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We demonstrate that current experiments using cold bosonic atoms trapped in one-dimensional
optical lattices and designed to measure the second-order Rényi entanglement entropy S2, can be
used to verify detailed predictions of conformal field theory (CFT) and estimate the central charge c.
We discuss the adiabatic preparation of the ground state at half-filling and small hopping parameter
J/U , where we expect a CFT with c = 1. We provide two complementary methods to estimate and
subtract the classical entropy generated by the experimental preparation and imaging processes.
We compare numerical calculations for the classical O(2) model with a chemical potential on a 1+1
dimensional lattice, and the quantum Bose-Hubbard Hamiltonian implemented in the experiments.
S2 is very similar for the two models and follows closely the Calabrese-Cardy scaling, (c/8) ln(Ns),
for Ns sites with open boundary conditions, provided that the large subleading corrections are taken
into account.

PACS numbers: 05.10.Cc, 11.15.Ha, 11.25.Hf, 37.10.Jk, 67.85.Hj, 75.10.Hk

I. INTRODUCTION

The concept of universality provides a unified approach
to the critical behavior of lattice models studied in con-
densed matter, lattice gauge theory (LGT) and experi-
mentally accessible systems of cold atoms trapped in op-
tical lattices. Conformal field theory (CFT) [1, 2] offers
many interesting examples of universal behavior that can
be observed for lattice models in two [3–5], three [6], and
four [7, 8] dimensions. Practical simulations for these
models unavoidably involve a finite volume that breaks
explicitly the conformal invariance. However, this sym-
metry breaking follows definite patterns dictated by the
restoration of the symmetry at infinite volume and al-
lows us to identify the universality class. In view of the
rich collection of interesting CFTs, it would be highly de-
sirable to study their universality classes using quantum
simulations. In order to start this ambitious program,
one needs a simple concrete example to demonstrate the
feasibility of the idea.

In this article, we propose to use the setup of ongoing
cold atom experiments to quantum simulate the O(2)
model with a chemical potential and check the predic-
tions of CFT for the growth of the entanglement entropy
with the size of the system corresponding to the uni-
versality class of the superfluid (SF) phase. The O(2)
model is an extension of the Ising model where the spin
is allowed to move on a circle, making an angle θ with
respect to a direction of reference. This is briefly re-
viewed at the beginning of Sec. II. This model can be
used to describe easy plane ferromagnetism and the com-
pactness of θ leads to topological configurations called
vortices. Their unbinding provides a prime example of a
Berezinski-Kosterlitz-Thouless transition [9, 10] in a way
that has also been advocated to apply for gauge theories
near the boundary of the conformal window [11]. When

space and Euclidean time are treated isotropically, this
model has important common features with models stud-
ied numerically in LGT to describe relativistic systems
in the continuum limit. The O(2) model is not strictly
speaking a lattice gauge theory, however it is the zero
coupling limit of the Abelian Higgs model in the sense
defined in Ref. [32]. It would not be difficult to extend
the procedure proposed here to related lattice gauge the-
ory models. Quantum simulating this model and study-
ing experimentally the CFT predictions would be a cru-
cial first step towards applying similar methods for LGT
models.

In the following, we show that these goals can be
achieved by measuring the entanglement entropy of a
simple Bose-Hubbard (BH) model in a very specific re-
gion for the adjustable couplings. The entanglement en-
tropy measures the correlations between degrees of free-
dom in different regions of a system, is an important tool
[12] in assessing the phase structure and the finite-size
scaling. For a CFT in one space and one time (1+1)
dimension, the ground state entanglement entropy in-
creases logarithmically with the spatial volume of the sys-
tem and its subsystems [12–17]. Using basic CFT results,
Calabrese and Cardy [14] established that the coefficient
of proportionality is in general the central charge mul-
tiplied by a rational number depending on the type of
entropy and the boundary conditions (CC scaling). The
central charge, denoted c, is of primordial importance in
CFT. It characterizes the universality class and is present
in a variety of physical observables [2, 14].

