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In this theory work, we show that both the orbital helicity (p+ vs. p−) and the adiabaticity
of tunneling have significant effect on the initial conditions of tunneling ionization. We developed
a hybrid quantum (numerical solution of TDSE) and classical (back-propagation of trajectories)
approach to extract orbital-specific initial conditions of electrons at the tunneling exit. Clear physical
insight connecting these initial conditions with the final momentum and deflection angles of electrons
are presented. Moreover, the adiabaticity of tunneling ionization is characterized by comparing the
initial conditions with those with a static field. Significant non-adiabatic tunneling is found to
persist beyond Keldysh parameter less than 0.5.

PACS numbers: 33.55.+b;32.80.Rm;42.65.Re

I. INTRODUCTION

Tunneling ionization is the most fundamental process
in strong field atomic and molecular physics, in which the
binding potential is strongly suppressed by the laser elec-
tric field and the electrons gain a non-zero probability of
escaping (tunneling) to the continuum. The understand-
ing of electron tunneling has laid the foundations for the
rapidly growing field of attosecond science [1], because it
is the first step of many important phenomena such as
high harmonic generation (attosecond pulse production)
and non-sequential double ionization.

Because tunneling is a quantum phenomenon and has
no direct classical analog, the determination of tunneling
exit, initial momentum and time is intensely debated.
However, it has been shown that it is reasonable to clas-
sicalize the wave function when the electron has tun-
neled into the continuum. By assuming classical initial
exits and distributions of velocities [2–4], many strong-
field ionization experiments [4–6] have been qualitatively
interpreted, even though the adopted tunneling initial
conditions are far from being unambiguous. Some recent
experiments arrived at different conclusions for the initial
conditions [7–9]. Furthermore, non-adiabaticity plays a
crucial role. For example, in the attoclock experiment,
the ionization time can be mapped to the final angle of
the momentum vector in the plane of polarization of the
nearly circularly polarized driven laser fields [10, 11] if
assuming a zero initial momentum (p(ti) = 0) at the
exit as in adiabatic approximation. However, if the ini-
tial momentum is non-zero due to non-adiabatic dynam-
ics, the offset angle will be different and so is the re-
trieved tunneling time. How much non-adiabaticity have
to be included in such studies remains unresolved. Con-
ventionally, the Keldysh parameter γ = ω

√

(2Ip)/E is
used for distinguishing the ionization regime with small
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γ ≪ 1 for tunneling and large γ ≫ 1 for multiphoton
ionization, here, ω is the carrier angular frequency, Ip is
the ionization potential and with E the field strength.
At the cross-over regime of γ∼1, some experiments in-
dicated [12] that tunneling ionization starts to deviate
from adiabatic limit to non-adiabatic dynamics, which
also manifests on different tunneling initial conditions.
Quantitatively, the Keldysh parameter is not useful for
evaluating the adiabaticity of tunneling. Several theoret-
ical pictures have been put forward based on semiclassi-
cal model [10, 11, 13], including the electron under-the-
barrier motion with complex saddle time [14–16], and
using an analytical Rmatrix method [17, 18], to inter-
pret the attoclock experiment, but the results on the
adiabaticity of tunneling is still inconclusive. Moreover,
recent experiments, by measuring the ionization rate,
spin polarization of ionized electron, and bicircular high-
harmonic spectroscopy in different atomic species [19–
21], suggested that the tunneling probability and veloc-
ity is sensitive to the initial quantum states [26–28]. It
should be noted that in original adiabatic Ammosov-
Delone-Krainov (ADK) and non-adiabatic Perelomov-
Popov-Terentev (PPT) theory [22–25], orbital helicity
was not explicitly treated. Considering that most of
the experiments were performed on atoms with differ-
ent contributing orbitals and with laser intensities and
wavelengths far away from pure adiabatic regime (static
field), a full account of both the orbital-specific dynam-
ics and the adiabaticity of tunneling is of paramount im-
portance for resolving the discrepancy between different
theoretical/experimental approaches.

