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Abstract

We present the results of a study of ionization of Xe atoms by a pair of phase-locked pulses

which is characterized by interference produced by the twin peaks. Two types of interference

are considered: ordinary optical interference, which changes the intensity of the composite pulse,

and thus the ion yield, and a quantum interference, in which the excited electron wavepackets

interfere. We use the measured Xe+ yield as a function of the temporal delay and/or relative

phase between the peaks to monitor the interferences and compare their relative strengths. We

model the interference with a pulse intensity function and by calculating the ionization yield with

the time-dependent Schrödinger equation. Our results provide insight into optimal control pulses

generated with learning algorithms. The results also show that the relative phase between peaks

of a control pulse, along with small features such as distortions and imperfections in the wings of

an ideal shape, play a significant role in the control process.
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I. INTRODUCTION

Shaped pulses are commonly used in control experiments because of their ability to steer

dynamics in simple and complex systems at the quantum level. Their success is largely due to

intense fields at 800 nm and the application of optimal control and pulse-shaping techniques

[1–3]. With strong fields, however, multiphoton ionization is often either an early step in

the dynamics or concomitant with the dynamics of interest. At low intensities, multiphoton

ionization can be treated perturbatively [4–6], and the number of ions generated typically

increases monotonically with the laser intensity. In the strong-field regime, perturbation

theory breaks down, saturation sets in, new channels open up and states shift in and out

of resonance [7–11]. Despite the fact that even more exotic processes occur, e.g., above

threshold ionization, there is still a tendency for the total number of ions to increase with

increasing intensity. This is because ionization can now occur in the wings of the pulse

at intensities lower than the peak intensity [12, 13]. This monotonic increase is observed

with simple pulse envelopes, e.g., transform-limited (TL) pulses. Evidently, more complex

envelopes, especially those associated with phase shaped pulses (i.e., optimal pulses), do

not necessarily obey this trend because they are effective at altering dynamics including

ionization [14].

Optimal pulses often consist of a number of closely-spaced peaks, each of which has a

well-defined relative phase with respect to its neighbors. (Figure 2 of Ref. [15] is a specific

example.) Pulse trains have been used for coherent control of a diverse array of processes,

such as photoelectron angular distributions [16, 17], magnetization [18], and molecular vi-

bration and rotation [19]. At the same time, they have appeared in optimal-pulse solutions

in control experiments [15, 20–23]. Deconstruction of these pulses, to determine how they

achieve their goals, has proven to be a difficult and arduous task. From studying the control

landscape [15, 24, 25] to probing the role of chirp [26] to isolating specific degrees of freedom

[15, 24, 26, 27], success has been unsatisfying at best. While compelling reasons can be given

on a case-by-case basis, finding a universal linchpin – or even determining if one exists – has

been difficult.

The one prominent feature of optimal pulses that has received far less attention than

others is the relative phase between components, presumably because of the perceived limited
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dynamic range (i.e., 0 − 2π rad). In this paper we present the results of our study of how

and why changing the relative phase in a complex pulse can have a profound effect on

multiphoton ionization, and by extension on controlling dynamics. Furthermore, we show

that other minor features of a pulse, such as imperfections on the pulse wings or small

subordinate peaks, can have a similarly substantial effect on the ionization.

To make our study quantitative and straightforward to analyze, we limit our focus to

excitation by a pair of nearly identical pulses, each with a distinct carrier envelope phase

(CEP). While we did not stabilize the CEP, we did lock the relative phase between the two

pulses. In this paper we will call the pair of pulses a twin-peaked pulse (TPP) and treat

them as a single composite unit – a single pulse of complicated temporal structure. We will

focus on only linearly-polarized TPPs and define the time-dependent electric field of an ideal

TPP as:

ETPP (τ,∆φ; t) = E0e
−i(ω0t−φ1)

[

sech

(

t

∆t

)

+ sech

(

t− τ

∆t

)

ei∆φ

]

+ c.c., (1)

where E0 is the electric field amplitude of a single peak, ω0 (= 2πν0) is the central frequency

of the pulse spectrum, 1.76∆t is the intensity full width at half maximum (FWHM) of

each peak when the peaks are well separated in time, τ is the time delay between peaks,

∆φ ≡ φ2 − φ1 is the relative phase between peaks, and ITPP (τ,∆φ; t) ∝ (E(τ,∆φ; t))2 is the

TPP intensity; φ1 (φ2) is the phase of the earlier (later) peak, measured relative to the peak

of the pulse envelope of the earlier peak. Defining the CEP of each peak, θ1,2, in the usual

way (relative to the peak of its own envelope) leads to

φ1 ≡ θ1, φ2 ≡ θ2 + ω0τ and ∆φ = θ2 − θ1 + ω0τ. (2)

We define the complex envelope of the TPP as

ETPP = E0

[

sech

(

t

∆t

)

+ sech

(

t− τ

∆t

)

ei∆φ

]

. (3)

For a many-cycle pulse (∆t ≫ 1/ν0), the envelope does not change appreciably over one

optical period. In the absence of CEP stabilization, one must average (ETPP (τ,∆φ; t))2 over

all φ1 to determine the intensity, which gives ITPP (τ,∆φ; t) ∝ |ETPP (τ,∆φ; t)|2 [28, 29].

