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It is known that, in the thermodynamic limit, the Chern number of a translationally invariant
system cannot change under unitary time evolutions that are smooth in momentum space. Yet a real
space counterpart of the Chern number, the Bott index, has been shown to change in periodically
driven systems with open boundary conditions. Here we prove that the Bott index and the Chern
number are identical in translationally invariant systems in the thermodynamic limit. Using the
Bott index we show that, in finite-size translationally invariant systems, a Fermi sea under a periodic
drive that is turned on slowly can acquire a different topology from that of the initial state. This
can happen provided that the gap closing points in the thermodynamic limit are absent in the
discrete Brillouin zone of the finite system. Hence, in such systems, a periodic drive can be used to
dynamically prepare topologically nontrivial states starting from topologically trivial ones.

I. INTRODUCTION

Topological insulators have attracted much attention
in the last decade [1, 2]. While they might appear as
equilibrium phases in some materials, applying a time
varying potential provides a flexible way to induce topo-
logical phases in insulators that are topologically trivial
otherwise. In particular, a system driven periodically
in time can exhibit so-called Floquet topological phases
[3–5]. For example, a high-frequency periodic drive can
modify the topological structure of energy bands giving
rise to a rich realm of exotic states [6–8]. A few experi-
ments have been carried out to explore topological phases
in periodically driven systems [9–11]. Closely related to
the model studied here, in Ref. [10] a driven Fermi sea of
ultracold atoms in a honeycomb lattice acquired a non-
trivial topology as predicted by the Haldane model [12].

The unitary time evolution of the topological proper-
ties of a Fermi sea, as it turns out, is fundamentally dif-
ferent from just tuning the Floquet Hamiltonian across
different phases. In Ref. [13], a no-go theorem was
proved for dynamics under a simple two-band Hamilto-
nian in two-dimensions (2D). It states that the topolog-
ical index—the Chern number—of a Fermi sea that is
in a pure state does not change during unitary dynamics
under rather general conditions. The system studied con-
sisted of spinless fermions on an infinite translationally
invariant (periodic boundary conditions) honeycomb lat-
tice. As a result, the Hamiltonian is block diagonal in the
crystal momentum space. At each crystal momentum k,

the Bloch Hamiltonian has the form Ĥk(t) = − ~Bk(t) · ~σ,

where ~σ are the Pauli matrices and ~Bk(t) is the pseudo-
magnetic field. If the initial state is pure, and both the
pseudomagnetic field and the pseudospin are smooth in
k-space, then by the no-go theorem the first Chern num-
ber is a constant of motion [13, 14], as seen in studies of
quantum quenches [15–17]. This implies that, in infinite
systems, an adiabatic annealing that changes the Chern
number can never be achieved [18].

Much work has been done to explain the change of
topology as observed in experiments. One approach is

to embed the out-of-equilibrium system in a dissipative
setting. This can be achieved by introducing a thermal
bath [19, 20] or dephasing noise [21]. Non-unitary evolu-
tions destroy coherence within the quantum state. Con-
sequently, the Hall conductance and a generalized version
of Chern number can change [21, 22]. Similar results
can be obtained in the context of the diagonal ensem-
ble [23, 24]. Another important point is that equivalent
formulations of a topological index in equilibrium may
not be equivalent any more out of equilibrium, and the
response function of the system can be contained in a
non-conserved formulation [15, 24–26].

Intriguingly, boundary conditions also appear to de-
termine whether a topological index can change under a
periodic drive, as demonstrated in the study of systems
with open boundary conditions [13]. In those systems,
which lack translational symmetry, the Bott index is a
topological index that can be used in place of the Chern
number. The Bott index is defined in real space and does
not require transitional invariance [27–29]. In Ref. [13],
when evolving a finite Fermi sea under a periodic drive
that was turned on slowly, it was found that the Bott
index can change from a value determined by the initial
Hamiltonian to that of the equilibrium Floquet bands.
Thus, for open boundary conditions (the case in experi-
ments), the Bott index is not a conserved quantity.