One popular approach is to solve time-dependent
Schrödinger equation (TDSE) for exact solutions [29].
However, it is difficulty to extract classical physical in-
sight from such calculations alone. Recently, a virtual
detector (VD) technique was proposed to link the time
dependent quantum probability flux to the classical po-
sition and momentum [30, 31]. For this, one need to con-
vert the the wave function Ψ(r, t) to local momentum
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through (atomic units are used throughout this paper):

p(r, t) =
J(r, t)

|Ψ(r, t)|2 . (1)

where J(r, t) = i
2 [Ψ(r, t)∇Ψ(r, t)∗ − c.c.] is the proba-

bility flux. By locating the VD at tunnel exit, the elec-
tron’s time of arrival at the tunnel exit as well as its
exit momentum was determined [32–34]. However, the
extracted ionization times are sensitively dependent on
how the tunnel exits are chosen, which is not known for
non-adiabatic tunneling.

In this work, we introduce a model, which combines
the advantages of both TDSE and classical methods, as
schematically shown in Fig. 1, to extract the initial con-
ditions of tunneled electrons and to probe the adiabatic-
ity of tunneling ionization. In our method, the outgoing
electron wavepacket calculated by numerical integration
of TDSE is converted into local momentum p(rd, t) at
a circle of radius rd, and the VDs are evenly arranged
on this circle. The local momentum is then propagated
forwards to the end of laser pulse classically for reach-
ing asymptotic state or it is propagated backwards to
search for tunneling initial conditions. The propaga-
tion is preformed under the same Hamiltonian of TDSE
and thus automatically accounts for the Coulomb cor-
rection. Moreover, the full quantum treatment before
the transformation by VDs, enables us to start calcu-
lation from different initial orbitals, without any spe-
cific approximations. We term these TDSE based clas-
sical forward and backward propagation approaches as
TDSE-CFP and TDSE-CBP. For the forward propaga-
tion, the final momentum distribution is achieved by bin-
ning electrons with similar momenta, whose probability
is summed by the relative weight of each electron’s tra-
jectory. For the backpropagation, the classical trajecto-
ries is terminated with the criterion that the electron has
tunneled at time t0 if the electron’s displacement in the
instantaneous field direction is minimum [36]. This cri-
terion is justified because the potential barrier becomes
impenetrable for classical particles beyond the tunneling
exit when the particles are back-propagated from the po-
sition of VD toward the nuclei. Once the tunneling exits
are found, the initial momentum as well as the tunneling
time can be quantified. The non-adiabatic effect is au-
tomatically included in this approach through accurate
TDSE calculations and can be characterized by compar-
ing the initial conditions at different wavelengths, as we
will show later. Classical back-propagation from asymp-
totic TDSE momentum has been applied previously to
resolve tunneling time[36]. One important advantage of
adopting the VD method is the improved computing effi-
ciency, which allows us to calculate the ionizations driven
by long wavelength lasers.
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FIG. 1: (color online) Schematic representation of TDSE-
CFP and TDSE-CBP. The TDSE launches an electron
wavepacket in a combined Coulomb potential and laser elec-
tric field. The ionized outgoing electron wavepacket registers
at VDs and then is converted into classical electrons. These
electrons are propagated forwards to achieve a consistent re-
sults with TDSE or they are propagated backwards to obtain
the tunneling initial conditions.