It has been proposed to use a quantum gas micro-
scope to study the second-order Rényi entropy S2 of
one-dimensional fermionic Hubbard chains [18, 19] at
half(quarter)-filling which seem consistent with c = 1(2).
S2 is a measure of the departure from purity ( ρ̂2 6= ρ̂)
for a reduced density matrix and is defined in Sec. III.
Recently, manipulations of twin copies of small one-
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dimensional chains of cold bosonic 87Rb atoms trapped in
optical lattices have allowed experimental measurements
of S2 [20, 21] using a beam splitter method [22, 23]. In
these experiments, the SF phase is reached by increas-
ing the hopping parameter J to values having the same
order of magnitude as the onsite energy U . It is impor-
tant to realize that in order to see a clear correspondence
between the BH and O(2) model, one needs J/U � 1.
Some examples are given below. However, the feasibility
of the measurements is restricted by the fact that very
small values of J can be problematic because of disorder
or finite-temperature effects. We argue that a reason-
able compromise is to take J/U ' 0.1. In this regime, it
is shown in the Appendix and in a more detailed study
[24] that the finite size scaling is easier to resolve near
half-filling. Note that for bosons, half-filling means twice
more sites than particles, while for spin-1/2 fermions it
means one particle per site.

The fits of numerical values of S2 at half-filling are
presented in Sec. III. Experimental measurements have
been performed for small chains of four [20] and six [21]
atoms and only slightly larger sizes are expected to be
within experimental reach in the near future. In the dis-
cussion we focus on experiments with 16 sites or less. An
important feature of S2 with open boundary conditions
[24] is that the subleading corrections are large and de-
cay slowly with Ns (see Eq. (6) below). Knowing these
corrections is essential to extract the leading CC scaling
using Ns accessible in experiments.

In Sec. IV, we discuss the experimental setup to reach
adiabatically the ground state at half-filling. We then
discuss methods to estimate and subtract the classical
entropy generated by the experimental preparation and
imaging processes. The region of the phase diagram near
half-filling and small J/U offers rich possibilities that
complement the existing experiments at unity-filling and
larger J/U [20, 21]. New possible directions such as non-
adiabatic preparation (sudden expansion) and the inclu-
sion of fermions are briefly discussed in the conclusions.

II. MODELS

In this section, we remind the definition the O(2)
model and explain how it can be quantum simulated
with a simple BH model for sufficiently large chemical
potential. A more general discussion of the connection
between the O(2) and BH models can be found in [25].
The O(2) model shares many features with other abelian
LGT models. In 1+1 dimensions, its partition function
reads:

Z =

∫ ∏
(x,t)

dθ(x,t)

2π
e−S , (1)

with the action

S = −βτ
∑
(x,t)

cos(θ(x,t+1) − θ(x,t) − iµ)

−βs
∑
(x,t)

cos(θ(x+1,t) − θ(x,t)), (2)

and sites on a Ns ×Nτ rectangular lattice labeled (x, t).
In LGT, space and Euclidean time are treated on the
same footing, a remnant of the Lorentz invariance ex-
pected in the continuum limit. For these reasons, it is
often considered in the isotropic limit where βs = βt.
The von Neumann entanglement for the isotropic model
has been calculated numerically [26] using tensor Renor-
malization Group methods [25, 27].

In order to connect the O(2) model with quantum sim-
ulators, it is possible to take a highly anisotropic limit
βτ � βs of the transfer matrix where the time becomes
continuous and we can identify a quantum Hamiltonian
[25, 28–31] :

Ĥ =
U

2

∑
x

L̂2
x − µ̃

∑
x

L̂x − 2J
∑
〈xy〉

cos(θ̂x − θ̂y) , (3)

with [L̂x, e
iθ̂y ] = δxyeiθ̂y . These commutation relations

can be approximated with finite integer spin [25]. In the
following, we use the spin-1 and spin-2 approximations
for numerical calculations. This approximation if justi-
fied for the regime considered below (µ̃ ' U/2 � J),
where the states with a large angular momentum play
an inessential role. Quantum simulators involving two
species of bosonic atoms have been proposed for the spin-
1 approximation [25, 32]. Note that for reasons explained
in the next paragraph, we only consider models with a
single species of boson in the rest of the paper. This
effort is directly related to recent attempts (for recent
reviews see Refs. [33–35]) to develop quantum simula-
tors for models studied in LGT. Note that the non-zero
eigenvalues of L̂ come in pairs with opposite signs. When
µ̃ = 0, the sign of these eigenvalues plays no role and
there is an exact invariance under the charge conjuga-
tion which implies the existence of anti-particles.