The contrast between the no-go theorem for infinite
translationally invariant systems and the fact that the
Bott index can change under unitary dynamics in finite
lattices with open boundary conditions motivate us to
further explore the relation between the Chern number
and the Bott index, and to study the time evolution of the
Bott index in finite lattices with periodic boundary con-
ditions. First, we reformulate the Bott index in momen-
tum space and prove that it is equivalent to the Chern
number in the thermodynamic limit. When written in
momentum space, the Bott index is nothing but the in-
teger formulation of the Chern number in finite lattices as
derived in Ref. [30] from lattice gauge theory. In addition
to being a gauge independent integer by definition, this
topological index has the advantage that, with increas-
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ing system size, it converges to the thermodynamic result
much more rapidly than the usually used discretized in-
tegration of the traditional Chern number. Our second
goal is to understand the dynamics of the Bott index in
finite translationally invariant systems under the same
model Hamiltonian as in Ref. [13]. We show that the
Bott index can change in incommensurate lattices, as it
does in systems with open boundary conditions. There
is a finite time scale for the turn on of the periodic drive
that enables this topological transition to occur. This
time scale diverges with increasing system size, as ex-
pected from the no-go theorem for infinite systems.

The presentation is organized as follows. In Sec. II,
we reformulate the Bott index in momentum space and
prove its equivalence with the Chern number in the ther-
modynamic limit. In Sec. III, we introduce the model
Hamiltonian, and use the Bott index and a finite-size
scaling analysis in translationally invariant lattices to de-
termine the phase diagram of the Floquet Hamiltonian
in the thermodynamic limit. The dynamical behavior of
the Bott index in finite translationally invariant systems
is studied in Sec. IV. A summary of our results is pre-
sented in Sec. V.

II. EQUIVALENCE BETWEEN THE BOTT
INDEX AND THE CHERN NUMBER

The Chern number of an energy band is defined as the
integral of the Berry curvature over the Brillouin zone
(BZ) [1, 31]

Ch(n) =
i

2π

∫
BZ

d2k ∇×An (k) , (1)

where n is the band index, An (k) := 〈un (k) |∇k |un (k)〉
is the Berry connection, and |un (k)〉 is the eigenstate of
the Bloch Hamiltonian at crystal momentum k in the nth
band. By definition, the Chern number is a topological
index for translationally invariant 2D systems. For 2D
systems that lack translational invariance, one can use
the Bott index introduced by Hasting and Loring [27] as
the analogue of the Chern number. This was done in
Ref. [13] to study topological properties of Fermi seas in
patch geometries and their unitary time evolution under
a periodic drive.

Consider a 2D lattice spanned by primitive (right-
handed) vectors ~aµ, µ = 1 and 2, with Lµ lattice sites
along each ~aµ such that it has L1 × L2 lattice sites. Let
lµ ∈ [0, Lµ) be the spacial coordinate along ~aµ such that
a lattice site (l1, l2) is at l1~a1 + l2~a2. One can define

the operators Û := e2πil̂1/L1 and V̂ := e2πil̂2/L2 , as well
as their projection onto a state of interest (given by P̂ ),

Ũ := P̂ Û P̂ and Ṽ := P̂ V̂ P̂ . The Bott index for such a
state is given by

Bott(P̂ ) =
1

2π
Im Tr ln(Ṽ Ũ Ṽ †Ũ†). (2)

The Bott index is well-defined in systems for which the
Chern number is not. The Bott requires neither trans-
lational invariance nor completely filled energy bands.
Yet, the Bott index of a conducting state is ill-defined
because the corresponding Ṽ Ũ Ṽ †Ũ† matrix is singular
[27]. As with the Chern number, a topologically triv-
ial state has zero Bott index, and a non-zero Bott index
counts the number of topologically protected edge modes
at the boundaries of the system [29].

In finite translationally invariant systems, one can
rewrite the Bott index in crystal momentum space.
Here we use the coordinate system (k1, k2) with kµ ∈
[0, 2π/aµ) being the component along primitive recip-

rocal vectors ~bµ, for which ~aµ · ~bν = 2πδµν . Our
set of k points of interest is within the parallelogram

bounded by ~b1 and ~b2, which is equivalent to the first
Brillouin zone. The infinitesimal momentum space dis-
tances between neighboring momentum space points are
δk1 = [2π/(L1a1), 0] and δk2 = [0, 2π/(L2a2)]. Let
q0 := k, k1 := k − δk1, q2 := k − δk2, q3 :=
k − δk1 − δk2. The operators Û and V̂ are in-
finitesimal translation operators in momentum space,
i.e., 〈ψn (k) |Û |ψm (k′)〉 = 〈un (k)|um (k′)〉 δq1,k′ and

〈ψn (k) |V̂ |ψm (k′)〉 = 〈un (k)|um (k′)〉 δq2,k′ , for a Bloch
state |ψn (k)〉 normalized as 〈ψn (k)|ψn′ (k′)〉 = δnn′δkk′ .