II. RESULTS AND DISCUSSION

We first calculate ionized electron momentum distri-
butions of argon atoms using TDSE-CFP. For argon in
ground-state electron configuration, there are three de-
generate occupied p orbitals, the p+ orbital (m = 1),
p− orbital (m = −1), and p0 orbital (m = 0), as
shown in Fig. 2(a). The quantum number m = 1
(m = −1) refers to the projection of the angular mo-
mentum in quantization axis (z axis, light propaga-
tion direction) is 1 (-1), which means the electron ring
currents in polarization plane (xy plane) is counter-
rotating (co-rotating) with respect to the helicity of driv-
ing laser field. We exposed the orbital-specific argon
atoms to left elliptically polarized (LEP) laser field with
E(t) = 1√

1+ǫ2
fe(t)cos(ωt + φCEP)x̂+

ǫ√
1+ǫ2

fe(t)sin(ωt +

φCEP)ŷ, where ǫ = 0.89 is the ellipticity, E0 is the
amplitude and corresponds to a laser peak intensity of
1.2 × 1014 W/cm2 (γ∼1), the envelope fe(t) = sin2(πtτ )
determines 30-fs laser pulse duration, ω is the angu-
lar frequency refers to a 0.79 µm central wavelength,
and φCEP is carrier envelope phase (CEP) of laser field.

The TDSE i∂Ψ(r,t)
∂t = [−∇2

2 + VC(r) + VE(r, t)]Ψ(r, t)
for the argon atoms is integrated in a two-dimensional
grid using the single-active-electron (SAE) approxima-
tion. In the equation, the potential terms are given by a

time independent part VC(r) = − [1+Aexp(−r2)]√
r2+B

account-

ing for Coulomb potential and a time-dependent interac-
tion part VE(r, t) = r ·E(t), which describes the dipole
potential in external laser field. The potential is similar
to the empirical three-dimensional potential in [37, 38],
but due to lower dimensionality the coefficients of ex-
ponential function are modified for correctly reproduc-
ing eigenenergy of 0.579 a.u. for argon. The basis set
of px and py obtained via propagation of the TDSE in
imaginary time (time step iδt) and additional orthogo-
nalization procedures at each step. In analogy to the
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a raising or lowering operator, known as ladder opera-
tors, the two degenerate p orbitals of argon can be de-
fined by p+ = (px + ipy)/

√
2 and p− = (px − ipy)/

√
2

[39]. Starting from the obtained initial orbitals, we then
used the split-step Fourier method to numerically solve
the TDSE. The ionized two-dimensional wave function
Ψ(r =

√

x2 + y2, t) is saved at the fixed radius rd, where
the virtual detectors are evenly located. The rd is cho-
sen to be large enough (more than 1.5 times of electron
quiver radius in laser field) to suppress multiple visits
of electrons to the VDs, the influence from highly lying
states and any other near-field effects. We also check
that the results do not change if the VDs are located at
larger radius, but more computing resources are required.
The linear density of VDs defined by N/2πrd is set to
1.6 per arc length for keeping sufficient precision, where
N is the number of adopted VDs. We emphasize that
the wavepacket does not stop at VDs but is propagated
beyond VD continuously until it reaches an absorbing
potential to prevent reflection. The absorbing function

fabs is in a form of fabs(r) = {cos[(r − rd)/(π/2ra)]}1/8,
where ra = 20 represents the range of absorbing func-
tion [40]. For each spatial dimension, the grid on which
the TDSE is solved should be fine enough to include the
detailed evolution of electron wavepacket (δx=δy= 0.1
a.u. in this work). In principle, the gird size should be
quite large (thousands of a.u.) because of the outgoing
motion of emitted electrons but this has proven to be too
resource-demanding. However, using the VDs in combi-
nation of absorbing function, it is possible to implement
a precise conversion of the wavefunction to local momen-
tum at VDs within a range of 2|rd + ra|. This method
is more efficient, especially for investigating the problem
with long-wavelength driving lasers, which can propagate
the electrons to tens of thousands of a.u. away from the
ion due to the huge ponderomotive energy. By integrat-
ing the momentum distribution over angle, as shown in
Fig. 2(b), the momentum spectra of p+, p0 and p− or-
bitals predicted by TDSE-CFP shows peaks at different
momenta. Another interesting feature is that the inte-
grated spectral intensity of p+ orbital is several times
higher than that of p− orbital, which agrees well with
previous experimental and theoretical results [19, 20, 26].
The p0 orbital has a node in the polarization plane of the
electric field, and therefore its contribution to ionization
is much lower.