With Eq. 3, the intensity becomes
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ITPP (τ,∆φ; t) = I0

[

sech2

(

t

∆t

)

+ sech2

(

t− τ

∆t

)

+2sech

(

t

∆t

)

sech

(

t− τ

∆t

)

cos (∆φ)

]

, (4)

where I0 = (cǫ0n/2)E
2
0 is the single-peak intensity, ǫ0 is the vacuum permittivity, c is the

speed of light, and n is the refractive index. In what follows, we will show that the system

responds fundamentally differently to Eq. 4 than it does to an isolated, transform-limited

pulse.

The goal of our investigation is to explore how phase coherence can influence multiphoton

ionization, rather than deciphering the dynamics of a particular controlled molecular process.

Thus, to obviate the need to address additional complications associated with molecular

ionization, our target was an atom, Xe. As with many molecular systems, a number of

photons are required to reach the field-free ionization threshold. For Xe (with an ionization

potential of 12.13 eV), eight 800 nm photons are needed to reach Xe+.

Clearly, optical interference (OI) will play a significant role in the ionization when the

peak separation of the TPP is sufficiently small, as can often be the case in optimal control

pulses. In addition to the classical OI, the strength of which will depend on the fractional

overlap of the peaks, a more subtle quantum beat, which we will call quantum interference

(QuI) in this paper, may influence the ionization as well. For atomic ionization, there are at

least three possible mechanisms through which quantum beats could arise.

Mechanism I relies on a superposition between the ground state and a bound excited

state that will be established by the first peak of the TPP. This superposition will result in

a population oscillation between these two states on a timescale commensurate with their

energy spacing. The second pulse in the TPP interacts with the superposition. When the

bandwidth of the pulses is sufficient to excite several bound excited states coherently, Mech-

anism II results. This second mechanism is characterized by a population oscillation between

the excited states with a period corresponding to the energy spacing between them. The

oscillations in Mechanism II have a much longer period than the oscillations in Mechanism I.

Mechanisms I and II can occur simultaneously. Blanchet et al. [30] were able to distinguish

these two mechanisms in a (2+1)-photon ionization of Cs through the 7d 2D3/2,5/2 states
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with a 150 femtosecond TPP at 768 nm. The excited bound states were reached by a 2-

photon transition. Detection of QuI was enabled by the absorption of an additional photon

to create Cs+. Their ion signal showed the expected modulation with about half the laser

period (Mechanism I, energy spacing ≃ 2hν0 where h is Planck’s constant) with a beat note

commensurate with the 7d doublet energy spacing (Mechanism II). The concomitant OI with

period 1/ν0 also was observed. It is interesting to note that the QuI Mechanisms I and II

they observed extended well outside the temporal region where OI was observed.

The third QuI (Mechanism III) of interest occurs when each peak of the TPP generates

a continuum electron wavepacket. The wavepackets necessarily interfere when they overlap

spatially and temporally at the detector, causing a modulation of the photoelectron signal

due to ambiguity in knowledge of which pulse was responsible for the birth of the electron.

This also can be viewed as a temporal analogue to a Young’s double slit arrangement.

Wollenhaupt et al. [31] interpreted their 1-photon ionization of an incoherently pre-populated

5p state of K with a 790 nm femtosecond TPP in terms of Mechanism III. It turns out that

the strength of Mechanism III tends to follow that of OI; OI and QuI were not clearly

distinguished in Ref. [31] because the modulation periods for the two are the same. The

modulation period of Mechanism III is h/(IP + Eel), where IP and Eel are the ionization

energy from the initial state (5p in the case of Ref. [31]) and the electron kinetic energy

(= nhν0 − IP ) respectively (n is the number of photons required to ionize). For n = 1, OI

and QuI have a period of 1/ν0. For n > 1, the period of the corresponding modulation is n

times smaller, making OI and QuI distinguishable. Thus, in atomic Xe a modulation due to

QuI Mechanism III involving ground state ionization would have a period of 1/(8ν0).

While there are no field-free intermediate resonances near 800 nm in Xe, there are states

approximately 0.3 eV below and 0.2 eV above the energy corresponding to the absorption

of seven photons. Depending on the field intensity, the AC-Stark effect could shift some

of these states into a 7-photon resonance (Freeman resonances [10, 11]), which could leave

excited state population less than 1.5 eV below the ionization threshold after the first peak.

The (7+1)-photon ionization could lead to modulation of period 1/(7ν0) (Mechanism I)

with the possibility of much longer beat notes due to two or more intermediate states being

populated coherently (Mechanism II). Finally, a less direct QuI Mechanism III that could

occur resulting from a (7+1)-photon ionization from the first peak of the TPP and a 1-
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photon ionization of the residual population in the excited state from the second peak. We

call this Mechanisms III’ and would have a period of 1/ν0.

Exploring the effects of OI and QuI both experimentally and theoretically is the central

theme of this manuscript, which is organized as follows. We describe the details of the

experiment in Sec. II followed by an outline of the simulations in Sec. III. Our results are

presented in Sec. IV and discussed in Sec. V.