In the Bloch state basis, the matrix elements of
Ṽ Ũ Ṽ †Ũ† can be written as

〈ψn (k) |Ṽ Ũ Ṽ †Ũ† |ψn′ (k′)〉 = δkk′

∑
jlm

U02
njU23

jl U31
lmU10

mn′ ,

(3)

where Uαβnj := 〈un (qα)|uj (qβ)〉, with α, β = 0, 1, 2, and

3. Thus Ṽ Ũ Ṽ †Ũ† is block diagonal in momentum space.
The indices j, l,m run over filled bands for a given k.

For a single band, we then have that

Bott(n) =
1

2π

∑
k∈BZ

Im ln(U02
nnU23

nnU31
nnU10

nn) (4)

This expression was derived for the Chern number in fi-
nite translationally invariant systems in Ref. [30]. As
discussed there, the result of Eq. (4) in finite systems
converges much faster to the value of the Chern number
in the thermodynamic limit than the discretized version
of Eq. (1). In addition, Bott(n) is gauge independent.

The Bott index was shown to give the Hall conduc-
tance in Ref. [28]. Hence, it is equivalent to the Chern
number. Below, we give an elementary proof that, in the
thermodynamic limit, the Bott index is identical to the
Chern number. The only requirement for this proof is
that the occupied single-particle Bloch states be locally
C2 in momentum space.

First, we expand |un (qα)〉, with α = 1, 2, and 3, about
k. It gives

|un (q1)〉 = |un〉 − δk1
∂|un〉
∂k1

+
(δk1)

2

2

∂2|un〉
∂k2

1

+O
(
δk3

1

)
,

(5)
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where, in the right hand side, we omitted the momentum
argument as all kets and their derivatives are evaluated
at k (we follow this convention in the expressions below).
Similarly, one can expand |un (q2)〉 and |un (q3)〉. Plug-
ging those expansions in Eq. (3), one finds that the n 6= n′

matrix elements scale as 〈ψn (k) |Ṽ Ũ Ṽ †Ũ† |ψn′ (k)〉 ∼
O
[
(δk)2

]
, where we assumed that δk ∼ δk1 ∼ δk2. For

the diagonal entries, on the other hand,

〈ψn (k) |Ṽ Ũ Ṽ †Ũ† |ψn (k)〉 = 1 + δk1δk2

(
∂〈n|
∂k2

∂|n〉
∂k1

− c.c.

)
+ δk1δk2

∑
m

[
〈n|∂|m〉

∂k1

∂〈m|
∂k2
|n〉 − c.c.

]

+

[
(δk1)2

(∑
m

∣∣∣∣〈n|∂|m〉∂k1

∣∣∣∣2 − ∣∣∣∣∂|n〉∂k1

∣∣∣∣2
)

+ (x→ y)

]
+O(δk3). (6)

Given those results for the diagonal and off-diagonal
matrix elements of Ṽ Ũ Ṽ †Ũ†, one can evaluate Eq. (2)
using that, for a general matrix A decomposed as A =
1 + AD̄ + AO, where AD̄ is the diagonal part of A − 1
and AO is the off-diagonal part, one can write

Tr lnA = TrAD̄ + Tr[O(A2
D̄, A

2
O, AD̄AO)]. (7)

Since (Ṽ Ũ Ṽ †Ũ†)D̄ and (Ṽ Ũ Ṽ †Ũ†)O are order δk2 or

higher, it follows from Eq. (7) that Tr ln Ṽ Ũ Ṽ †Ũ† =

Tr(Ṽ Ũ Ṽ †Ũ†)D̄ + Tr
[
O
(
δk4
)]

. Taking the imaginary
part of the trace gives

Im Tr ln Ṽ Ũ Ṽ †Ũ† =
1

i

∑
n

∑
k1k2

δk1δk2

(
∂〈n|
∂k2

∂|n〉
∂k1

− c.c.

)
+O (δk) . (8)

In the limit L1, L2 → ∞,
∑
k1k2

δk1δk2 →
∫

BZ
d2k, and

all higher order terms vanish. The trace becomes the
integral of Berry curvature. Therefore, in the thermody-
namic limit, for a Fermi sea occupying all n 6 N bands

Bott(P̂n6N ) =
∑
n6N

Bott(n) =
∑
n6N

Ch(n). (9)

Hence, for a Fermi sea that is locally C2 in k space, the
Chern number and the Bott index are identical in the
thermodynamic limit. Each term of the sum in Eq. (4) is
simply the local Berry curvature times the area element
δk2. If the Fermi level is in the middle of a band, which
corresponds to a conducting state, some k points in the
Brillouin zone will have underfilled neighbors q1 and/or

q2. That k block is then singular and so is Ṽ Ũ Ṽ †Ũ†.
Thus in this case the Bott index is ill-defined. For Fermi
seas with a well-defined Bott index or Chern number,
these two topological indices are well-defined and equiv-
alent during unitary time evolutions under Hamiltonians
that are C2 in k-space.