Furthermore, from the calculation, we noted that the
angular offsets θ, which is defined as the angle between
the minor axis (y axis) and the peak angle of photoelec-
tron distributions, are orbital specific, as shown in Fig.
3. By integrating the momentum distribution over ra-
dial direction, we have identified the difference between
the offset angles contributed by the laser peak for p+
and p− orbitals is ≈ 9.2 deg, as shown in Fig. 3. Sim-
ilar results was obtained by Smirnova and co-workers in
the pioneering work of extending PPT theory to include
long-range interaction [26, 27]. It is widely accepted that
Coulomb attraction is the most important factor that
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FIG. 2: (color online) (a) Illustration of the p orbitals of ar-
gon. The three initial orbitals prepared for solving TDSE are,
p+ = (px+ipy)/

√
2, p− = (px−ipy)/

√
2 and p0 approximated

by an isotropic s orbital with same eigenenergy, respectively.
The electron ring current of p+ (p−) orbital is clockwise (an-
ticlockwise). (b) Radial distributions of momenta calculated
by TDSE-CFP with p+ orbital, p0 orbital, p− orbital.

deflects the outgoing electrons, which has been observed
as an offset angle between the maximum of the momen-
tum distribution and the minor axes of the polarization
ellipse. When the Coulomb potential is turned off, the
final direction of both electrons from p+ and p− orbitals
show almost no deflection. On the other hand, the 12.9◦

and 22.1◦ offset angles are observed for the two orbitals
if we turn on the Coulomb potential, as shown in Fig.
3(a) and 3(b). One possible and intuitive explanation
attributes the disparity to the different tunneling initial
velocities. The counter-rotating electron (ionized from
p+ orbital) escapes from barrier with a smaller transverse
velocity, moves away slower, and is strongly affected by
the Coulomb field. The faster co-rotating electron (ion-
ized from p− orbital), weakly interacts with the Coulomb
field and is therefore deflected weaker [27, 41]. However,
previous work predicted a different variation of two or-
bitals’ offset angle (∆φoff ). The ∆φoff is 2.5◦ for argon at
laser intensity of 1.2×1014 W/cm2 in ref. [27], while it is
12.5◦ for neon at 1.4×1014 W/cm2 in ref. [41]. This dis-
parity prompted us to investigate further into the origin
of ionization for a better understanding.
Though the TDSE-CFP calculations provide us re-

liable results for final momentum distributions, which
are consistent with TDSE solution, the interpretation
of, such as the deviation of the photoelectron distribu-
tion maximum and momentum spread, has to rely on the
tunneling initial conditions. To reconstruct these initial
conditions, TDSE-CBP was developed.
In TDSE-CFP, the electron trajectories start from the

time when the electrons are registered at VDs (tVD) as
shown in Fig. 4(a). The electrons are propagated back-
wards classically, again with the same Hamiltonian as
in the TDSE. But when do we terminate the trajecto-
ries and can we find true tunneling exits? Indeed, in
classical mechanics, a particle of energy less than the
height of a barrier could not penetrate: the region inside
the barrier is classically forbidden and this provides a
natural termination point (tunneling exit) for the back-
propagated classical electrons. For the j-th electron, the
candidate of tunneling exit rj(t) meets r//,j(t) = 0,
where r//,j describes the displacement along the instan-
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FIG. 3: (color online) Classical electron trajectories after tun-
neling ionization, the electrons are launched by the peak of
the elliptically polarized laser. In the left side, (a) and (b) de-
pict one typical trajectory for electron ionized from p+ and p−
orbitals, respectively. The solid (dashed) line represents the
electron motion with (without) Coulomb force. The arrows
indicate the final direction of the electron momentum after
the laser pulse. The right side show the final momentum dis-
tribution of electrons ionized within a interval of 0.1 optical
cycle around the laser peak for (c) p+ and (d) p− orbitals.

