this is the shortest sweep which
is expected to transfer all of the particles from the lo-
calized modes. One can also sweep over larger frequency
intervals, but the analysis would have to be repeated to
ensure the broader sweep did not excite bulk modes.

Our procedure yields an FFLO state in the presence of
a gas of |φ〉 atoms. Since the |φ〉-atoms are very weakly
interacting, they should not affect the dynamics of the
soliton train. Alternatively, one could remove all |φ〉-
atoms after the sweep by a resonant optical pulse [102].

The generated FFLO state can be probed using a va-
riety of techniques that have been proposed in the liter-
ature [87, 90–92, 103–111]. For example, one can excite
collective modes by ramping to a different interaction
strength. If the ramp is fast compared to the bulk gap

ε+ ≈ 4kFk0/w, the domain walls will not have time to ad-
just their shape, which will excite a novel collective mode
where the width of each domain wall oscillates in time
[27]. The collective modes could be detected using spec-
troscopic or imaging techniques [61, 62, 90–92, 112, 113].

Our protocol could be generalized to create incom-
mensurate FFLO states which have less than one ex-
cess fermion per soliton, for example, by sweeping over
smaller frequency intervals such that only a fraction of
the midgap modes are resonantly driven during a sweep.
However, since the midgap modes are contiguous in en-
ergy, it would be more challenging to control the number
of unpaired fermions per soliton.

Finally, a recent study has shown that domain walls are
also stabilized in 3D when filled with unpaired fermions
[74], which could offer ways of extending our protocol to
higher dimensions.
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A. Sanpera, Phys. Rev. A 65, 043611 (2002).

[67] B. Wu, J. Liu, and Q. Niu, Phys. Rev. Lett. 88, 034101
(2002).

[68]  L. Dobrek, M. Gajda, M. Lewenstein, K. Sengstock,
G. Birkl, W. Ertmer, et al., Phys. Rev. A 60, R3381
(1999).

[69] S. Stellmer, C. Becker, P. Soltan-Panahi, E.-M. Richter,
S. Dörscher, M. Baumert, J. Kronjäger, K. Bongs, and
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