III. MODEL HAMILTONIAN AND FLOQUET
TOPOLOGICAL PHASES

Having established the equivalence between the Bott
index and the Chern number, in what follows we study

the dynamics of the Bott index in systems with periodic
boundary conditions. Our goal is to understand how it
compares to the dynamics of the same topological index
in systems with open boundary conditions [13].

We consider a tight-binding model of spinless fermions
on a honeycomb lattice with nearest neighbor (〈i, j〉) hop-
ping and a sublattice staggered potential at half filling.
An in-plane circularly polarized electric field, which is
uniform in space, provides the time-periodic drive. In
units of ~ = 1, the Hamiltonian is

Ĥ(t) = −J
∑
〈i,j〉

[
eie ~A(t)~dij ĉ†i ĉj + H.c.

]
+

∆

2

∑
i∈A
j∈B

(n̂i − n̂j).

(10)

The 2D vector potential ~A(t) = A (sin Ωt, cos Ωt) ac-
counts for the electric field. It introduces a phase when
particles hop from site j to one of its nearest neighbors

sites i, separated by a distance d = |~dij |. The second

term in Ĥ(t), with site number operators n̂i, describes
the staggered potential (of strength ∆) between the A
and B sublattices in the honeycomb lattice. In a trans-
lationally invariant system, this Hamiltonian is block di-
agonal in momentum space. Each momentum block is

described by a pseudomagnetic field − ~Bk · ~σ acting on
the sublattice spinor (ĉk,A, ĉk,B)T .

When both A and ∆ are zero, the energy bands are
gapless at K and K’ in the Brillouin zone. For con-
venience, we set the lattice constants aµ to 1, and the
coordinates of K and K’ are ( 2π

3 ,
4π
3 ) and ( 4π

3 ,
2π
3 ), re-

spectively. Those band-touching points are protected by
the combination of inversion symmetry and time-reversal
symmetry. In the static case (A = 0), a nonzero ∆ intro-
duces a Bz of equal magnitude at K and K’, still related
by time-reversal symmetry, and opens a gap. In this
work, we set ∆ = 0.15J in order to be close to the exper-
imental parameters in Ref. [10]. Both static bands have
zero Chern numbers, i.e., they are topologically trivial.

The time-dependent electric field breaks time-reversal
symmetry. Its effect is manifest in the Floquet picture,
which follows after the Floquet theorem. The Floquet
theorem states that, for a Hamiltonian that is periodic
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in time Ĥ(t+T ) = Ĥ(t), the evolution operator over one
period can be written as

Û(t0 + T, t0) = exp[−iĤF (t0)T ], (11)

where ĤF (t0) is the time-independent Floquet Hamil-
tonian (it depends, in general, on the selected starting
time t0 defining the period) [32–34]. The eigenstates of

ĤF are stationary states of the driven system at strobo-
scopic times.

Under high driving frequencies Ω = 2π/T , ĤF can be
extracted from a high-frequency expansion [7, 34]. To
O(Ω−1), the rotating electric field renormalizes the near-
est neighbor hopping amplitude and induces next-nearest
neighbor (〈〈i, j〉〉) hoppings. The Floquet Hamiltonian
reads:

ĤF(t) = −JJ0(eaA)
∑
〈i,j〉

(
ĉ†i ĉj + H.c.

)
+
J2

Ω

∑
〈〈i,j〉〉

(
iKij ĉ

†
i ĉj + H.c.

)
+

∆

2

∑
i∈A
j∈B

(n̂i − n̂j) +O(Ω−2), (12)

where Jn are the Bessel functions of the first kind, and

Kij = sij

∞∑
n=1

2

n
J 2
n (eaA) sin

2nπ

3
. (13)

The sign sij is +(−) if the two-step hopping, going
around the hexagon corners, has the same (opposite) chi-
rality as the polarization of the electric field.

In momentum space, next-nearest neighbor hoppings
contribute to Bz of the Hamiltonian at K and K’. For
0 < eaA < 1.69, its sign is the opposite (same) to the
Bz generated by ∆ at K’ (K). As a result, the Floquet
band gap closes at K’ upon increasing the magnitude of
the vector potential. This results in a topological phase
transition in which the Chern number changes from 0 to 1
[see dashed line in Fig. 1(a)]. A second topological phase
transition in which the Chern number changes from 1
to 0, and the gap closes once again at K’, occurs upon
further increasing the magnitude of the vector potential.