On the other hand, when µ̃ is large and positive, the
states with negative eigenvalues play a minor role in nu-
merical calculations. If we omit these states, we can re-

place L̂x by the occupation number nx and eiθ̂x by the
creation operator a†x in Eq. (3). We then obtain the
simple BH Hamiltonian:

Ĥ =
U

2

∑
x

nx(nx − 1)− J
∑
x

(a†xax+1 + h.c.). (4)

This approximate correspondence already discussed in
the literature [30, 31] is supported by results presented
below. In the following, we focus on the region of the
phase diagram where µ̃ ' U/2 � J illustrated in Fig.
1. In this regime, the particle occupancies 0 and 1 domi-
nate for BH (hard core limit) and there is an approximate
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correspondence with the spin-1/2 XX model which is in-
tegrable and has a central charge c = 1 [12, 13]. Note
that in order to compare with experiment, we have fixed
µ̃ = U/2 and we will then work in the canonical approach
with a fixed number of particles. In the grand canonical
approach, near the tip of the SF phase, the changes in
µ̃ necessary to change the number of particles are very
small.
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FIG. 1. (color online) S2 for O(2) with Ns = 16 and OBC.
Laid over top are the BH boundaries between particle number
sectors.

III. THE SECOND-ORDER RÉNYI ENTROPY

Recent cold atom experiments [20, 21] have measured
the second-order Rényi entropy

S2(A) ≡ − ln(Tr(ρ2A)) , (5)

for a variety of subsystems A and open boundary condi-
tions (OBC). The reduced density matrix ρ̂A is obtained
by tracing over the complement of A. CFT provides se-
vere restrictions on the dependence of S2 on the size of
the system and the subsystem [14–17, 36]. In the follow-
ing, we restrict ourselves to systems with an even number
of sites and a subsystemA of size Ns/2. Fits of other sub-
systems are discussed in in the appendix and in a more
detailed study [24]. Fig. 1 displays S2 for Ns = 16 as a
function of J/U and the chemical potential. The lower
(upper) light part is the Mott phase with particle den-
sity λ = 0 (1), and the 15 plateaus corresponding to the
particle number sectors 1, 2, . . . , Ns− 1 in the SF phase
in between are visible. The boundaries of the SF phase,
µ̃/U = 1/2±2J/U at small J , follow from a perturbative
calculation and are consistent with Refs. [37, 38] for BH
at larger J . In the following, we focus on the half-filling
region which is more or less horizontal in the SF region
and can be reached numerically at arbitrarily small J/U .

Since existing experiments only allow a very limited
number of sites, it is crucial to take into account sub-
leading corrections. Using existing results [14–17, 36] for
subsystems of size Ns/2, we consider the form:

S2(Ns) = K +A ln(Ns) +
B cos

(
πNs

2

)
(Ns)p

+
D

ln2(Ns)
, (6)

where K, A, p, B, and D are fitting parameters. Of
these parameters, only A is universal; however, p is ex-
pected to follow certain special relations between p values
for the first order Rényi entropy (von Neumann entropy)
and the second order Rényi entropy for both open and pe-
riodic boundary conditions (see Ref. [24] and references
therein). For OBC, the CC scaling predicts A = c/8.
In order to verify this prediction, we have calculated S2

at half-filling for J/U = 0.1 for the two models con-
sidered with the Density Matrix Renormalization Group
(DMRG) method [39, 40] using the ITensor C++ library
[41] For the O(2) model, the results were cross-checked
[24] with tensor Renormalization Group methods [25–27].

If we use the numerical data for Ns up to 64, we ob-
tain A = 0.1263 for O(2) and 0.1278 for BH which is
close to the CC prediction 0.125 for c = 1. The differ-
ence between the two models can be reduced significantly
by decreasing J/U , which also brings A closer to 0.125
[24]. In order to test the predictive ability of the fit for
smaller spatial sizes we have reduced the maximal value
Nmax
s of Ns from 64 to smaller values, down to 12. The

results for S2 and A are shown in Fig. 2 which suggests
that the estimates converge slowly to the CFT value as
Nmax
s increases. It has also been noticed that if J/U is

increased to J/U ' 0.3 for BH, the sign of D changes in
a way that seems almost independent of the other sub-
leading corrections used. In this region of parameters,
the periodic corrections are smaller which may facilitate
the estimate of c, however the close connection with the
O(2) model is lost.