II. EXPERIMENTAL SETUP

Twin-peaked, phase-locked pulses were prepared from single, isolated input pulses gen-

erated with a commercial femtosecond Ti:sapphire oscillator-amplifier laser system. The

pulses were nearly transform limited with a FWHM of 80 fs, corresponding to ∆t ≃ 50

fs in Eqs. 1 and 4 (about 30 optical cycles). The input pulses had a central wavelength

λ0 = c/ν0 ≃ 805 nm, a bandwidth of approximately 20 nm, and a beam divergence of

approximately 1.5 times the diffraction limit. We characterized the input pulses with a

self-diffraction frequency-resolved optical gating (SD-FROG) [32] and a Wizzler [33]. We

generated TPPs by splitting the input pulse into two nearly identical copies in two distinct

ways: (1) using a spatial light modulator-based pulse shaper (PS) [15, 34] in a 4f arrange-

ment and (2) using a Mach-Zehnder interferometer (MZ) with one variable arm using an

Aerotech ALS130 linear motor stage. In both cases, the polarization vectors of the two

peaks were aligned, which is the typical case in control experiments. We will refer to a TPP

generated by the PS (MZ) approach as a TPPPS (TPPMZ).

We employed a 128-pixel liquid crystal on silicon spatial light modulator (LCOS-SLM,

Cambridge Research & Instrumentation SLM-128) to create the TPPPS. Their generation

requires that a mask be applied to the SLM that will imprint a spectral intensity and phase

on the input pulse that is the Fourier transform of the desired TPPPS:

ITPP (τ,∆φ;ω) = Ĩ0sech
2

(

ω − ω0

∆ω

)

cos2
(

ωτ −∆φ

2

)

, (5)

where ∆ω = 2/(π∆t) and Ĩ0 = 2πI0∆t. We controlled τ and ∆φ independently by changing

the mask on the SLM. We can use this approach to explore the phase-dependent response

of the ionization at fixed ω0 and τ . In the experiments we varied ∆φ over 3π rad in steps
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of ∼ π/4 rad at τ ≃ 150 fs (ω0 was fixed by the input pulse wavelength). The values for τ

and ∆φ were taken from SD-FROG measurements. The uncertainty in τ was estimated by

measuring a sample TPPPS ten times and computing the standard deviation in the fit values

of τ , and was found to be 0.66 fs. Each TPPPS was measured once with the FROG during

the experiment. The energy of the TPPPS was fixed at 40 µJ for each step; the energy was

adjusted with a combination of a rotatable half-wave plate and polarizer. Minor alignment

variation and residual spatial and temporal chirp caused the energy confined to each peak

of the TPPPS to vary by about 10% as ∆φ was tuned.

In the MZ approach the pulse traveling in each arm was a true replica of the input pulse,

so nominally θ1 ≃ θ2 except for small differences caused by the beam splitters and mirrors of

the interferometer not being identical. It is important to note that these differences will be

nearly constant throughout the experiment, i.e., ∆θ ≡ θ2 − θ1 will be fixed (observed to be

constant within π/10 rad in the experiment). As a result, when ω0 is held constant, Eq. 2

demands that ∆φ is linear in τ (= ∆l/c, where ∆l is the path length difference in the arms).

Nominally, we varied ∆l by increments of 20 nm, which corresponds to a change in τ of

0.067 fs. The translation stage we used to change the arm length, however, made steps that

varied between 0.046 fs and 0.102 fs (∆l between 14 and 30 nm) even with feedback control.

The value of τ for a TPPMZ was determined by fitting the fringes in the pulse spectrum to

Eq. 5, and separately by a SD-FROG measurement. The uncertainty in τ was determined in

the same fashion as in the PS experiment; we took 1000 measurements of a sample TPPMZ

spectrum (at τ = 150 fs) and found the standard deviation in the fit value of τ to be 0.45

fs. The spectrum of each TPPMZ during the experiment was measured only once. The

uncertainty in δτ , the change in τ between two increments of ∆l, was much smaller (≃ 0.03

fs).

In the MZ approach, we fixed the TPPMZ energy to 40 µJ for τ >> ∆t. Thus, the TPPMZ

energy changed periodically as τ was varied due to OI as τ → ∆t. The energy was not shared

equally between the TPPMZ peaks; the experiments were run with peak 2 (the later peak)

having ∼ 10% less energy than peak 1. The MZ approach enables TPPMZ-induced ionization

to be explored over a wider range of τ with higher temporal, and hence phase, resolution.

We performed the experiments by leaking xenon into the vacuum chamber to a pressure

of 4.0(1)×10−7 Torr, two orders of magnitude higher than the base pressure. The TPPs were
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focused to a spot of nominal radius (1/e2 intensity) 7 µm with a concave spherical mirror

(f = 75 mm). For our 40 µJ TPPs, this gives a nominal intensity of 3 · 1014 W/cm2. The

number of xenon ions emanating from the focal spot were measured with a time-of-flight

(TOF) spectrometer having a 30 cm flight tube as described in detail in Ref. [35]. The TOF

waveforms were captured by a 500 MHz digital oscilloscope (LeCroy 9350AM).

III. NUMERICAL SIMULATIONS

We performed two simulations which are compared with the experimental results in the

next section. The first simulation was a calculation of the intensity of the TPPMZ. To make

the simulations as compatible with the experiment as possible, we used reconstructed input

pulses from SD-FROG and Wizzler spectra. We calculated the TPPMZ field and intensity

from the reconstructed intensity and phase of the input pulse, I(t) and φ(t) respectively, as

follows:

Esim(τ,∆φ; t) =

√

2

cnǫ0
e−i(ω0t−φ1)

[

√

I(t)e−iφ(t) + βMZ

√

I(t− τ)e−iφ(t−τ)ei∆φ
]

+ c.c., (6)

Isim(τ,∆φ; t) =
cnǫ0
2

(Esim(τ,∆φ; t))2 , (7)

where βMZ = 0.94 accounts for peak 2 having less energy. We will compare the intensity in

Eq. 7 with the TPPMZ in the next section.