Higher order terms in Ω−1 introduce further neigh-
bor hoppings that can, in turn, generate new topological
phase transitions if Ω is not too large. In Fig. 1(a), we
show the Chern number phase diagram (continuous lines)

obtained using a numerically exact calculation of Û(T, 0)
[13]. One can see that, as a result of terms O(Ω−2) and
higher, two additional phase transitions appear in the
regime studied. Interestingly, the corrections to the crit-
ical values obtained for the transitions between phases
with Chern number 0 and 1 are small. A detailed dis-
cussion of the phase diagram of the system studied here,
for ∆ = 0, can be found in Ref. [7]. We note that the
Chern number of a Floquet system does not directly give
the number of topologically protected edge states [35].
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Figure 1. (Color online) (a) Chern number phase diagram

in the driving frequency Ω and eaA plane, for ĤF obtained
from a high frequency expansion to O(Ω−1) (dashed lines) and
from numerically exact calculations (continuous lines). The
Chern number is computed using the Bott index formula in
Eq. (2) in finite commensurate systems that are sufficiently
large such that the result does not change (within machine
precision) with increasing system size. (b) Critical value of the
magnitude of the electric field eaA∗L, for the first topological
transition when Ω = 7J [black dot in (a)], in systems with
L1×L2 lattice sites plotted as a function of L1 = L2 ≡ L. (c)
Scaling of the critical value for incommensurate systems. We
plot ∆(eaA∗L) := ea(A∗L−A∗∞) vs L for lattices with L = 3ι+1
and L = 3ι + 2 (ι ∈ Z), as well as fits to ∆(eaA∗L) = γ L−2x

for L ≥ 10. The fits yield x ≈ 1.07 and 0.98, respectively.

In finite systems, the topological index of a Floquet
band can be calculated either using a discretized version
of the integration in Eq. (1) for the Chern number, or
using the Bott index in Eq. (2). As mentioned before,
the result of the Bott index calculation converges much
more rapidly to the thermodynamic limit result with in-
creasing system size [30]. How rapidly the critical value
A∗ (obtained using the Bott index) for the topological
transition converges depends on whether the momentum
at which the gap closes in the thermodynamic limit is
present in the discrete Brillouin zone of the finite sys-
tem. In Fig. 1(b), we plot results for the critical value
eaA∗L obtained for the first topological transition in sys-
tems with L1 = L2 ≡ L as a function of L (for Ω/J = 7).
Only lattices in which L = 3ι (ι ∈ Z) contain the K and
K’ points (are commensurate), where the Berry curvature
is concentrated near the transition. They can be seen to
produce a critical value that is system size independent
starting from L = 3. On the other hand, lattices with
L = 3ι+ 1 and L = 3ι+ 2 exhibit a power law approach
of the critical value to the thermodynamic limit result
[see Fig. 1(c)]. Whether K’ is included in the discrete
Brillouin zone of the finite system plays a fundamental
role in the unitary dynamics of the Bott index studied in
what follows.
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IV. DYNAMICS OF THE BOTT INDEX IN
FINITE SYSTEMS

As mentioned before, the Chern number (Bott index) is
a constant of motion in translationally invariant systems
in the thermodynamic limit. However, there is nothing
preventing the Bott index from changing during unitary
time evolutions in finite systems, even if those systems are
translationally invariant. One can consider two extreme
cases of dynamics: (i) In a sudden quench of a Fermi sea,
the finite system size limits the resolution of reciprocal
space. As a result, a quenched Fermi sea can develop
an increasingly complicated Berry curvature with time,
such that the Bott index calculated in finite systems may
be strongly dependent on time (for times larger than the
linear system size divided by the maximal group velocity)
and system size [14, 17, 25], and (ii) In a system driven at
a high frequency with a slowly increasing driving term,
the Bott index can change if the system is able to evolve
adiabatically in a Floquet picture [5, 36]. A finite time
scale for adiabatic evolution can only exist if the k point
at which the gap closes in the Floquet Hamiltonian (in
the thermodynamic limit) is absent in the finite system.

A note is in order about the computation of the Chern
number in finite systems out of equilibrium. When the
magnitude of the driving term is increased slowly (in a
system driven at high frequency), states away from the
band gap of the Floquet Hamiltonian mainly evolve adi-
abatically. If the new band that is generated (in the Flo-
quet picture) with increasing the strength of the driving
term changes topology, then the Berry curvature of the
original Fermi sea will accumulate about the gap clos-
ing point(s) and vary rapidly about it (them), in order
to observe the no-go theorem. The computation of the
Chern number using Eq. (1) in finite systems then be-
comes numerically unstable. The Bott index formula in
Eq. (2) should be the one used to study those systems
out of equilibrium.