taneous laser field direction. In Fig. 4(b), we show a
typical back-propagated trajectory, in which the electron
is “bounced” by the barrier and the tunneling exit is
identified. More specifically, the electron first departs
from the VD and moves toward the ion core under the
reversed laser field. At the very beginning, the electron’s
energy Ee(r, t) = VC(r) + VE(r, t) + p(r, t)2/2 is much
higher than the barrier tail and therefore it is a free par-
ticle, where p(r, t)2/2 denotes its kinetic energy. When
the electron is approaching ion core, Ee(r, t) gradually
drops until lower than the barrier top, and it is then
become impossible to move any closer to the ion core.
At this instant, the electron is stopped along the laser
field and then reflected. The turning point is identi-
fied as tunneling exit. The CBP approach for seeking
tunneling exit requires sufficiently thick tunneling barri-
ers, restricting available laser intensities to < 2 × 1014

W/cm2, for the slightly elliptically polarized field used
in current study (argon atom). Higher intensities lead
to electron dynamics close to or even over the barrier,
which is beyond tunneling ionization. Furthermore, the
non-adiabatic dynamics increase the energy of tunneled
electrons, which also limits the available laser intensity
for performing such calculations.

With TDSE-CBP calculations we can now investigate
the origins of orbital specific deviation angles by recon-
structing the initial conditions of tunneling ionization.
We first reconstructed the initial transverse tunneling
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FIG. 4: (color online) (a) Evolution of laser field with time.
The zero time corresponds to the laser peak. tVD indicates the
instant that electron is captured by the VDs, and te denotes
the reconstructed ionization time via TDSE-CBP. (b) An ex-
ample shows how a tunneling ionized electron is reflected by
the barrier during the CBP, in energy-distance coordinate sys-
tem.

momentum, shown in Fig. 5(a), which reads as -0.24,
-0.18 and -0.12 a.u. for p+, p0 and p− orbitals, respec-
tively. Even though the binding electrons in p+ and p−
orbitals have opposite helicities, once they are ionized,
they will have the same co-rotating initial momentum
with the laser field. The same sign of the initial momen-
tum shows momentum (energy) has to be gained during
the tunneling process, i. e. non-adiabatic effect. In semi-
classical model such as in [15], the non-adiabatic tunnel-
ing dynamics is accompanied by a shift of the tunneling
exit towards the ionic core, as a consequence of the ab-
sorption of energy from laser field. In Fig. 5(b), we
confirm this is indeed the case by reconstructing the tun-
neling exits by TDSE-CBP method for p0 orbital as an
example. The tunneling exit is located closer to the ionic
core, compared to the predictions by Landau’s effective
potential theory in adiabatic regime[46]. More interest-
ingly, we found different tunneling exit locations for p+,
p0 and p− along the laser peak vector (negative x axis)
in Fig. 5(c), even though the ionization potentials and
laser parameters are exactly same for all three orbitals.
This result turns out to be major reason for the orbital-
dependent offset angles: the closer to nucleus the electron
is born, the stronger Coulomb interaction there is, thus
a stronger deflection for p+ orbital, see Fig. 6.

In Fig. 6, we exchange the tunneling initial velocity
and position for p− orbital to those of p+ orbital arti-
ficially, and then analyze the electron’s behaviors. The
tunneling initial position and velocity for the most prob-
able electrons for the two orbitals can be read out from
Fig. 5. When only the initial velocity of p− orbital is re-
placed by that of p+ orbital, while the initial ionization
position is maintained, a deviation angle of 2.0◦ is ob-
served. If we only replace the p− orbital’s initial position
by the p+ orbital’s, the deviation angle is 6.8◦. This can
be easily understood that the Coulomb force strongly af-
fects the electron launched at inner position. Finally we
change both the initial position and velocity, a deviation
angle of 9.2◦ is obtained. The comparison of electrons’
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FIG. 5: (color online) (a) The reconstructed normalized initial
transverse momentum distribution for p+, p0 and p− orbitals.
(b) The initial ionization position calculated with TDSE-CBP
method (density plot), and Landau’s effective potential theory
(dashed white), launched from p0 orbital. (c) The compari-
son of ionization position for p+, p0, p− orbitals and Landau
model (solid green), along vector direction of laser peak.

