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We have studied the attractive Fermi mixture of a 6Li-40K gas in one dimension (1D) using the continuous
matrix product states variational ansatz and have obtained the T =0 phase diagram. We predict an axial density
profile that contains four distinct phases trapped-induced along 1D tubes, which is more intricate than those
observed in 1D mass-balanced systems or in higher dimensional gas clouds. The parameter regimes explored
are realistic in view of possible future experiments. This is the first application of continuous matrix product
states to a nonintegrable fermionic system.

I. INTRODUCTION

Two-spin mixtures of degenerate atomic Fermi gases [1–3]
have been of extraordinary interest during the past decade —
to both atomic and condensed matter physicists — exhibit-
ing a number of remarkable physical phenomena such as the
crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid
to a Bose-Einstein condensate (BEC) [4–8], fermionic super-
fluidity [9–12], and exotic pairing [13].

In regards to exotic pairing, a one-dimensional (1D) system
of ultracold spin-imbalanced (N↑ 6= N↓) Fermi mixtures has
been noteworthy, as a large portion of its phase diagram is pre-
dicted [14, 15] to be in the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superfluid phase [16–18] where paired particles have
unequal chemical potentials. In response to the theoretical
predictions, Liao et al. [13] have created a two-spin mixture
of ultracold 6Li gas, confined in 1D tubes arranged in a 2D
optical lattice. The agreement between their data and the the-
oretical [19–21] density profiles suggests that their quasi-1D
system is a close representation of the true 1D system [22] that
realizes a spin-imbalanced FFLO-like state. While the FFLO
phase has yet to be confirmed experimentally with certainty,
it can potentially be a general pairing phenomenon, found
not only in ultracold atomic systems, but in condensed mat-
ter [23–25], nuclear physics [26], and color superconductivity
in dense quark matter [27–29] as well.

In addition to spin-imbalance, a mass-imbalance (m↑ 6=m↓)
in the system can be another source for the Fermi surface
mismatch between the two species which can lead to FFLO
pairing. Such systems naturally occur, for instance, in quan-
tum chromodynamics where quarks having different masses
can bind together, or in a neutron-proton condensate in nu-
clear physics. In ultracold atomic systems, the 6Li and 40K
gases are particularly well controlled by the experimentalists
[30–33], lending the 6Li-40K mixture as one of the preferred
model systems for theoretical investigations [34–38] of mass-
imbalanced Fermi gases.

In this paper, we present the zero-temperature phase dia-
gram for the attractive 6Li-40K 1D gas system and, in turn,
make an intriguing prediction of a trap-induced multiple phase
separation in the density profile, which can be realized with
an ultracold 6Li-40K mixture confined in 1D tubes. The
phases include two oppositely polarized FFLO-like superflu-

ids, which is not expected for equal-mass systems in one or
higher dimensions.

Our numerical tool is the continuous matrix product states
(cMPS) variational ansatz [39, 40], which is a recent develop-
ment of the continuum analogue of the matrix product states
(MPS) ansatz [41–43]. The MPS is equivalent to the density
matrix renormalization group (DMRG) algorithm [44, 45],
which is arguably the most powerful numerical technique to
date for simulating quantum lattice systems in low dimen-
sions. The cMPS ansatz has demonstrated its capability in
predicting ground-state properties of 1D continuum systems
of interacting bosons [39, 46], Luttinger liquids [47, 48], rela-
tivistic fermions [49], spin-imbalanced fermions [50], as well
as excitation properties of bosons [51]. It has also proved use-
ful in the study of fractional quantum Hall states [52]. While
there have been previous studies on mass-imbalanced Fermi
gas mixtures in 1D using bosonization [53], finite tempera-
ture studies with mean-field approximation [54, 55], exact di-
agonalization [56], time-evolving block decimation (TEBD)
[57], and DMRG [58, 59], the cMPS gives a direct means to
study 1D continuum systems without resorting to lineariza-
tion of spectrum or discretization of space to apply numerical
techniques that were intrinsically tailored for lattice systems
[60, 61].