IV. EXPERIMENTAL SETUP

We now proceed to explain the proposed experimental
setup. We consider an optical lattice experiment with
single-particle resolved readout and local manipulation
of the optical potential, similar to Ref. [20]. In the ex-
periment, two copies of the one-dimensional many-body
state of interest are prepared in adjacent rows of an op-
tical lattice, and global and local Rényi entropies can be
measured by a beamsplitter operation implemented via
a controlled tunneling operation between the two copies
(Fig. 3a). The parity of the atom number in one copy
after the beamsplitter operation gives access to the quan-
tum mechanical purity [23].

BH systems with tunable parameters U and J and
well-defined particle number are realized in current ex-
periments with one particle per site. Fig. 3b shows a
proposed scheme to achieve half-filling at J/U ≈ 0.1:
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FIG. 2. (color online) (top) S2 at half-filling with OBC for
O(2) and BH with J/U = 0.1. The solid lines are the fits
for BH and O(2). (bottom) Values of A as a function of the
maximal value of Ns used in the fit, the band represents a
positive departure of 5 percent from the expected value 0.125.

Np bosons are initialized in the Mott regime J � U ,
as in current experiments. We additionally superimpose
a harmonic confinement and two sharp, confining walls
separated by Ns sites, which define the boundaries of the
system and may be realized using holographic techniques
as in Ref. [20]. After the tunneling is increased to the
desired value (J/U ≈ 0.1), we adiabatically remove the
harmonic confinement. This step allows the population
to smoothly redistribute from the center of the system to
the edges and realizes the ground state with uniform den-
sity and hard wall boundary conditions. We have verified
that for realistic experimental parameters of U/h = 1 kHz
and J/h = 100 Hz, the sequence in Fig. 3 b) with Ns = 8
requires an adiabaticity time scale of only ∼ 12 ms and
we estimate that even the largest systems with Ns = 64
can be prepared in approximately one second. Alterna-
tively, techniques based on optical superlattices may be
able to prepare lattice ground states at half-filling [42].

After preparing twin tubes with half-filling in their
ground state and applying the beamsplitter operation,
one can measure the number of particles modulo 2 at
each site x of a given copy (ncopyx ) [20], and use the re-
sult [23]:

exp(−S2) = Tr(ρ2A) = 〈(−1)
∑

x∈A ncopy
x 〉 , (7)

to calculate S2.
The probability for parity (−1)nx = ±1 is (1 ±

exp(−S2))/2. As S2 increases, more cancellations occur
and one needs on the order of exp(2S2) measurements to
overcome the fluctuations. From Fig. 2, and assuming
Ns to be less than 16 S2 is of order 0.7 or less. Ns ≤ 16
means less than eight particles at half-filling. Using the

copy 2

copy 1

I. State preparation 

III. Parity readout

II. Interference 

a) b)
Preparation sequence
initialization

homogeneous system

reduce lattice

walls + harmonic confinement

beamsplitter

++++ --- -

--++ -++ -

FIG. 3. (color online) Measuring entanglement entropy in
optical lattices. a) Two copies of a quantum state |Ψ〉 inter-
fere under a beamsplitter operation, and site-resolved number
measurements reveal the local parity P̂ and entanglement en-
tropy. b) Proposed state preparation for BH systems at half-
filling, here for 4 atoms on 8 sites. Particles indicated by
wavefunctions are initialized in a deep optical lattice, where
the local environment can be shaped via harmonic confine-
ment and sharp features projected with a spatial light modu-
lator. As the lattice depth is reduced, the particles delocalize
but are confined by repulsive walls.

supplementary material of Ref. [21], we estimate that
the classical entropy per particle is of order 0.05. For
this range of parameters, the maximal measured S2 is
less than 1.1. For N independent measurements, we find
that the statistical error is

σS2
=
√

(e2S2 − 1)/N . (8)