In our numerical calculations, we turn on the vector
potential smoothly (its magnitude is increased linearly
from zero, A(t) ∝ t) to drive the ground state of the
static Hamiltonian into the ground state of the Floquet
one with Ch = 1, shown in Fig. 1(a). We only consider
driving frequencies greater than the bandwidth so that
the Floquet bands are ordered unambiguously. We work
in a regime in which eaȦ(t) � Ω. In this regime, one
can think of the evolution of the time-dependent state
as dictated by a slowly changing Floquet Hamiltonian
so that traditional concepts such as adiabaticity can be
applied [36].

The Bott indexes of two time-evolving Fermi seas in
which the magnitude of the electric field is slowly ramped
from eaA = 0 to 1 are plotted in Figs. 2(a) and 2(b) as a
function of eaA(t) (bottom labels) at stroboscopic times
t (top labels) for Ω = 7J . Figure 2(a) shows results
for a 150 × 150 (commensurate) lattice, while Fig. 2(b)
shows results for a 151 × 151 (incommensurate) lattice.
The Bott index of the commensurate lattice [Fig. 2(a)]
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Figure 2. (Color online) Bott index of the time-evolving wave-
function |Ψ(t)〉, and overlap between |Ψ(t)〉 and the ground
state of the instantaneous Floquet Hamiltonian |ΨF

GS(t)〉 as
a function of eaA(t) (bottom labels) at stroboscopic times t
(top labels). We also show how the lower band of the instan-
taneous Floquet Hamiltonian is occupied in the time-evolving
state. Specifically, we plot the occupation at the K’ point, the
lowest occupation of any k-state in the lower band excluding
the K’ point, as well as the average occupation of the k-states
in the lower band. (a) Results for a 150 × 150 (commensu-
rate) lattice. (b) Results for a 151 × 151 (incommensurate)
lattice. Note that the latter does not contain the K’ point so
no result is reported for its occupation. In both lattices, the
magnitude of the electric field is ramped up linearly from 0 to
eaA = 1 in 1000 driving periods, for Ω = 7J [corresponding
to the black dot in Fig. 1(a)].

observes the no-go theorem, namely, it is conserved dur-
ing the dynamics. On the other hand, the Bott index
of the incommensurate lattice [Fig. 2(b)] changes from
0 to 1 when the magnitude of the electric field exceeds
the critical value A∗ in Fig. 1(a). Namely, the initial
topologically trivial Fermi sea evolves into a topologi-
cally nontrivial state under unitary dynamics. A first
insight on the origin of the different behavior of the Bott
index in those two lattices can be gained by studying the
overlap between the time-evolving wavefunction and the
instantaneous Floquet ground state, also shown in Fig. 2.
For the commensurate lattice [Fig. 2(a)], that overlap is
essentially 1 (near adiabatic evolution) up to about A∗

but then, when A(t) becomes larger than A∗, the overlap
vanishes and the time-evolving state becomes orthogonal
to the instantaneous (topologically nontrivial) Floquet
ground state. On the other hand, for the incommen-
surate lattice [Fig. 2(b)], the overlap remains close to
1 (near adiabatic evolution) at all times. The smallest
overlaps occur about A∗, but they are still higher than
0.8 and can be made arbitrarily close to 1 by decreasing
the ramp speed.

For the commensurate lattice in Fig. 2(a), we also plot
the occupation of the K’ point of the lower band of the
instantaneous Floquet Hamiltonian in the time-evolving

state, obtained by computing
∣∣〈u(K’, t)|uFGS(K’, t)〉

∣∣2,
where |u(K’, t)〉 is the time-evolving wavefunction at time
t at K’ and |uFGS(K’, t)〉 is the ground-state wavefunction
of the instantaneous Floquet Hamiltonian at time t at
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K’. The occupation of the K’ point can be seen to vanish
when the magnitude of the vector potential exceeds A∗.
This is the reason behind the vanishing of the overlap
between the time-evolving wavefunction and the instan-
taneous Floquet ground state and, ultimately, behind the
conservation of the Bott index. The next lowest occupied
k-state of the Floquet ground-state band, also shown in
Fig. 2(a), is very close to 1. Namely, all but the K’ point
evolve (nearly) adiabatically during the dynamics. As a
result, the arithmetic mean of the occupation of k-states
of the Floquet ground-state band in the time-evolving
state is very close to 1 [see Fig. 2(a)].