II. MODEL AND RESULTS

A. Model Hamiltonian and T = 0 Phase Diagram

In order to investigate the ground state properties of the 6Li-
40K gas system in 1D, we consider the Gaudin-Yang Hamil-
tonian for a delta-function interacting spin-1/2 Fermi gas in a
second-quantized form,

Ĥ =
∫ L

0
dx ∑

σ=↑,↓

(
h̄2

2mσ

∂xψ̂
†
σ ∂xψ̂σ −2∆ψ̂

†
σ ψ̂

†
σ̄

ψ̂σ̄ ψ̂σ

)
, (1)

where {ψ̂σ (x), ψ̂
†
σ ′(x

′)} = δσσ ′δ (x− x′). The two fermionic
species have masses m↑ and m↓, and L is the system length.
This system is known to be integrable using the Bethe ansatz
technique for the mass-balanced case only. We use the
pseudo-spin convention where ↑ and ↓ designate the 6Li
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Figure 1. (Color online) The five distinct phases in the one-
dimensional attractive 6Li-40K gas system.

and 40K atoms, respectively. The σ̄ ’s denotes the conjugate
spin to σ , and the interaction strength is ∆ > 0 for an at-
tractive interaction between the two species. We use units
where h̄ = e = kq = 1, for the Planck constant, the electron
charge, and the Coulomb constant, respectively. Our mass
unit is m0 = 480/23 amu. In these units, 2m↑ = 23/40 and
2m↓ = 23/6, and the reduced mass mr = m↑m↓/(m↑ + m↓)
and the bound state energy are the same as in the mass-
balanced system (2m↑ = 2m↓ = 1); namely, mr = 0.25 and
εb = 8mr∆

2/h̄2 = 2∆2.
A phase diagram for the attractive 6Li-40K 1D gas can

be obtained from minimizing the average free-energy density
f = 〈F̂〉/L of the system at T =0, where

F̂ = Ĥ−
∫ L

0
dx
[
µ
(
n̂↑(x)+ n̂↓(x)

)
+h
(
n̂↑(x)− n̂↓(x)

)]
, (2)

with n̂σ (x) = ψ̂
†
σ (x)ψ̂σ (x), µ =

(
µ↑+µ↓

)
/2 and h =(

µ↑−µ↓
)
/2. Besides the vacuum (i.e. N↑ = N↓ = 0), there

are five distinct phases (Fig. 1): (i) light fully polarized state
when N↑ > N↓ = 0, (ii) light partially polarized state when
N↑ > N↓ > 0, (iii) fully paired state when N↑ = N↓ > 0, (iv)
heavy partially polarized state when N↓ > N↑ > 0, and (v)
heavy fully polarized state when N↓ > N↑ = 0.

Figure 2 shows the ground-state phase diagram as deter-
mined numerically using cMPS. The dashed line that origi-
nates from point Ω indicates the µ and h values where the
Fermi points for the two species coincide in a non-interacting
system, shifted vertically down by ∆2 for the attractive sys-
tem. Along this line, µ = 1

2

(
1+m↑/m↓
1−m↑/m↓

)
h−∆2, we expect a

BCS type of conventional superfluid, and the line indeed pen-
etrates through the fully paired region.

In the mass-balanced system (Fig. 2 inset), the ↑ and the ↓
phases are symmetric about h = 0. For the mass-imbalanced
6Li-40K system, on the other hand, in addition to the lack of
symmetry about h = 0, the heavy partially polarized phase
occupies a large portion of the phase diagram and extends
deep into the positive- h region, whereas the light partially
polarized phase is narrow and much smaller. Within a local-
density approximation, decreasing µ at a fixed h is equivalent
to moving from the center of the harmonic trap to its edge. For
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Figure 2. (Color online) T =0 phase diagram for an attractive 6Li-
40K gas mixture in 1D, obtained from cMPS with a matrix dimen-
sion of D = 16. The five distinct symbols and colors indicate the
distinct ground state phases as determined from the cMPS, and the
shaded area indicates the vacuum phase. The dashed circle (centered
at point O) indicates the contour where the data points in Fig. 5 have
been sampled from. The points X, Y, Ψ, Σ, Φ, and Ω along the
dashed circle C denote its intersections with the phase boundaries.
The phase boundaries are estimates and were drawn as a guide to the
eye only. Inset: T =0 ground state phase diagram for a mass-balanced
system (adapted from Ref. 14).

h > ∆2, one could create a sufficiently deep harmonic poten-
tial that encompasses four distinct phases — a heavy partially
polarized core, followed by fully paired, light partially polar-
ized and light-polarized shells — as discussed in Sec. II B.

