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A momentum-dependent Coulomb factor in the probability for nonlinear ionization of atoms by
a strong low-frequency laser field is calculated analytically in the adiabatic approximation. Expres-
sions for this Coulomb factor, valid for an arbitrary laser pulse waveform, are obtained and analyzed
in detail for the cases of linear and circular polarizations. The dependence of the Coulomb factor on
the photoelectron momentum is shown to be significant in both cases. Using a similar technique, the
Coulomb factor for emission of high-order harmonics by an atom in a bichromatic laser field is also
calculated. In contrast to the case of a single-frequency field, for bichromatic fields the Coulomb
factor depends significantly on the harmonic energy.

PACS numbers: 02.30.Mv, 03.65.Xp, 32.80.Wr

I. INTRODUCTION

Above-threshold ionization (ATI) and high-order har-
monic generation (HHG) resulting from the interaction
of intense laser radiation with atomic and molecular sys-
tems have remained the focus of strong field physics for
more than two decades. Furthermore, interest in these
phenomena shows no signs of saturation, for at least two
reasons. First, the highly nonlinear time-dependent dy-
namics of laser-driven atoms and molecules has continued
to produce new effects, most of which are first observed
experimentally and only later are explained theoretically.
The last decade has been particularly fruitful, witnessing
such “ionization surprises” [1] as the discovery of sev-
eral types of low energy structures [2–5], photoelectron
holography [6], and a low-energy plateau [7]. Second,
HHG opens a means to generate extremely short and
relatively bright pulses of UV and soft X-ray light using
compact and economical setups [8–10]. Someday HHG-
based table-top light sources will achieve intensities suf-
ficient for a variety of practical applications. For par-
ticular applications, tailored laser pulses enable one to
control the spectral and polarization properties of high-
order harmonics. Moreover, the emerging new area of
attosecond physics [11] is based on HHG.

These experimental advances require theory for their
interpretation. The strong-field approximation (SFA) re-
mains an important computational tool for theory (for re-
views, see Refs. [12–15]). Its remarkable success is based
on its combination of analytic simplicity and predic-
tive power. Indeed, the celebrated Lewenstein model of
HHG [16] is essentially based on the SFA. However, since
the SFA in its standard form disregards the Coulomb in-
teraction between a photoelectron and its parent ion, for
neutral atoms and positively-charged ions the SFA is at
best only qualitatively accurate. As experiments probe
ever deeper into details of ATI and HHG processes, the
SFA becomes increasingly insufficient for their descrip-
tion. In fact, all of the aforementioned “ionization sur-

prises” are out of reach of this otherwise very fruitful
method.

This paper has two aims. First, using the
general approach of the so-called Coulomb-corrected
SFA (CCSFA) [14, 17], we calculate analytically the
momentum-dependent Coulomb factor in the ionization
probability in the adiabatic limit, γ ≪ 1 (where γ is
the Keldysh parameter [18]), and analyze it for the cases
of linearly-polarized (LP) and circularly-polarized (CP)
monochromatic fields. This result fills the gap between
the static (momentum-independent) Coulomb factor re-
sponsible for enhancement of the ionization rate [19, 20]
and the one for arbitrary γ, which can only be calculated
numerically and which requires a demanding analysis of
those trajectories that revisit the atom. Second, we use
the adiabatic approximation to calculate Coulomb fac-
tors for HHG spectra produced by a bicircular laser field
with a frequency ratio of 1:2. This second aim is moti-
vated by the growing interest, both experimental [21–23]
and theoretical [24–27], in HHG spectra produced by bi-
circular fields.

In Sec. II we provide a brief overview of theoretical
methods for treating strong field processes in order to
provide a context for the present work. In Sec. III we
introduce the Coulomb-free SFA detachment amplitude
and its representation in terms of saddle points and tra-
jectories. We also derive approximate expressions for the
saddle-point solutions and for the classical photoelectron
action in the adiabatic limit. In Sec. IV we derive the
Coulomb correction and analyze it for LP and CP fields.
In Sec. V the adiabatic Coulomb correction for HHG
spectra in bicircular laser fields is derived. In Sec. VI
we summarize our results and our conclusions. Finally,
in Appendix A we apply the adiabatic theory to calculate
detachment probabilities for LP and CP fields. Through-
out this paper we use the dipole approximation (which is
adequate for strong field processes in moderately intense
infrared laser fields) and atomic units (~ = me = e = 1).
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II. OVERVIEW OF THEORETICAL METHODS