classical trajectories and angles of deviation stated above
are shown in Fig. 6. Therefore, not only orbital-specific
tunneling initial transverse velocity, but also the shift of
tunneling coordinates arising from non-adiabatic dynam-
ics, plays a important role in deflecting electrons from p+
and p− orbitals to different angles.
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We note because the instant of ionization correlates
with the angle of photoemission through θτ = ωτ (τ :
ionization delay time with respect to the laser peak) in
angular streaking experiment, we need to compare the
ionization times for the three orbitals. We observed a
close-to-zero tunneling delay for all three orbitals, similar
as previously concluded [14, 36]. Therefore, the orbital-
specific offset angles can not be attributed to the differ-
ences in tunneling time.
Furthermore, the closest tunneling exit location for p+

orbital means the electron acquires the most energy from
laser field among the three orbitals. This is further con-
firmed by the reconstructed energies at the tunneling exit
for these three orbitals in Fig. 7. When an atom is ex-
posed to laser field, it is polarized, and it’s ionization po-

tential will be affected via well-known Stark shift. In a
static electric field F , the Stark shift can be calculated by
[42, 43], Ip(F ) = Ip(0)+

1
2αNF 2, where IP (0)=0.579 a.u.

is the field-free ionization energy of argon, αN = 11.1 [44]
is the static atomic polarizability. The ionic polarizabil-
ity αI is absent because the potential in TDSE calcula-
tion does not include core polarization effect, leading to
a slightly overestimated Stark shift. Linear Stark shift
term is not taken into account here, because the con-
sidered argon atom has no permanent dipole moment.
For comparison, we first first study the static case by
adopting a 10-fs sin2 envelope laser field without carrier
wave. The peak intensity of laser field is still 1.2×1014

W/cm2. The electron’s energies at tunneling exit are
reconstructed for p−, p0 and p+ orbitals by performing
TDSE-CBP with this quasi-static laser field, as shown
in Fig. 7(a). We note that the most probable energy of
electron tunneled from p0 orbital is -0.603 a.u., which is
consisted with the results predicted by considering the
static Stark shift. On the other hand, the electron tun-
neled from p− and p+ orbitals tends to gain more energy
but is still lower then Ip(0). This can be explained by the
initial transverse momentum of p− or p+ electron shown
in Fig. 5(a). The degeneracy of p+ and p− ionization en-
ergy level is guaranteed by the perturbation theory. We
next turn to the case using slightly elliptically polarized
driving laser with the same intensity as the quasi-static
case. In Fig. 7(b), one can see that the most proba-
ble ionization energies are raised higher then Ip(0) for
all of the three orbitals. During the tunneling ioniza-
tion, the electron gains energy from the varying barrier,
and it is converted to the potential energy and kinetic
energy of electron. The additional kinetic energy is re-
lated to the non-zero momentum observed at tunneling
exit as indicated in Fig. 5(a). An intuitive physical pic-
ture for the raising of energy is the shift of tunneling
exit toward ion core, because the ionization takes place
closer to the barrier top. Moreover, the change of ioniza-
tion energy also implies how the ionization probability is
modified. From the point of view of strong field approxi-
mation (SFA) and imaginary time under-barrier motion,
the transition rate from the ground state to a continuum
state can be represented as Γ = exp(−2Im(SS + SC)),