Figure 3 is a plot of the pair correlation function, which
is an indicator of superfluidity. Indeed, the fully-paired state
shows a behavior that is typical of a conventional BCS type of
superfluid. The non-zero asymptotics is due the unfixed par-
ticle number in the cMPS variational ansatz, — likeable to a
grand-canonical ensemble calculation in which the system is
considered in contact with a particle reservoir. On the other
hand, for both the light and heavy partially polarized gases,
the correlations show persistent spatial oscillations, displaying
the characteristics of a Fulde-Ferrell (FF) type of superfluid
with the medium-distance finite-range behavior ∼ ei(q↑+q↓)x;
cf. Ref. 62. Remark the absence of the expected long-distance
algebraic decay. It was replaced by an exponential decay due
to the MPS-nature of the ansatz, — which captures well the
local properties, but requires a finite-D scaling analysis to
recover the correct long-distance behaviors in the infinite-D
limit. For lattice systems, this is the complementary situa-
tion to what is found with other tensor-network states like the
multi-scale entanglement renormalization ansatz, or MERA (a
continuum version of which is being actively pursued [63]),
that are better adapted to the study of critical properties [64].
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Figure 3. (Color online) Pair correlation function Cpair(x) ≡
〈ψ†
↑ (0)ψ

†
↓ (0)ψ↓(x)ψ↑(x)〉 for conventional-superfluid, light-FFLO

and heavy-FFLO phases, obtained from (µ/∆2,h/∆2) values
(1.707,-0.2929), (1.866,-0.5), and (1,0), respectively. For the FFLO
correlations, the circles and squares indicate the real parts of the
correlations, and the dash and dash-dot lines indicate the imaginary
parts. The wavelengths of the oscillations for the light and the heavy
FFLO are consistent with the formula λ = 2π/|q↑+q↓|. The corre-
lators have been normalized by n2, where n = n↑+n↓.

B. Phase Separation

Figure 4(a) is a theoretical density profile of an attractive
6Li-40K gas in a 1D tube, which is essentially a 1D gas con-
fined by an axial harmonic potential. Within a local-density
approximation, it corresponds to a vertical cut on the right
side of Fig. 2 (going through the point marked as Y). Experi-
mentally, this configuration can be realized, for instance, with
1D tubes of ultracold atoms arranged in a 2D optical lattice
as was done in Refs. 13 and 65. Our prediction for the imbal-
anced mixture of 6Li-40K gas atoms shows a four-shell struc-
ture in 1D tubes. As depicted graphically in Fig. 4(b), there
are three phase separations across the semi-length of the 1D
tube, where its core is in the heavy-FFLO state, followed se-
quentially by the fully paired, the light-FFLO and the light-
polarized gas shells. Contrary to the case of mass-imbalanced
systems in 1D, only one outer shell of either fully paired or
fully polarized gas has been observed outside a partially po-
larized core for the two-spin 6Li mixture in 1D [13]. In 3D,
at most three concentric shell structures have been observed
experimentally [10–12, 66] — a fully paired superfluid core,
followed (in special circumstances) by a partially polarized
shell, and surrounded by an outermost shell of a polarized gas
— while certain theoretical works predict the possibility of a
coexistence of more than three phases [67, 68].