FOR STRONG FIELD PROCESSES

There are few efficient theoretical methods able to
treat laser-atom interactions on a fully nonperturba-
tive basis, which is necessary for describing such highly
nonlinear phenomena as ATI and HHG. These meth-
ods include the numerical solution of the time-dependent
Schrödinger equation (TDSE); exactly solvable models
such as the quasistationary quasienergy states approach
(QQES) for the zero-range potential [28]; the adiabatic
approximation [29–31]; the S-matrix approach [32–35];
the Keldysh theory [18, 36, 37] or, equivalently, the strong
field approximation [38, 39]; and the simple man (classi-
cal) model (SMM) [40]. Although exact, the TDSE ap-
proach presents two difficulties: it is highly demanding
of computational resources, particularly for fields hav-
ing long wavelengths or polarizations other than linear,
and it provides little insight into the physics of a prob-
lem without extensive, time-consuming additional cal-
culations to explore the relevant parameter space. The
QQES method combined with the effective range theory
provides a model-independent almost exact description
of ATI and HHG for weakly-bound systems such as neg-
ative ions [41]. The generalization of its results to the
case of atoms has been achieved heuristically (see, e.g.,
Refs. [42–46]) in the tunneling limit, γ → 0, where γ
is the adiabaticity parameter introduced by Keldysh [18]
[see Eq. (6) below]. The SFA is rather efficient for provid-
ing a qualitative description of the basic features of both
ATI and HHG spectra. For systems bound by short-
range forces it is quantitatively accurate and consistent
with the QQES approach (for discussions comparing the
two approaches, see Refs. [14, 41]). Finally, the SMM
has provided invaluable insight into the physics of recol-
lision processes, including HHG, but its purely classical
essence is insufficient for calculating quantum mechanical
ATI and HHG probabilities and interference effects.

Owing to its efficiency and qualitative accuracy, dif-
ferent extensions of the SFA have been developed since
the early days of strong field physics, especially during
the past decade, aimed at improving its quantitative ac-
curacy for atoms, ions, and molecules. Incorporation of
the Coulomb interaction into the SFA is based on the
so-called perturbation theory for the action, suggested in
the context of the ionization problem by Perelomov and
Popov [19]. The idea stems from the fact that, within
the SFA, the photoelectron motion in the continuum is
described by the Volkov function – an exact solution to
the Schrödinger equation for an electron in the field of
a plane electromagnetic wave [47–50]. The phase of the
Volkov function coincides with the classical action for
an electron moving in a laser field. After ionization the
photoelectron departs from the nucleus quickly, so that
for most of its trajectory the laser force dominates the
Coulomb one. Thus, the Coulomb interaction can be
taken into account as a correction to the action due to the
Coulomb energy along the photoelectron trajectory in the

laser field. Owing to the quantum nature of strong field
ionization from ground states of atoms, such photoelec-
tron trajectories cannot be entirely classical: they remain
Newtonian but in complex time and space. That scheme
was adopted for the semiclassical representation of the
SFA (both with and without the Coulomb field included)
and realized via the imaginary time method (ITM) [51].
In a strong laser field, the Coulomb action calculated
along such “classical” complex space-time trajectories is
complex-valued and therefore changes both the absolute
value and the phase of the ionization amplitude. Al-
though small compared to the laser-induced action, it is
usually numerically large and causes pronounced effects
in photoelectron spectra. The trajectory-based calcula-
tion of Coulomb corrections, extended to arbitrary values
of photoelectron momenta and of the Keldysh parame-
ter, is known in the literature as the CCSFA [14, 17].
Suggested at the same time with the CCSFA and based
on similar ideas, although technically different in realiza-
tion, the eikonal-Volkov approximation (EVA) [52] and
the analytic R-matrix theory (ARM) [53] are also used
to describe Coulomb effects in ATI spectra. Applying
the CCSFA, EVA, and ARM methods, several Coulomb-
induced effects have been analyzed. These include the
Coulomb-induced asymmetry of the photoelectron dis-
tributions produced by elliptically-polarized fields [54],
the total photoionization rate at arbitrary laser frequen-
cies [55], the low-energy structures [56], the photoelec-
tron holographic side lobes [6], and the attoclock exper-
iment [57] (see the review [14] for details). Recently, the
ARM method has been advanced to probe Coulomb ef-
fects in HHG spectra [58].