For the maximal value S2 = 1.1, it takes about 800 mea-
surements to reach σS2 ' 0.1. Due to the logarithmic
growth of S2, the number of measurements only needs to

increase like N
1/4
s to maintain a desired accuracy, which

is not a prohibitive growth.
In addition to the statistical errors, one needs to take

into account that finite temperature as well as prepara-
tion and manipulation errors contribute a classical en-
tropy Sclass.. Assuming that this classical entropy is lin-
ear in the number of particles in the system, it can be
estimated by making use of an approximate particle-hole
symmetry: near half-filling, S2(Ns) of the ground state is
in good approximation symmetric in the particle number
about Np = Ns/2. By measuring Sexp.2 (Ns) for a range of
particle numbers in the vicinity of Ns/2, the excess clas-
sical entropy per particle in the experiment can be deter-
mined. Subtracting this estimate of the classical entropy
from the experimentally measured Sexp.2 gives a corrected
estimate of the ground state entanglement entropy Scorr.2 ,
which we compare to CFT via Eq. (6). For the system
sizes considered here, deviations from an exact particle-
hole symmetry are small and exhibit a regular behavior
at zero and finite temperature [43]. Understanding and
fitting these effects is important to get estimates of Scorr.2
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with errors less than 0.02 [44].
In order to give an idea of possible experimental out-

comes, we have numerically studied the sensitivity of the
fit results of Eq. (6) to statistical errors in the measured
values of S2. By repeatedly fitting synthetically gener-
ated data (SGD) with Gaussian noise on S2 of magnitude
σS2

as illustrated in Fig. 4 (left), we find that it trans-
lates into errors of the fit approximately as σA = 3.1σS2

for a global fit of the central charge involving data up to
Ns = 16. To reach a statistical uncertainty in A compa-
rable to systematic errors of the order 0.02, the statistical
error on σS2 has to be on the order of 0.005.

Alternatively, we can try to fit Sclass.. For this pur-
pose, we have considered finite temperature (T ) effects in
Fig. 4 (left) for T = 0.2J and 0.4J , which are on the or-
der of temperatures reached in current experiments [45].
Remarkably, these effects can be fitted by adding only
one term linear in Ns. If Sclass. generated during the
experiment follows this linear behavior, it may be used
to determine some effective temperature. It is shown in
the appendix that the finite temperature effects become
more important as we decrease J . Note that by including
a term linear in the system or sub-system size in the fit
to take into account the effects from the thermal entropy,
the value of A found in the absence of thermal entropy
effects is changed so that the high degree of agreement
found between the fit parameter and CFT is lost, regard-
less of the quality of the fit. In order to maintain the
agreement between the CFT prediction for c, and the
value of c found by fitting, additional corrections must
be included.
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DMRG T= 0. 4J

SGD T= 0
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FIG. 4. (color online) S2 at half-filling for BH with J/U = 0.1
and SGD with random Gaussian fluctuations with σS2 = 0.02.
(left): vs. ln(Ns) for a subsystem of size Ns/2 with the solid
line corresponding to a fit of the SGD from Eq. (6). (right):
vs. the subsystem size ` for Ns = 8; the solid line corresponds
to a fit of the SGD using the formulas of Ref. [46]. Same
quantities for T = 0.2J and T = 0.4J .

So far we have only used the values of S2 corresponding
to a subsystem of size Ns/2. CFT also provides predic-
tion for arbitrary subsystem sizes ` with 1 ≤ ` ≤ Ns − 1
which are described in the appendix. The large oscilla-
tions when ` is changed for Ns = 8 are shown in Fig. 4
(right). Finite-T effects can be fitted with a single ad-

ditional term linear in `. Importantly, the experimental
measurements of the parities at each site shown in Eq.
(7) allow us to calculate S2 for all possible subsystems
without extra measurements. Estimates of c from nu-
merical calculations at fixed Ns fits in other models have
up to 20 percent errors [24, 47]. Knowing S2 for all the
subsystems also allows us to calculate the mutual infor-
mation [18, 20], where the Sclass. contributions cancel.

V. CONCLUSIONS

In conclusion, we have shown that the simple BH
model which is implemented in current experimental
measurements of S2 can be used as a quantum simulator
for the classical O(2) model with a chemical potential.
We showed that the region of the phase diagram near
half-filling and small J/U offers rich possibilities that
complement the existing experiments at unity-filling and
larger J/U [20, 21]. The changes in S2 due to the size
of the system or the subsystem show strong periodic os-
cillations which are of the same order of magnitude as
the average S2 for Ns ≤ 16. We provided complemen-
tary methods to estimate and subtract Sclass. from Sexp.2 .
Existing experiments could immediately confirm the pe-
riodic patterns found in the numerical calculations and
fits. Accurate determination of c would require larger
statistics or a suitable use of the complete information
about the subsystems. Conformal symmetry connects
disparate physical systems from condensed matter and
LGT. While this equivalence is usually apparent in the-
ory in the thermodynamic limit, we have shown that the
basic equivalence between the BH model and the classical
O(2) model can already be identified in present cold-atom
experiments. Our proposed method could enable the first
direct verification of conformal scaling in an experimen-
tally accessible system.