Let us provide a simple physical picture for the emergence
of a four-shell structure starting by considering a 1D system
of two-component, mass-imbalanced, non-interacting Fermi
gas confined by a harmonic potential. The probability density
of finding each particle exponentially decays as it goes away
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Figure 4. (Color online) (a) Axial density profile of an attractive,
spin-imbalanced 6Li-40K gas in a 1D tube of semi-length r0 for an
effective magnetic field value of h= 1.9∆2 and an axial harmonic po-
tential U(z) = 3∆2(z/r0)

2, where ∆ is the interaction strength. The
dashed lines indicate the boundaries between different phases occur-
ring. The densities have been obtained using a local-density approxi-
mation, where the chemical potential values range from µ = ∆2 (cen-
ter of tube) to −2∆2 (edge of tube). (b) A pictorial representation of
the four distinct phases simultaneously coexisting inside a 1D tube.

from the center of the trap, and the decay length is greater for
the lighter specie. Therefore, in a system with a low global
polarization, one could expect the density of the heavier par-
ticles to be higher than the lighter ones near the center, and
vice versa away from the center. The main noticeable effects,
density-wise, of an attractive interaction would be the emer-
gence of a finite fully-paired region which would have been
a single point along the z-axis for the non-interacting system,
and the appearance of fully polarized wings. (Of course super-
fluidity is another consequence, as discussed below, but that
requires the measurement of correlations.)

Figure 2 indicates that the four-shell structure can be found
with an effective field h > ∆2 and a harmonic potential hav-
ing a sufficient depth. In specifications similar to those in
past mass-balanced ultracold-atoms experiments, the density
profile in Fig. 4(a), for instance, is predicted to be realizable
with a total number of approximately 250 atoms in a 1D tube
of length 100 µm, polarization P = (N↑−N↓)/(N↑+N↓) of
2.5%, and interaction strength ∆≈ 4.2×10−9.

III. METHOD

A. Continuous Matrix Product States

Our results have been obtained using the cMPS variational
ansatz for a system of two-component fermions in a 1D ring



4

or segment of length L, defined as,

|Ψ〉= Traux

[
Pe

∫ L
0 dx

[
Q(x)⊗Î+∑σ Rσ (x)⊗ψ

†
σ (x)

]]
|Ω〉 (3)

where Q(x), Rσ (x)∈CD×D and act on a D-dimensional aux-
iliary space, Î is the identity operator on the Fock-space, Traux
is a trace over the auxiliary space, Pexp is a path-ordered
exponential, and |Ω〉 is the Fock-space vacuum state.

We follow the approach that we have reported in Ref. 50,
and we shall outline just the modifications applied to our orig-
inal ansatz. We shall work on the large-L limit, in which the
form of the cMPS ansatz can be indepedent of the details of
the boundary conditions on the system [69]. In order to ac-
commodate the possibility of spontaneous symmetry breaking
properties such as charge density waves (CDW) and/or spin
density waves (SDW), we have introduced new variational pa-
rameters ασ and βσ and have replaced the Rσ matrices to
have the spatial dependance

Rσ (x) = Rσ

(
cosασ eiqσ x + sinασ e−i(qσ x+βσ )

)
, (4)

extending our originally proposed plane-wave ansatz
Rσ (x) = Rσ eiqσ x. The spatially constant matrices Rσ should
satisfy the regularity conditions

{
R↑,R↓

}
= 0 and R2

σ = 0.
When ασ = nπ/2 (n ∈ Z), we recover the phase modulated
Rσ (x). This expression for Rσ (x) gives the density of
species as,

〈n̂σ (x)〉= nσ [1+ sin2ασ cos(2qσ x+βσ )] (5)

where nσ is the spatial average of 〈n̂σ (x)〉. Using the
gauge freedom [40] of the cMPS, we chose Q(x) = iH −
1
2 ∑σ R†

σ (x)Rσ (x), where the variational Hermitian matrix H
was chosen to be spatially independent for simplicity. The
expressions for the expectation values are,

〈ψ†
σ (x)ψσ (x)〉= Tr[Pe

∫ x
0 dyT (y)rσ (x)Pe

∫ L
x dyT (y)]

〈∂xψ̂
†
σ (x)∂xψ̂σ (x)〉= Tr[Pe

∫ x
0 dyT (y)tσ (x)Pe

∫ L
x dyT (y)] (6)