The second simulation involved solving the time-dependent Schrödinger equation (TDSE)

to calculate the TPP-induced ionization probability. The interaction potential was produced

by the field in Eq. 6 as well. We performed the TDSE calculation in momentum space where

the photoelectrons have finite momenta and localized wave functions. For the calculations

we used the time-dependent generalized pseudospectral method [36–38], in which the elec-

tron wave function is discretized on an optimized momentum grid (depending on a single

variable parameter) and propagated accurately using the split-operator scheme. The total

ionization probability was calculated by projecting the post-interaction wave function onto

the continuum states of the unperturbed Hamiltonian.
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IV. RESULTS

-1 0 1 2
0.0

0.5

1.0

(d)

(c)

(b)

MZ Experiment

 

 

X
e+  y

ie
ld

 (n
or

m
.)

 (  rad)

(a)

135 140 145 150

0.5

1.0

 

 

X
e+  y

ie
ld

 (n
or

m
.)

 (fs)

-200 -100 0 100 200
0.0

0.5

1.0
 

In
te

ns
ity

 
(n

or
m

.)

Time (fs)
0 1 2 3 4

0.00
0.05
0.10
0.15
0.20
0.25
0.30

 

 

A
m

pl
itu

de
 (n

or
m

.)
Frequency (1/fs)

PS Experiment

0

2

4

Ph
as

e 
(

 ra
d)

FIG. 1. The normalized measured phase-dependent Xe+ signal summed over all Xe+ isotopes,

captured from 1000 TOF waveforms per point. (a) The yield induced by a TPPPS at τ = 150 fs.

Maximal ion yield occured between 0.2π rad and 0.4π rad. The dotted blue curve is the fit of the

data to Y = (I
(max)
TPP )3/2, where the TPP maximum intensity I

(max)
TPP is calculated for T ≡ τ/∆t = 3

and assuming an input pulse with a pedestal, defined in Eq. 11 with β = 0.23 and φp = 1.17π rad

(see text). (b) The FROG reconstructed intensity profile (solid black curve) and phase (dashed red

curve) for the TPPPS responsible for the red ”⊕” datum point in (a), where ∆φ ≃ π rad. (c) The

Xe+ signal vs τ from τ = 135 to 150 fs, in steps of approximately 0.067 fs, induced by a TPPMZ.

The Fourier transform of (c) is shown in (d).

Figure 1(a) shows an example of the Xe+ phase-dependent ionization induced by a TPPPS

over a 3π rad range for τ ≃ 150 fs. The ion signal is normalized to its peak value and is

the sum of all Xe+ isotopes (in their natural abundances) in the captured TOF waveforms

corresponding to 1000 laser shots. We refer to the location of the peak value of the ion

signal as ∆φ
(E)
0 . The three data points with the highest yield occur between 0.2π rad and

0.4π rad at the phase step resolution, thus we set ∆φ
(E)
0 = 0.3(1)π rad. Figure 1(b) displays

a FROG-reconstructed intensity distribution of one TPPPS corresponding to the red ”⊕”

datum point in Fig. 1(a). We see from this example of a TPPPS that even well-separated

peaks can reduce the yield substantially when they are π rad out of phase. Figure 1(c) shows

a similar phase dependence at a higher resolution induced by a TPPMZ for 135 fs ≤ τ ≤

150 fs; the step size, δτ ≃ 0.067 fs, corresponds to δ(∆φ) ≃ π/20 rad (see Eq. 2). The
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Fourier transform of Fig. 1(c) is shown in Fig. 1(d). Two frequencies dominate: 0.375 fs−1

(the optical frequency) and 0.75 fs−1 (twice the optical frequency). In Sec. I we argued that

a QuI contribution to the signal modulation should appear at frequencies ν0, 7ν0, or 8ν0. No

modulation above twice the optical frequency is observed above the noise.

The top panel of Fig. 2(a) shows the TPPMZ spectrum for 50 fs ≤ τ ≤ 230 fs (top) with

a resolution of δτ ≃ 0.67 fs. The middle panel provides the peak values of Eq. 7, denoted

I
(max)
sim (τ,∆φ). Figure 2(c) shows I(t) and φ(t) that were used in Eqs. 6 and 7 with λ0 = 810

nm. The bottom panel is the TDSE simulation of the ionization, also using the input pulse

from Fig. 2(c), but for λ0 = 790 nm. To facilitate comparison with Fig. 1(d), we show in

Fig. 2(b) the Fourier transforms of the three spectra. We note again that there is a large

uncertainty in the exact value of τ in the experiment, even though we know δτ well. This

gives rise to an unknown phase shift in the top panel of Fig. 2(a) but does not affect our

knowledge of the oscillation period.

V. DISCUSSION

The results displayed in Figs. 1 and 2 allow us to make five salient observations about

strong-field ionization with phase-locked TPPs, having relevance to optimal control. While

some responses we point out may be subtle, we argue below that these issues, which have

largely been overlooked in efforts to decipher optimal control pulses, may play a more fun-

damental role than previously thought.