In the general case of arbitrary photoelectron mo-
mentum and Keldysh parameter, the application of the
CCSFA meets serious computational difficulties. The
Coulomb correction to the action along a complex-valued
laser-driven trajectory requires numerical evaluation, ex-
cept in special cases. This involves in turn a topological
analysis of the Coulomb potential energy as a function
of complex time. Recent studies [7, 59, 60] have demon-
strated that this function is not analytic over the entire
complex plane but has poles and branch points that make
the construction of an integration contour a complicated
numerical task. One way to avoid these difficulties is
to simplify the theory by replacing complex-valued tra-
jectories by real ones [56, 61] or by reformulating the
theory in such a way that complex trajectories do not
appear from the very beginning [62]. Such simplifica-
tions, although efficient, obviously omit effects of “sub-
barrier” motion. Meanwhile the subbarrier contribution
to the phase, which determines the interference structure
of photoelectron distributions, was shown to be signifi-
cant [63].

Yet another possibility to simplify the theory analyti-
cally without disregarding complex-time effects consists
in considering its adiabatic limit, in which case a regular
expansion of all relevant quantities in powers of γ con-
siderably facilitates calculations and provides sufficient
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accuracy despite retention of only a few terms. Taking
into account that the domain of strong-field ionization
experiments has been recently extended to mid-infrared
fields with wavelengths λ ≃ 2 − 10µm, this limit has
more than academic interest. In fact, for ground states
of atoms, the true tunneling regime of ionization is only
accessible at mid-infrared wavelengths.

III. DETACHMENT AMPLITUDE IN THE

ADIABATIC LIMIT

Within the SFA, the strong field detachment amplitude
of a weakly-bound electron can be presented in the well-
known form [14, 18, 36–39] (see also Ref. [46]):

A(p) =
1

2π

∫ ∞

−∞

fl(p, t)e
iS(p,t)dt, (1)

S(p, t) =

∫ t

−∞

{

1

2
[p+A(t′)]

2
+ Ip

}

dt′, (2)

where p is the photoelectron momentum at the detector,
A(t) is the vector potential of the laser field, Ip is the ion-
ization potential, and fl(p, t) is a smooth preexponential
function, whose explicit form depends on the spatial sym-
metry of the initial electron bound state (l is the orbital
momentum of the bound state). Since our analysis is
focused on the exponential phase (2), this explicit form
is not important. For low frequencies, we estimate the
integral in (1) by the saddle point method:

A(p) =
∑

ν

aν(p), (3)

aν(p) =
fl(p, tν)e

iS(p,tν)

√

2πi (V (tν) · F (tν))
, (4)

where V (t) = p + A(t) is the time-dependent photo-
electron velocity, F (t) = −∂A(t)/∂t is the laser field
strength, and the index ν numbers the saddle points,
which satisfy the equation:

[p+A(tν)]
2
+ 2Ip = 0. (5)

Solutions of Eq. (5) are obviously complex, tν(p) ≡ tν =
tν + i∆ν , where tν and ∆ν are real. Only the roots tν
with ∆ν > 0 should be included in the sum (3), since the
transition to the continuum state starts from a bound
state with negative energy −Ip [64].
We assume the Keldysh parameter γ [18], defined by

γ =
κω

F
, κ =

√

2Ip (6)

is small, i.e., γ ≪ 1, which defines the so-called adia-
batic or tunneling regime of ionization. In this limit,
ω∆ν ≪ 1 [37, 65] (see also Refs. [29–31]), and we can ex-
pand Eq. (5) as a series in the adiabatic parameter ∆ν .
Keeping terms up to second order, we obtain:

V 2
ν − 2i∆νVν · Fν −∆2

ν

(

F 2
ν − Vν · Ḟν

)

+ κ2 = 0, (7)

where Vν ≡ V (tν), Fν ≡ F (tν), and Ḟν ≡ ∂F (t)/∂t|t=tν .
Separating the real and imaginary parts of Eq. (7), we
obtain an equation for tν :

Vν · Fν = 0, (8)

and an expression for ∆ν :

∆ν =
κν

Fν
, (9)

where

κν =
√

κ2 + V 2
ν , (10a)

Fν =

√

F 2
ν − Vν · Ḟν . (10b)

Equation (8) implies that the first time-derivative of the
electron’s kinetic energy in the laser field is zero [65].