For the incommensurate lattice in Fig. 2(b), for which
there is no vanishing gap in the Floquet Hamiltonian, the
minimally occupied k-state of the Floquet ground-state
band during the dynamics is very close to 1 at all times,
with the largest departure from 1 occurring when the
magnitude of the vector potential is about A∗ (similarly
to what is seen for the wavefunction overlaps). As for
the wavefunction overlaps, the final occupation can be
arbitrarily close to 1 if the ramp speed is decreased (the
gap provides a well defined time scale for adiabaticity).
In the incommensurate lattice [Fig. 2(b)], the average
occupation of k-states of the Floquet ground-state band
in the time-evolving state can also be seen to be very close
to 1. We should stress that the magnitude of the vector
potential at which the Bott index jumps in Fig. 2(b),
and the overlap vanishes in Fig. 2(a), can change if one
changes the ramping speeds. However, it converges to
A∗ when eaȦ� Ω.

Next, we study the Berry curvature of the static and
Floquet ground states, as well as the time-evolved Fermi
seas in finite systems. We compute them from each term
in Eq. (4), dividing by the area element δk2. The Berry
curvature of the static, topologically trivial, ground state
is shown in Fig. 3(a). In this case, the Berry curvature
is mostly zero everywhere in the band and then large
and positive (negative) about the K (K’) point. This
results in a vanishing Chern number. Figure 3(b) shows
the Berry curvature of a topologically nontrivial Floquet
ground state (corresponding to eaA = 1 and Ω = 7J). In
this case, the Berry curvature is once again mostly zero
everywhere in the band but then it is large and positive
about the K and K’ points (larger about K’). This results
in Ch = 1.

As previously discussed, when one increases the mag-
nitude of the electric field in our driven systems from 0,
the first topological transition in the Floquet Hamilto-
nian occurs via a band-gap closing at K’, as a result of
which Chern number changes from 0 to 1. As hinted by
our results in Fig. 2, something fundamentally different
happens to the Berry curvature about that K’ point when
one evolves unitarily the topologically trivial Fermi sea
of the static Hamiltonian by slowly ramping up the mag-
nitude of the electric field in commensurate and incom-
mensurate lattices. This is shown in Figs. 3(c) and 3(d),
respectively. In the time-evolved state of the commensu-
rate lattice [Fig. 3(c)], the Berry curvature close to (but
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Figure 3. (Color online) Berry curvature in the static, Floquet
and time-evolved Fermi seas of finite systems. The discrete
k-space is displayed in coordinates of the primitive recipro-
cal lattice vectors with unit lattice constants. K and K’ are
located at (k1, k2) = (2π/3, 4π/3) and (4π/3, 2π/3), respec-
tively. (a) Berry curvature of the static, topologically trivial,
ground state in a lattice with L = 900. (b) Berry curvature of
a Floquet, topologically nontrivial, ground state (eaA = 1 and
Ω = 7J) in a lattice with L = 900. (c) Berry curvature about
K’ in a time-evolved commensurate system with L = 150.
Note the accumulation of negative Berry curvature at K’. (d)
Berry curvature about K’ in a time-evolved incommensurate
system with L = 151. In (c) and (d), we show results from
the time-evolution of an initial topologically trivial Fermi sea
after the magnitude of the electric field is ramped up linearly
from eaA = 0 to 1 (with Ω = 7J) in 8000 driving periods.
Here, the ramp is 8 times slower than that in Fig. 2 to make
the Berry curvature about K’ indistinguishable (in the scale
of these plots) between (b) and (d).

not at) K’ is very similar to that in the Floquet Hamil-
tonian [Fig. 3(b)]. However, at K’ the Berry curvature
in the former is very large and negative, in contrast to
the positive Berry curvature in the Floquet Hamiltonian.
This is how the Bott index remains 0 during the dy-
namics. On the other hand, in the time-evolved Fermi
sea of the incommensurate lattice [Fig. 3(c)], the Berry
curvature about K’ is indistinguishable from that in the
Floquet Hamiltonian [Fig. 3(b)].

As mentioned before, our study focuses on a regime
in which the evolution of the time-evolving state is ef-
fectively dictated by a slowly changing Floquet Hamilto-
nian. Close to K’, the evolution is essentially a Landau-
Zener problem [18, 21, 36–38], in which the ground state
evolves under a level-crossing Hamiltonian

Ĥk(t) ∼ βktσ̃z + Vkσ̃x. (14)

The Hamiltonian (14) is written in the basis of the level-
crossing eigenstates, which are the eigenstates of σ̃z. βk
gives the rate at which the level crossing point is ap-
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Figure 4. Collapse of the final occupation of momentum states
near K’ to the Landau-Zener prediction (straight line). β

and V are extracted from ĤF [A(t)] before and after the gap
closing. In all simulations, the magnitude of the electric field
is turned on linearly from eaA = 0 to 1. We show results for
several ramping rates (6), lattice sizes (10, in which L ranges
from 600 to 16384), and values of k (about 10 for each lattice
size and ramping rate).

proached, and Vk is the perturbing off-diagonal term,
which is zero at K’ at the time when the magnitude of
the vector potential is A∗.