where SS =
∫ t0
ts

dt[(p + A(t))2 + Ip] is the classical ac-

tion under barrier and Sc =
∫ t0
ts

dtV [r(t)] is its Coulomb

correction [15, 24, 45], p and A(t) are the canonical mo-
mentum and vector potential, respectively. As pointed in
[15], this integration for S is related to the area between
the potential barrier and the ionization energy level. Be-
cause the ionization from p+ orbital exhibits a bigger
upshift of energy compared to the p− orbital case, the
mentioned area is therefore smaller, which results in a
higher ionization probability, providing an alternative ex-
planation to the experimentally observed helicity depen-
dent ionization rates in non-adiabatic tunneling regime
[19]. An exception for the above explanation is the case
of p0 orbital, because the SFA theory can not account
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for the orbital structure. The nodal in the laser polariza-
tion plane for p0 orbital gives rise to the lowest ionization
probability.
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FIG. 7: (color online) The reconstructed energy distribution
of electrons at tunneling exit for p−, p0 and p+ orbitals, in
(a) quasi-static laser field and (b) slightly elliptically polarized
laser field.

Now we move to characterize the adiabaticity of tun-
neling under different laser conditions (the Keldysh pa-
rameters γ). We use the central wavelengths of driving
laser as a knob to vary γ, and then the non-adiabaticities
are examined by reconstructing the peak and width of ini-
tial transverse momentum. For comparison, a calculation
with a quasi-static laser field was also carried out to pro-
vide a baseline of adiabatic tunneling (γ=0). In princi-
ple, one can vary γ by changing laser intensity. However,
higher intensities could lead to over-the-barrier ioniza-
tion, in which the concept of tunneling can not apply
anymore. In Fig. 8(a), we compare the peak position of
the initial transverse momentum for p+ and p− orbitals
at different γ values. With a decreasing γ, the most
probable transverse momentums for three orbitals ap-
proach steadily toward their own quasi-static limits (solid
marks), exhibiting a reducing non-adiabaticity. The p0
orbital shows a very similar behavior compared with the
prediction of non-adiabatic PPT method [24, 25]. It is
surprising that non-adiabaticity can persist well beyond
γ <0.5 and laser wavelength > 1.6 µm. It is interesting
to note that even at the adiabatic limit, there is a non-
vanishing initial transverse momentum for orbitals with
a non-zero magnetic quantum number and the direction
of the initial transverse momentum matches the helicities
of the orbitals. It is also worth noting that the differences
between p+, p0 and p− orbitals at each γ are almost con-
stant as γ decreases, implying a similar non-adiabatic
effect on the peak value of transverse momentum for all

three orbitals. On the other hand, it seems non-adiabatic
dynamics has little effect on the width of the initial trans-
verse momentum distribution σ⊥ and show same trend
as PPT model, as shown in Fig. 8(b).

III. CONCLUSION

we have identified the orbital effect on photoelectron
momentum distribution in non-adiabatic tunneling ion-
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FIG. 8: (color online) (a) The most probable transverse mo-
mentum at the tunneling exit p⊥ versus Keldysh parame-
ter. (b) The reconstructed width of initial transverse mo-
mentum σ⊥ as a function of Keldysh parameter. The trans-
verse momentum distribution is assumed to have the form
exp(−p2⊥/σ

2
⊥). The inset shows a zooming in differences be-

tween the momentum width of p+ and momentum width of
p0 and p− and p0. The laser intensity maintains 1.2 × 1014

W/cm2, and the corresponding γ for the wavelengths varies
from 1.06 to 0.36. The solid marks represent the quasi-static
limitation by using a 10-fs sin2 envelope laser field without
carrier wave.

ization with the help of TDSE-CFP and TDSE-CBP
methods. We further identified the initial transverse mo-
mentum as an sensitive probe of the adiabaticity of tun-
neling ionization. The improved understanding of the
non-adiabatic tunneling should help clarify existing con-
troversies in tunneling initial conditions and is important
for quantitative interpretation of atto-clock experiments.
TDSE-CFP and TDSE-CBP methods can be extended to
more complex orbitals and it will be interesting to apply
this approach to study tunneling dynamics in molecules
[47] and multi-electron dynamics.
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