Two things are immediately obvious in Fig. 1(a). First, we see that even a minimal

overlap of the peaks (about 10% in this case) is sufficient to induce significant modulation

in the ionization signal strength. Evidently, OI must be taken into account even when pulse

overlap occurs in the peak wings. Second, we note that the maximum ionization is between

0.2π rad and 0.4π rad (∆φ
(E)
0 ) instead of at 0 rad, where one naively might expect to find

these extrema if OI were the sole mechanism. The third observation we make is that only

two frequencies appear in the Fourier transforms in Fig. 1(d) and Fig. 2(b), ν0 and 2ν0.

While this frequency doubling is most noticeable in the lower two traces in Fig. 2 (a) for

80 fs ≤ τ ≤ 180 fs, it is also observed for 100 fs ≤ τ ≤ 120 fs and 140 fs ≤ τ ≤ 160 fs in

the top trace. The frequency doubling exhibits a phase slip with the stronger and weaker
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FIG. 2. (a) The top spectrum is the measured Xe+ yield generated by a TPPMZ vs τ , between 50

and 230 fs in steps of 0.67 fs. The yield is normalized to 1 when τ >> ∆t. The middle spectrum is

I
(max)
sim from Eq. 7 with λ0 = 810 nm. The bottom spectrum is the TDSE calculation with λ0 = 790

nm described in Sec. III. The peaks of the top trace are shifted from the middle and bottom

traces, but this is due to the large uncertainty in τ . The oscillation frequencies of the top trace

are not affected due to the small uncertainty in δτ , the relative delay between points. (b) The

Fourier transforms of the spectra in (a) – measured (solid blue curve), I
(max)
sim (dotted red curve),

and TDSE (dash-dot green curve). (c) I(t) (solid) and φ(t) (dotted) SD-FROG reconstructions for

the input pulse used in the simulations.
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components switching near τ ≃ 100 fs.

Most strong-field pulses have imperfections in their wings; our TPPMZ is no exception.

The nature of the imperfections is the fourth issue we point out here. Specifically, the input

pulse (Fig. 2(c)) had a trailing shoulder (referred to as the subordinate peak) containing

about 10% of the energy of the nearly transform-limited main peak. The phase of the

subordinate peak differed from the main peak by about π rad. The subordinate peak was

due to third-order spectral phase surviving compression. Our fifth observation concerns the

nature of the modulations exhibited in the measured and simulated spectra in Fig. 2(a). All

exhibit a fast modulation with a slower envelope. For 50 fs ≤ τ ≤ 100 fs both the measured

yield and I
(max)
sim (t) exhibit fast oscillation with contrasts that decrease monotonically. In

the neighborhood of 100 fs, the modulation nearly vanishes in the measured spectrum. The

measured spectrum is erratic between 100 and 120 fs after which it revives briefly before

decreasing monotonically again.

In the remainder of this section we discuss in more detail OI-induced modulation of

ionization in light of the five observations listed above. We use our data to set an upper

bound to QuI under our conditions. Finally, we conclude the section with a discussion of

the relevance of our findings to strong-field control.

A. OI-induced ionization modulation

The deceptively large contrast in Fig. 1(a) is due to enhancing the interference between

the peaks caused by fixing the energy of the TPP. To explain this quantitatively, we look at

the intra-peak OI for a TPPPS. Particularly, we calculate the maximum intensity of an ideal

sech2 TPP, denoted I
(max)
TPP . We distinguish this from I

(max)
sim , introduced in Sec. III, in that

I
(max)
sim was calculated numerically using an arbitrary pulse shape, while I

(max)
TPP is calculated

analytically from Eq. 4. For a fixed τ , I
(max)
TPP will change as ∆φ varies due only to OI

between the two peaks, but depends on three factors as shown in Eq. 8, which is derived in

the Supplemental Material [39]:

I
(max)
TPP (T,∆φ) = I0fOIfEC , (8)

where
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fOI(T,∆φ) = 1 + sech2 (T ) + 2sech (T ) cos (∆φ) (9)

is a modification factor due to intra-peak OI, and

fEC(T,∆φ) = (1 + (T csch (T )) cos (∆φ))−1 (10)
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FIG. 3. (a) The temporal intensity profile of the model pulses: with (red dashed) and without (solid

blue) a pedestal defined in Eq. 11 and β = 0.23, φp = 1.17π rad. (b) I
(max)
TPP /I0 (solid black curve),

fOI (dashed red curve), and fEC (dot-dashed blue curve) with no pedestal as a function of relative

phase ∆φ, for T ≡ τ/∆t = 3, which closely approximates the experimental TPPPS parameters. (c)

Same as (b) but with the pedestal. For ease of viewing, fOI and fEC have been multiplied by 2

and 0.5, respectively.

is an intended correction factor due to fixing the TPPPS energy. Both factors depend on the

ratio T ≡ τ/∆t. Figure 3(b) shows how fOI and fEC vary with ∆φ for the case of T = 3,

which is the value extracted from our FROG measurements, and their influence on I
(max)
TPP .

While fOI and fEC oscillate out of phase, they have different amplitudes–fixing the energy
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only partially eliminates OI-induced intensity fluctuations. There remains a variation in

I
(max)
TPP of about 10% of its average value. The peak value of I

(max)
TPP occurs at ∆φ

(M)
0 = π rad,

in contrast to 0.2π rad ≤ ∆φ
(E)
0 ≤ 0.4π rad in the ion signal. We defer the discussion of the

origin of this phase shift to Sec. VB.