The probability PA to remain adiabatic, i.e., in the
ground state of the final Floquet Hamiltonian is given by
the Landau-Zener formula

PA(k) = 1− exp

(
−π|Vk|

2

βk

)
. (15)

The Landau-Zener parameters are extracted from HF (A)
calculated shortly before and shortly after A becomes
equal to A∗, A± which are ∆t away from each other (we
used eaA± = eaA∗ ± 0.0015 for the results shown). The
Floquet Hamiltonians for those two values of A allow us
to extract both βk from [HF,k(A+)−HF,k(A−)]/∆t and
Vk from [HF,k(A+) +HF,k(A−)]/2. Results obtained for
1−PA, for several values of k, lattice sizes, and ramping
rates, are plotted in Fig. 4 vs π|Vk|2/βk. They exhibit
an excellent collapse to the Landau-Zener prediction.

The different behaviors between commensurate and in-
commensurate, and, ultimately, finite and infinite size
lattices have a geometric interpretation. An infinite-size
lattice has a continuous Brillouin zone. The eigenstates
of a filled band can be mapped onto a closed surface.
The topological index of a given band reflects the topo-
logical charges enclosed by it [1, 39]. In a time-evolving
traceless two-band model, one can map each state spinor[
cos θk(t)

2 , sin θk(t)
2 eiφk(t)

]T
onto a point in three dimen-

sions, with polar coordinates [|Ek(t)|, θk(t), φk(t)], where
Ek(t) is the energy of the state in the instantaneous (Flo-
quet in our case) Hamiltonian. The topological charge,

corresponding to a band-touching point, sits at the ori-
gin. Under a slow evolution, the surface “follows” the
time-dependent Hamiltonian Ĥk(t), i.e., it shifts and de-
forms. But whenever a patch of the surface moves close
to the origin, the dynamics of that patch freezes due to
vanishing Ek’s. Consequently, topological charges always
stay on the same side of the surface corresponding to the
original energy band. Hence, the Chern number of such
a filled band cannot change under unitary time evolu-
tions, d Ch(n, t)/dt = 0. Intuitively, this geometric pic-
ture should generalize to higher dimensions for systems
with more than two bands.

For a finite system, one has a discrete set of points
rather than a closed surface. Therefore, the topological
charge can easily “leak” through during the dynamics.
This is allowed to happen unless the critical k-point(s)
at which Ek(t) vanishes are present to prevent it, such as
K’ in our commensurate lattices. In general, the critical
k-points are model dependent, e.g., they can depend on
the presence of disorder and boundary conditions. For
the transition to the Ch = −2 phase in Fig. 1(a), the
location of the three band touching points depends on
both the strength of the staggered sublattice potential
and the driving frequency. In such situations, one usually
will not find that the Chern number is conserved during
dynamics in finite lattices.

V. SUMMARY

Using elementary methods, we proved that the Bott
index (generally used to study systems that lack trans-
lational symmetry) is equivalent to the Chern number in
translationally invariant systems in the thermodynamic
limit. As a byproduct of our proof, we showed that, when
written in momentum space, the Bott index is nothing
but the Chern number introduced in Ref. [30] for finite
translationally invariant systems.

We used the Bott index in finite honeycomb lattices
with periodic boundary conditions to determine the topo-
logical phase diagram of the Floquet Hamiltonian of
driven spinless fermions with nearest neighbor hoppings
and a staggered potential. We then studied the dynamics
of initial topologically trivial Fermi seas when the driving
term is slowly ramped through a topological phase tran-
sition. We showed that while the Bott index is conserved
in commensurate lattices, those that contain the k-point
at which the gap closes in the Floquet Hamiltonian, it
is not conserved in incommensurate lattices. The lat-
ter behavior was the one observed in systems with open
boundary conditions [13]. We argued that, in incommen-
surate lattices, adiabatic dynamics allows the Bott index
to change at the critical value computed for the Floquet
Hamiltonian. Hence, regardless of the no-go theorem for
the thermodynamic limit [13], topological phase transi-
tions can occur in finite translationally invariant systems
provided there is a well defined adiabatic limit for the
effective Floquet dynamics.
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