Cpair(x) = Tr[c1(0)Pe
∫ x

0 dyT (y)c2(x)Pe
∫ L

x dyT (y)],

where,

rσ (x)≡Rσ (x)⊗ R̄σ (x)
T (x)≡Q(x)⊗ I + I⊗ Q̄(x)+∑

σ

rσ (x)

tσ (x)≡ (∂xRσ (x)+ [Q(x),Rσ (x)])⊗ c.c. (7)
c1(x)≡ I⊗ R̄↑(x)R̄↓(x)
c2(x)≡R↑(x)R↓(x)⊗ I,

and I is a D×D identity matrix.
Contrary to our earlier work [50], our new ansatz breaks

the translational invariance of the matrix T (x). This results in
expressions that contain exponentials of integrals of T (x) as
in Eq. (7), instead of simplified expressions, such as eT (L−x).
Although this generealization is intuitive, we will show a sim-
ple derivation of the expression for the norm of |χ〉 using the

standard MPS formalism. The fermionic cMPS can be written
in a discretized form [39] with N = L/ε ,

|χ〉=
3

∑
i1,··· ,iN=0

Tr
(

Ai1
1 · · ·A

iN
N

)
|i1〉⊗ · · ·⊗ |iN〉 , (8)

where ε = xi+1− xi. Unlike bosonic systems where the num-
ber of particles at any given site is unlimited, the dimension
of the local Hilbert space for the two-component fermions is
4 (due to the Pauli exclusion principle),

|0〉= | 〉
|1〉=

√
εψ̂

†
↑ | 〉

|2〉=
√

εψ̂
†
↓ | 〉 (9)

|3〉= εψ̂
†
↑ ψ̂

†
↓ | 〉 ,

where | 〉 is the unoccupied state, and the matrices A are related
to the cMPS matrices Q and Rσ as

A0
j = 1+ εQ j

A1
j =
√

εR j↑

A2
j =
√

εR j↓ (10)

A3
j =

ε

2
(
R j↑R j↓−R j↓R j↑

)
.

Using the adjoint of (8),

〈χ|= ∑
i1,...,iN

〈i1|⊗ · · ·⊗〈iN |Tr
(

Āi1
1 · · · Ā

iN
N

)
, (11)

the norm of (8) can be computed as

〈χ|χ〉= ∑
i1,··· ,iN

∑
j1,··· , jN

Tr
(

Ai1
1 · · ·A

iN
N

)
Tr
(

Ā j1
1 · · · Ā

jN
N

)
×(〈 j1|⊗ · · ·⊗〈 jN |)(|i1〉⊗ · · ·⊗ |iN〉)

= ∑
i1,...,iN

Tr
(

Ai1
1 · · ·A

iN
N

)
Tr
(

Āi1
1 · · · Ā

iN
N

)
= ∑

i1

Tr
(

Ai1
1 ⊗ Āi1

1

)
∑
i2

Tr
(

Ai2
2 ⊗ Āi2

2

)
· · ·∑

iN

Tr
(

AiN
N ⊗ ĀiN

N

)
= exp(εT1)exp(εT2) · · ·exp(εTN)+O(ε2) (12)

where Ti ≡ I⊗ Q̄i +Qi⊗ I+Ri↑⊗ R̄i↑+Ri↓⊗ R̄i↓. In the limit
of ε → 0, the expression (12) can be written as

exp(εT1)exp(εT2) ...exp(εTN) = exp

(
ε ∑

i
Ti

)
(13)

= exp
(∫ L

0
dxT (x)

)
,

where the integral
∫ L

0 dxT (x) in the exponential reduces to T L
in the case where T (x) = T . Our modified ansatz (Eq. (4))
gives a T (x) that is inhomogeneous in space, but the spatially
varying parts of T (x) have simple exponential forms that can
be analytically integrated with ease. Moreover, those spatially
varying terms give oscillatory non-extensive contributions to
the integral over the system length L, that can be discarded
in the large-system-size limit [70]. In addition, it turns out
those terms do not even appear in the converged solutions for
homogeneous systems and are present only when we induce
them by introducing an oscillatory field or chemical potential.
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Figure 5. (Color online) (a) Spatial average of the T =0 free en-
ergy density at the points along circle C in Fig. 2, obtained from
a Bogoliubov–de Gennes mean-field calculation and the cMPS with
D = 4 to 20. Inset: Relative improvement of the free energy density
variational estimate as D is increased, at the point Z in the dashed
circle in Fig. 2. The improvement is defined as |( fD− fD−4)/ fD|,
where fD is the free energy density at point Z for the bond dimen-
sion D. (b) Ground state free energy density for the mass-balanced
system, at the points along the dashed circle C in Fig. 2 inset. The
solid brown curve is the exact result obtained from Bethe ansatz. (c)
Relative improvement of the ground-state free-energy density for the
mass-balanced system, at the point Z on circle C in the inset of Fig. 2.