We note that to lowest order, the ion yield Y for a non-resonant, 8-photon ionization varies

as (I
(max)
TPP )8 for a sufficiently weak field. At higher intensities, several factors can cause a

different dependence. The first factor is a transition from the multiphoton to tunneling

regime. At 3× 1014 W/cm2, our Keldysh parameter [7] is ≃ 0.6 , placing us in the tunneling

regime [40]. Second, at high intensities the corona of the pulse is a significant contributor to

ionization, which can lead to a mixing of multiphoton and tunneling ionization, depending

on where in the focus an atom is ionized. Eventually, this leads to Y ∝ (I
(max)
TPP )3/2 at very

high intensities [12, 13], but space charge effects due to the corona are present at lower

intensities as well [40]. Regardless, a power law dependence Y ∝ (I
(max)
TPP )p is maintained.

Our intensities imply that p ≃ 3/2 based on the results in Ref. [40]. We performed an

unmasked intensity scan using a TPPMZ with fixed τ and ∆φ, for intensities between 2.7

and 3.3 ×1014 W/cm2, and found that p = 1.2(1).

B. Phase shift of the OI response

As seen in Fig. 3(b), fOI and fEC oscillate out of phase with each other for an ideal

TPP, and peak at ∆φ = 0 and ∆φ = π rad, respectively. The maximum intensity I
(max)
TPP

oscillates with either fOI or fEC , depending on if fOI or fEC has the larger magnitude, with

the crossover occuring at T = 1.6 (the corresponding τ depends on the peak width ∆t). For

T > 1.6, fOI < fEC . In our PS experiment, T ≃ 3, which means that ∆φ
(M)
0 = π rad. Recall

that the peak ion yield is observed between 0.2π rad and 0.4π rad.

The discrepancy between ∆φ
(M)
0 and ∆φ

(E)
0 has its origin in the fact that the experimental

TPPPS is not composed of ideal sech2 peaks of equal amplitude. There are two categories of

modifications of concern. First, there are modifications that change the relative intensities

and widths of the two peaks but maintain a sech2 peak shape – we refer to these as propor-

tional modifications. The effects of proportional modifications can be probed by modifying

the amplitudes and the widths of the peaks in Eq. 1. One finds, however, that proportional
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modifications do not change the locations of the peak values of fOI and fEC . As a result,

proportional modifications will also not change ∆φ
(M)
0 for a given T . This would explain

why even though we observe the relative intensities and widths of the peaks fluctuating by

about 10%, the phase-dependent ionization yield modulation is robust.
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FIG. 4. (upper) Temporal intensity of a FROG-reconstructed TPPPS (black squares, same TPP

as Fig. 1(b)) and a fit of of this TPP to a model hyperbolic-secant TPP with ∆φ = 1.04π rad

(red curve). The fit is to Eq. 4 with proportional modulations added; i.e., the heights and widths

of the two peaks were allowed to differ. The fit recovers widths for the first and second peaks,

respectively, of ∆t1 = 49.0(7) fs and ∆t2 = 48.7(8) fs, and amplitudes I01 = 1.35(2), I02 = 1.27(2).

(lower) Residual of the fit shown in the upper panel (data minus fit curve).

The second class of modifications are pulse shape distortions, which change the shape

of the individual peaks away from an ideal sech2. Pulse shape distortions can be observed

when we try to fit an ideal TPP to a FROG-reconstructed TPP, as can be seen in Fig. 4.

In this figure, an experimentally-measured TPPPS (∆φ ≃ π rad, same TPP as in Fig. 1(b))

was fit to Eq. 4 where the heights and widths of the two peaks were allowed to differ. While

the deviations between fit and experiment are small, it is straightforward to show that even

a small pulse shape distortion will change ∆φ
(M)
0 . To show that ∆φ

(M)
0 is sensitive to pulse

shape distortions, we created a “toy” distortion model consisting of adding a symmetric

pedestal to the peaks. We represented the pedestal by a rectangular function, with a width

of 10∆t. The field of an input pulse with the pedestal is

E(t) = E0e
−i(ω0t−φ1)

[

sech

(

t

∆t

)

+ βΠ

(

t

10∆t

)

eiφp

]

+ c.c., (11)
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where φp is the relative phase between the pedestal and the main peak, β is the ratio of the

field amplitude of the pedestal to that of the main peak, and

Π

(

t

10∆t

)

=











1, |t| ≤ 5∆t

0, |t| > 5∆t.
(12)

After defining the input pulse with Eq. 11, we re-calculated fOI(T,∆φ), fEC(T,∆φ), and

I
(max)
TPP (T,∆φ). This calculation is shown in the Supplemental Material [39]; it is important

to recognize that φp causes a phase shift in both fOI and fEC. Next, we fit the data in

Fig. 1(a) to Y ∝ (I
(max)
TPP )3/2, allowing φp and β to vary, and fixing T = 3. The dotted

curve in Fig. 1(a) shows the result of the fit, using the fit values φp = 1.17(5)π rad, and

β = 0.23(2).