New directions should be pursued. Half-filling initial
states can also be obtained by a sudden expansion. The
presence of additional approximate conserved charges
makes the thermalization non-trivial and interesting [48–
51]. The possibility of revivals in the time-dependent
S2(t) for time scales of the order of 200 ms for J/U = 0.1,
a duration about 10 times longer than current experi-
ments [21], is under study. The techniques discussed here
for the bosonic case can also be applied to Fermi-Hubbard
systems [18], for which optical lattice experiments with
single-site resolution are rapidly becoming available [52–
55]. It would be desirable to develop specific procedures
to study models with other values of c (Ising, ZN clock,
Potts) or with O(3) symmetry with a chemical potential,
which have a similar phase diagram [56], and could be
quantum simulated [57]. More insight on conformal sym-
metry could be gained by studying particle number fluc-
tuations [58–60]. The entanglement entropy can also be
calculated in pure gauge theories using standard Monte
Carlo methods [61]. Methods for calculating the entan-
glement entropy in the presence of fermion determinants
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have been designed on the lattice [62] and in the contin-
uum [63].

Appendix: Fits of Sn

This appendix aims to provide background calculations
done for the Bose-Hubbard (BH) and O(2) model that
give empirical evidence to the claims made in the main
text. The main text put forward that in the right region
of coupling space (i.e. small enough hopping J relative
to the on-site repulsion, U) at half-filling, it is possible to
quantum simulate the O(2) model using a single species
Bose-Hubbard model, and in said simulation, measure
the Rényi entanglement entropy and subsequently the
conformal central charge, c. We considered the BH and
O(2) models at half-filling, however in this appendix the
O(2) model only makes an appearance in Fig 5.

The choice for half-filling was made because of the
following: Near the boundaries of the Mott insulator
lobes with the superfluid phase the Rényi entropy takes
on a constant value of ln(2). Between each lobe there
are Ns − 2 boundaries denoting the particle number in
the chain, with an approximate symmetry around Ns/2
particles (i.e. half-filling for bosons). This number has
the clearest signal for the entanglement entropy (see Ref.
[24]) and therefore all work here, and in the main text,
was done at half-filling. In addition, all work here and in
the main text was done with open boundary conditions.
However, while this is more easily realized in experiment,
the second order Rényi entropy with open boundary con-
ditions has much larger fluctuations than the von Neu-
mann entropy (See Ref. [24]).

Here we first consider fits to the second order Rényi
entanglement entropy, S2, across a range of J/U values
to better understand the dependence on J/U . Next we
consider fits made to data across the entire range of sys-
tem sizes, Ns, and across all subsystem sizes, l. These
fits span the entire Ns-l plane and aim to explain how we
decided to specifically focus on the case l = Ns/2. We
report the average relative error for fits to large and small
systems. We mention some investigation into taking fi-
nite temperature effects into account in experiments. Fi-
nally we discuss how we used synthetic Gaussian fluctu-
ations to simulate errors on experimental data and esti-
mate the error that would be incurred on measuring the
central charge.

In order to understand how the fits were influenced by
J/U , we considered fits of S2 across a range of J/U val-
ues. These fits were done with DMRG data for Ns = 4 up
to Ns = 64. We fit the second order Rényi entanglement
entropy with a subsystem size of l = Ns/2 and compared
the coefficient of logarithmic scaling, A, between the BH
and O(2) models for various finite-size correction terms.
The A values as a function of J/U can be found in Fig. 5
with a correction term proportional to 1/ ln2(Ns) which is
predicted by conformal field theory (CFT) [17]. We con-
sidered additional corrections like 1/Ns, 1/ ln(Ns), etc

0.0 0.2 0.4 0.6
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0.112

0.116

0.12

0.124

0.128

A
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FIG. 5. (color online) The A values from fits to S2 with
open boundary conditions for Bose-Hubbard data and O(2)
spin model data with a spin-1 truncation at half-filling. The
horizontal line is the conformal field theory prediction. The A
values were extracted from a fit to Eq. A.1 with a correction
term proportional to 1/ ln2(Ns). The farthest point to the
left is at J = 0.005, and the lines through the data are meant
to guide the eye.