B. Computations and Numerics

In our energy-minimization routine, we have assumed that
there is no special relation between q↑ and q↓. Such relations
may occur, for instance, when nσ is an integral multiple of
nσ̄ . While our ansatz is able to describe stable states hav-
ing CDW’s and/or SDW’s, we did not find any ground state
having CDW’s or a SDW’s from minimizing Eq. (2) in the ab-
sence of any symmetry breaking perturbation, different from
the reports that used lattice models [53, 57] that assume much
denser systems [71].

Figure 5(a) is a plot of the spatial average of the ground-
state free-energy density along the circle C in the phase dia-
gram (Fig. 2) from cMPS with bond dimensions ranging from
4 to 20; Bogoliubov-de Gennes (BdG) mean-field calculations
are also shown for comparison. At the fully polarized regime
(from point X to Y), which is equivalent to a non-interacting
single specie Fermi gas, the free-energy approximations from
BdG and all bond dimensions of cMPS agree and coincide.
On the other hand, there are notable variational improvements
in the free energy at other regimes in going from BdG to cMPS
and while increasing bond dimension. Moreover, it is evident
that the cMPS variational estimates are converging and the
improvements that result from increasing D are already very
small for D≥ 20 as seen in the inset of Fig. 5(a).

We have also plotted the free-energy density for the mass-

balanced system in Fig. 5(b) along the circle C in the inset
of Fig. 2. An exact solution is available for the equal-mass
case, drawn as a solid brown curve, and provides a validation
test of convergence for the cMPS results. The corresponding
energy-improvement plot at point Z is shown in Fig. 5(c). We
see that the trend of energy improvement (as a function of D)
for the mass-imbalanced system is similar to that of the mass-
balanced system. From this, we can infer the reliability of
our findings — the phase diagram and the prediction of the
four-shell structure — for the 6Li-40K system to be compara-
ble to that of our results for the mass-balanced system, which
we have discussed in detail in Ref. 50. The computational
cost for each data point (with D = 16) was on the order of
a day (wall time), on a single Intel Xeon X5650 2.66 GHz
processor with an Nvidia Tesla M2070 graphical processing
unit (GPU). Notice that fermionic cMPS are notoriously more
difficult to optimize than bosonic ones. A significantly im-
proved optimization algorithm for the bosonic case has been
reported recently [72], and it would be an interesting ques-
tion whether those ideas can be efficiently applied also to our
two-component fermionic ansatz.

IV. CONCLUSIONS AND OUTLOOK

We have used a novel fermionic cMPS variational ansatz
to compute the ground state phases of the attractive 6Li-40K
gas in 1D as a function of the effective chemical potential
and the effective magnetic field. We have argued the valid-
ity of our calculations by comparing the free-energy densities
from various bond dimensions (and also the BdG mean-field
results). The two partially polarized states (light and heavy)
were found to be inhomogeneous superfluids of the FFLO
type. Using a local density approximation, we predict that the
6Li-40K system, realized for instance with a 2D optical lattice
superimposed on a harmonic trap, could exhibit an intriguing
four-shell structure along 1D tubes of 6Li-40K gas — simulta-
neously displaying light-polarized, light-FFLO, fully paired,
and heavy-FFLO phases — thus displaying higher complexity
than the mass-balanced case where only two-shell structures
are predicted and seen. Finding oppositely polarized phases
at the center and the edges of the 1D tubes would be the im-
mediate initial hallmark for experimental tests of our predic-
tions. This is one of the first applications of the cMPS on a
nonintegrable model, demonstrating its potential as a versatile
numerical tool for systems of ultracold atomic gases confined
to one dimension.
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