The effect of this pedestal on I
(max)
TPP is shown in Fig. 3(c). With such a pedestal added,

∆φ
(M)
0 ≃ 0.1π rad, which is only one standard deviation outside the range range of 0.2π

rad ≤ ∆φ
(E)
0 ≤ 0.4π rad. The variation in I

(max)
TPP is much larger than in the case without a

pedestal, which is necessary to reproduce the large ion yield contrast seen in the experiment.

Input pulses with and without this pedestal are compared in Fig. 3(a), showing that the

addition of the pedestal reduces the intensity in the wings of the pulse. We point out the

fact that the PS pulse was shaped with an input similar to that shown in Fig. 2(c) so it

should not be surprising that the PS spectrum has a pedestal. The MZ spectra probably also

have a phase shift but due to the large uncertainty in determining τ this phase shift was not

determined. We also point out that I
(max)
TPP was calculated in this toy model by evaluating

ITPP at t = 0, i.e., finding the maximum intensity of the earlier peak. When a pedestal is

present the intensity of the second peak does not follow the intensity of the first peak, and

so the intensity at t = 0 is not necessarily I
(max)
TPP . We stress that the intent of this toy model

was to show that some phase shift can be added to the I
(max)
TPP by the introduction of a pulse

shape distortion, which has been shown to be the case here.

C. Slow envelope modulation

The slowly-varying temporal envelope observed in the three spectra in Fig. 2(a) roughly

follow the temporal shape of the input pulse. For τ < 100 fs, the overlaps of the two main
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peaks of the TPPMZ dominates OI, so the modulation contrast is set by the temporal shape

of the main peaks. Each peak of the TPPMZ carries the character of Fig. 2(c). Consequently,

the revival of the modulation for τ > 100 fs is due to OI between a main and subordinate

peak. The envelope of modulation is now given by a convolution of the two temporal shapes.

While there was a secondary revival of the oscillation envelope in the experimental ion yield

plot for τ > 180 fs, we believe this is due to a sample rate artefact due to our large τ step

size of 0.67 fs.

D. Frequency doubling

The modulation at the optical frequency ν0 is well-described by OI; here we focus on the

oscillations at frequency 2ν0. While this frequency doubling could be due to two-photon

QuI Mechanism I, similar to what is described in Ref. [30], there are several reasons why

this is unlikely. First, there are no two-photon intermediate states that can be reached

from the ground state at 800nm. The first excited state in xenon requires more than five

800 nm photons to reach. Second, I
(max)
sim and its Fourier transform (Fig. 2) show the same

frequency doubling as the TPPMZ spectra. The I
(max)
sim spectrum was calculated using OI

alone. Consequently, the frequency-doubling it exhibits can only be caused by OI.

The most likely origin of the frequency doubling is the subordinate peak via OI. The

subordinate peak in the input pulse (Fig. 2(c)) was π rad out of phase with the main peak.

Consider a TPPMZ with 100 fs ≤ τ ≤ 150 fs, and ∆φ = 0. In this case, the intensity of the

earlier main peak will increase due to constructive OI. At the same time, the intensity of the

later main peak will decrease due to destructive OI with the earlier subordinate peak. So,

the earlier peak intensity will be larger than the later peak intensity. Conversely, if ∆φ = π

rad, the later peak intensity will be larger than the earlier peak intensity. This switching

back and forth of intensities is what leads to the frequency doubling when 100 fs ≤ τ ≤ 150

fs. For a video of OI vs τ that illustrates these statements, see the Supplemental Material

[39].
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E. Upper bound to QuI strength

We find in the PS and MZ experiments that the change in maximum intensity of a

TPP due to OI is principally responsible for the fluctuations in ionization yield. Neither

experiment showed any definitive evidence of QuI Mechanism III. The null result in this

search for QuI allows us to estimate the maximum size of the QuI-induced oscillations. We

note that the QuI oscillation amplitude must be larger than the noise present in the data. In

the MZ Fourier transform data shown in Fig. 1(d), we estimated the noise in the normalized

yield to be approximately 0.025 (one can see this in the figure by looking at the troughs of

each oscillation, particularly around τ = 145 fs). The OI oscillation amplitude averaged out

to about 0.25 over the range shown (see Fig. 1(d)). This puts an upper limit of the QuI

amplitude at 10% of the OI amplitude. This rough 10% limit was found to apply at other

values of τ as well.

There is perhaps a stronger reason we do not see QuI in our experiment. Quantum

interference as we have described it can be considered a temporal analogue of a Young’s

double slit experiment, with the two peaks of the TPP representing the two slits and the

TOF detector representing the screen. Under this analogy, the slit spacing is represented

by the TPP relative phase ∆φ (directly in the PS experiments and indirectly, through τ , in

the MZ experiments). Ionization of an electron corresponds to a photon or massive particle

passing through the double slit apparatus. As with the double slit, there is an ambiguity

as to which peak was responsible for producing the electron. In a traditional double slit

experiment, the particles pile up on the screen at different locations with the minima and

maxima determined by the relative phase after passing through the slits. The analogue in our

case is where the electrons land. We, however, are not measuring the electrons, but rather

the ions. Measuring the ions is equivalent to integrating all of the photons/particles that

land on the screen. The total number of photons/particles just depends on the throughput

of a slit, not on the interference. Consequently, we do not expect to see QuI by just detecting

the ions.