. . . We found some features were robust across differ-
ent functional forms for the corrections. For larger J/U
the BH A values tended to decrease monotonically, while
the O(2) A values seem to increase. There appears to
be a crossing between the BH data and the CFT predic-
tion around J/U ≈ 0.35. However at small J/U , only
the correction ∝ 1/ ln2(Ns) showed a tendency towards
A2 ≈ 1/8 as J/U → 0, a soluble limit where c = 1. The
choice for J/U = 0.1 for quantum simulation is a nice
compromise since ideally the smaller the J/U the better
for the mapping between BH and O(2), however, for ex-
perimental purposes too small a value of J is inconvenient
because of the associated long time scales and sensitivity
to uncontrolled disorder, and finite temperature effects
are larger at smaller J/U .

At this point, it’s important to reiterate that calcu-
lations done in the rest of this text specifically refer to
the BH model. A deeper investigation into the O(2) spin
model can be found in Ref. [24].

CFT gives predictions for the scaling of the Rényi en-
tropy as a function of subsystem size. Eq. A.1 gives the
leading order prediction along with a term believed to
account for finite-size effects and parity oscillations [46].
Importantly, the experimental measurements of the pari-
ties at each site shown in Eq. 7 in the main text allow us
to calculate S2 for all possible subsystems without extra
measurements. The possibility of using these additional
(but statistically correlated) results to reduce the overall
statistical error on the estimate is under study.

We explored S2 as a function of system size, Ns, and
subsystem size, l, in the BH model. As an example we
have the subsystem data plotted for two different system
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FIG. 6. (color online) S2 for the Bose-Hubbard model at
J/U = 0.1, with open boundary conditions. Here the data
from Ns = 32 and 64 is plotted together as an example of the
oscillatory behavior of the data as a function of the subsystem
size, l.

sizes, Ns = 32 and 64, in Fig. 6. From the plot one
can see that for small l and l ≈ Ns, the amplitudes are
almost independent of Ns, however near l ≈ 12 the data
sets depart. We attempted fits using

Sn(Ns, l) = An ln

{
Ns sin

[
πl

Ns

]}
+B (A.1)

+
C

Npn
s

cos(πl)

∣∣∣∣sin [ πlNs
]∣∣∣∣−pn

+ fn(Ns, l)

as well as including the order 1/l corrections [46],

Sn(Ns, l) = An ln

{
4(Ns + 1)

π
sin

[
π(2l + 1)

2(Ns + 1)

]}
+B

(A.2)

+
C

Npn
s

cos(πl)

∣∣∣∣sin [ π(2l + 1)

2(Ns + 1)

]∣∣∣∣−pn
+ f ′n(Ns, l)

where f ′n and fn are correction terms. We performed
global fits across the entire Ns-l plane in order to take
full advantage of the data.

The largest discrepancies between the fit and the data
appear at small Ns, with discrepancies remaining on the
boundary (small l and l ≈ Ns) and lesser error near the
center of the chain at larger values of Ns. We then con-
sidered the removal of points from the boundary (points
from small l and l ≈ Ns) in the pattern shown in Fig 7.
When fitting to the entire data set we first remove a single
point from the left and right (1 and Ns− 1) and perform
a fit. Starting over, we then remove a single point from
Ns = 4 on both sides, but two points from all larger Ns
and perform a fit. Starting yet again we remove a single
point from both sides for Ns = 4, two points from both

1 2

3 4

FIG. 7. How points are removed when preforming a global fit
to the entire data set to determine the influence of the bound-
ary points on the average relative error. Here the system size
increases in the vertical direction (Ns), and the subsystem
size increases in the horizontal direction (l). The first four
steps are shown.

sides for Ns = 6, and three points from either side for
all larger Ns and perform a fit. We continue this until
only the center points from Ns/2 remain. This allows us
to identify the contributions to the error from the points
away from the center of the chain.