It is important to note that the insensitivity of the ion spectrum to QuI strictly holds

only for transitions to an open channel (Mechanism III). In Ref. [30], modulation of the total

ion yield due to QuI is observed and clearly differentiated from OI, because in that case QuI
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was mediated by Mechanisms I and II, via transitions to bound states. In an open channel

experiment, like that done in Ref. [31] and here, the Young’s double-slit analogy suggests

that modulation in the ion yield induced by QuI Mechanism III will not occur, because we

sum all the electrons and, thus, lose differential information contained in the photoelectron

spectrum. While the total electron yield is seen to change with changing TPP relative phase

in Ref. [31], it only does so when the two peaks of the TPPs are very closely separated, so

OI was likely making a substantial contribution to what was observed. However, QuI could

still appear in an open channel experiment via Mechanisms I and II involving intermediate

states.

Rather than a measurement of the total electron or ion yield, an energy-resolved photo-

electron measurement would be necessary to see evidence of QuI Mechanism III. The energy

of a photoelectron is connected to the location of a particle on the screen in our double-slit

analogy, so an energy-resolved measurement is akin to recording the interference pattern

on the screen rather than counting up all particles. It would be desirable to perform an

energy-resolved experiment with TPPs which probes a multiphoton transition to the ionic

continuum, which would allow for a clear differentiation between OI and QuI. While rotat-

ing the polarization of one of the peaks of the TPP to eliminate OI is also a possibility,

this is not ideal because the angular distribution may have limited overlap. Selection rules

may cause the two peaks to ionize to two different sets of final states, in which case the

quantum interference will break down as there is full knowledge of which peak produced the

photoelectron.

F. Relevance to strong-field control

A common theme emerged from our discussion of the experiments. Small, subtle changes

in the pulse shape can affect the OI substantially, and, subsequently, affect the ionization.

This realization has direct application to optimal control in the strong-field regime. As

previously mentioned, ionization usually occurs in strong-field optimal control experiments.

While the discussion of how an optimal control pulse guides a target system to its final

state typically focuses on dominant features of the pulse (e.g., peak widths, delay between

successive peaks, chirp, etc.), we now have evidence that more subtle features (e.g., relative
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phase between peaks, small structure and imperfections, etc.) can influence the control

process just as dramatically.

We consider here one specific example, using our previous work on controlling CO2 bend-

ing vibration during strong-field dissociative-ionization [15]. In Fig. 2 of Ref. [15], two

optimal control pulses for maximizing the bending vibration amplitude during dissociation

are shown, along with the phase-reversed pulses (where all other spectral parameters were

the same except φ(ω) → −φ(ω)). Both optimal control pulses consist of a sequence of peaks

with well-defined relative phases between the ith and jth peaks of an optimal control pulse

∆φij . For the phase-reversed pulses, ∆φij → −∆φij . It was found that the two optimal

control pulses significantly enhanced the bending amplitude when compared with either a

transform limited pulse at the same intensity or their respective phase-reversed pulses.

In Sec. VB, we saw that a weak pedestal, as a model for symmetric distortion of an ideal

shape, significantly changed OI between a pair of pulses; with such a pedestal, two pulses with

a relative phase ∆φ did not have the same peak intensity as two pulses with a relative phase

of −∆φ in general. As such, the presence of a pedestal would imply that the optimal control

pulse and its phase-reversed counterpart did not necessarily have the same peak intensity

(even if their energies were the same). Because the CO2 bending vibration amplitude depends

strongly on the pulse intensity for transform limited pulses (see Fig. 3 of Ref. [15]), these

two pulses would have produced different amounts of CO2 bending vibration. A pedestal

is unlikely to have been the only “knob” with which the bending vibration was controlled;

however, it highlights the need to consider purely optical effects carefully, alongside the field-

system dynamics, when discussing strong-field optimal control experiments. This example

also highlights an advantage learning algorithm-based optimal control experiments have over

manual manipulation – the learning algorithm can access regions of the control landscape

(in this example, the pulse distortions) that are not easily accessible a priori.

VI. CONCLUSION

By measuring, both in theory and experiment, the ionization response to TPPs, we have

arrived at two main conclusions. First, we have demonstrated that the ion yield can be

predicted by considering the maximum intensity of the pulse due to OI under the conditions
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of our experiment. While QuI (only Mechanisms I and II) could influence the ion yield

to a degree, any contributions are overshadowed by the noise in our experiment, and we

place a rough limit on the strength of QuI at 10% of the strength of OI around τ = 150 fs.

An energy-resolved measurement like that done in Ref. [31] should be able to see dynamics

induced by QuI Mechanism III in multiphoton ionization. The temporal/phase resolution

of the experiment must be high enough to resolve oscillations at frequency nν0, where n is

the multiphoton order. The current MZ experiment is of sufficient temporal resolution, but

a higher-resolution pulse shaper is necessary in the PS experiments.

Second, our results also highlight that small changes in pulse parameters (such as

pedestals, subordinate peaks, etc.) can lead to large changes in the TPP maximum in-

tensity and resultant ionization yields, even when the pulses appear well-separated. This is

true whether or not the total pulse energy is fixed. These small pulse features can cause

the OI to mimic the effects of QuI in some cases (e.g., by introducing frequency doubling).

Most strong-field experiments that seek to control molecular and chemical dynamics use

ionization as a first step, and so any final system dynamics will be sensitive to intensity

fluctuations of the pulses as well, as seen in Ref. [15] for example.
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