In order to measure the error on the fits we used the
average relative error

(Relative Error)2 =
1

N

N−1∑
i=0

(
yi − f(xi)

yi

)2

(A.3)

for N data points, with yi the dependent data, xi the
independent data, and f the fit. This measure has the
advantage of being dimensionless. The average relative
error for two examples of Ns = 64 and 16 is found in
Fig. 8. In this Figure we see for small Ns (right) that
as the maximum number of points removed following the
procedure above, nmaxr , approaches Ns/2−1 the relative
error takes a minimum. We see the optimum fit for the
entire data set (left) takes place when all points except
the center ones have been removed for small Ns, and a
“fan” of points remain for larger Ns. When considering
fits with f and f ′ 6= 0 we again tried various, typical
functional forms. These included corrections ∝ 1/Ns,
1/N2

s , and 1/ ln(Ns) as well as corrections from [64]. All
of these corrections obtained similar relative errors.

We considered the effects of a finite temperature for a
few cases on the Rényi entropy. An example of the finite
temperature effects on the scaling with the system size
is shown in Fig. 9. As one can see the finite tempera-
ture effects are much more pronounced for smaller J/U .
To take the finite temperature effects into account it is
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FIG. 8. The average relative error versus the maximum num-
ber of points removed (nmax

r ) from the boundary during the
fit. (left) Fitting to the entire data set, 4 ≤ Ns ≤ 64, we see
the optimum fit occurs when the majority of the smaller Ns

data has been removed except for the center points. However
a “fan” of data remains for the larger Ns data. (right) Fitting
data such that 4 ≤ Ns ≤ 16. From this we see the optimum
fit occurs particularly at l = Ns/2.

1.2 1.6 2.0 2.4 2.8
ln(Ns)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
2

J= 0. 05

J= 0. 1

J= 0. 2

FIG. 9. (color online) The second order Rényi entropy, S2,
as a function of the logarithm of system size with a finite
temperature and l = Ns/2. Here U = 1 and T = 0.04 is
shown. The lines through the data points are fits using Eq.
A.1 with one addition term linear in the system size. The
J = 0.05 data used sampling methods however the errors are
smaller than the markers.

enough to add a term linear in l or Ns, for the subsystem
or system scaling respectively. The fits in Fig. 9 and
those used in the main text were done similarly, using
Eq. A.1 with an additional linear term.

It is possible to investigate the influence of statisti-
cal fluctuations of the pure T = 0, S2 data. This can
be accomplished by adding Gaussian fluctuations drawn
from a distribution with a specified σS2

. This synthetic
data mimics the actual experimental results under the as-
sumption that the error associated with each data point
is the same regardless of system size or subsystem size.

1.2 1.6 2.0 2.4 2.8
ln[Ns]

0.2

0.4

0.6

0.8

S
2

1 2 3 4 5 6 7
`

S
2

0.04 0.08 0.12 0.16 0.2
A

0.0

0.04

0.08

0.12

P
(A

)

0.005 0.015 0.025 0.035
σS2

σ
A

FIG. 10. (color online) (top-left) S2 with open boundary con-
ditions at T = 0 and the same data with added Gaussian
fluctuations as a function of ln[Ns] with a fit to the fluctuat-
ing data. (top-right) S2 with open boundary conditions as a
function of subsystem size for a fixed system size of Ns = 8.
(bottom-left) The probability distribution for A values ex-
tracted from fits to fluctuating data. This distribution was
built from 10,000 “experiments”. (bottom-right) The error
on the mean A values extracted from fits to the fluctuating
data versus the error on S2. The blue circles are the data,
while the solid line is a linear fit with slope ≈ 3.1.

By running many “experiments” one can see, approxi-
mately, how many measurements are needed for a given
single experiment to obtain acceptable results.

To do this, one takes the pure, T = 0 data and adds
Gaussian noise with σS2

to the data and then fits the
data to the desired functional fit. One does this many
times and bins the fit parameters to obtain a histogram of
the fit parameters for many experiments. With the his-
togram one can extract σA, the error on the measurement
of the central charge. In addition one can establish the
relationship between σS2 and σA to understand the size
of the errors necessary on S2 to obtain reliable estimates
of c. In Fig. 10 one can see how the addition of Gaus-
sian fluctuations modifies the data and the estimates of
c. Using the distribution of A values obtained from the
fits we can extract σA. In addition we can repeat this
again for a different σS2

. By doing this we find an ap-
proximately linear relationship between σA and σS2

, such
that σA ≈ 3.1σS2

. For a systematic error of 0.02 on the
measurement of A, the uncertainty in S2 must be approx-
imately 0.006. This gives an estimate on the number of
measurements necessary, assuming a maximum entropy
of 1.1. Using Eq. (6) in the main text we find on the
order of 193,000 measurements.
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