Since F 2
ν −Vν · Ḟν > 0 (∆ν is real), at the moment t = tν

both the electron kinetic energy and κν are minimized.
Expanding Eq. (2) as a series in ∆ν and keeping terms
up to third order, we obtain:

S(p, tν) ≈ S(p, tν) + i
κ
3
ν

3Fν
. (11)

The scalar product V (tν) · F (tν) in Eq. (4) also can be
simplified: expanding it up to first order in ∆ν and taking
into account Eq. (8), we obtain:

V (tν) · F (tν) ≈ −i∆νF2
ν . (12)

Collecting Eqs. (9), (11), and (12), we obtain for the
partial detachment amplitude in the adiabatic limit:

aν(p) =
fl(p, tν)e

iS(p,tν)

√
2πκνFν

e−κ
3
ν/(3Fν). (13)

This result is valid for ω∆ν ≪ 1, which requires, in ad-
dition to being in the tunneling regime, that the electron
kinetic energy at the time of release is small, V 2

ν ≪ p2F ,
where pF = F/ω is the characteristic electron quiver mo-
mentum in the laser field (i.e., its field momentum). The
latter follows from the estimate

ω2∆2
ν ∼ γ2 + V 2

ν /p
2
F . (14)

In practice, V 2
ν should not exceed by much the value κ2.

Consider now two simple and simultaneously common
cases of monochromatic LP and CP fields. For the LP
field, F (t) = ezF cosωt, so that Eq. (8) becomes

pz − pF sinωtν = 0, (15)

where pz = (p · ez), and may be solved analytically:

ωt
(+)
ν = arcsin

pz
pF

+ 2πν, (16a)

ωt
(−)
ν = π − arcsin

pz
pF

+ 2πν . (16b)
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In this case, for any ν:

V 2
lin = V 2

ν = p2⊥ = p2 − p2z, (17a)

κlin = κν = κ

√

1 + (p⊥/κ)
2
, (17b)

Flin = Fν = F

√

1− (pz/pF )
2
, (17c)

ω∆lin = ω∆ν = γ

√

1 + (p⊥/κ)
2

1− (pz/pF )
2 . (17d)

Explicit forms of Fν and ∆ν show that the momentum
distribution of photoelectrons determined by |aν(p)|2,
takes its maximum value at p⊥ = 0 and pz = 0 [see
Eqs. (A5), (17b), and (17c)]. For p⊥ ≪ κ, pz ≪ pF ,
expansion of Eqs. (17b) and (17c) respectively in powers

of (pz/pF )
2
and (p⊥/κ)

2
shows that it has a Gaussian

shape, in agreement with previous studies [12, 37, 66].
For a CP field, F (t) = F{cosωt; sinωt}, the equation

for tν simplifies since F (t) ·A(t) = 0:

p · Fν = p||F cos(ωtν − ϕ) = 0, (18)

where ϕ is the angle between the X-axis and the pho-
toelectron momentum projection p|| on the polarization
plane. The desired solution of Eq. (18) is

ωtν =
π

2
+ ϕ+ 2πν, (19)

and leads to the following result:

V 2
ν =

(

p|| − pF
)2

+ p2⊥, Fν = F
√

p||/pF , (20a)

ω∆ν =

√

√

√

√

γ2 +
(

1− p||/pF
)2

+ (p⊥/pF )
2

p||/pF
, (20b)

κν =
√

κ2 + p2⊥ + (p|| − pF )2 , (20c)

where p2⊥ = p2 − p2||. In contrast to the LP field case,

the partial amplitude aν(p) for the CP field has its max-
imum at p|| = pF , p⊥ = 0 [see Eqs. (A9) and (A10)] in
agreement with Refs. [36, 37]. Near p|| = pF the distri-
bution is Gaussian and axially symmetric about the laser
field propagation direction. These formulas apply if p⊥
and p|| do not deviate from p|| = pF , p⊥ = 0 by more
than several κ. Further analysis and applications of the
adiabatic approximation for LP and CP fields are given
in Appendix A.

IV. COULOMB CORRECTIONS FOR

PHOTOELECTRON MOMENTUM

DISTRIBUTIONS IN THE ADIABATIC REGIME

The phase S(p, tν) in Eq. (4) is the classical action
for an electron moving in the time-dependent field F (t)
along a trajectory satisfying Newton’s equation and spec-
ified by the boundary conditions:

(

dr(t)

dt

)2
∣

∣

∣

∣

∣

t=tν

= −κ2, r(tν) = 0. (21)

The Coulomb interaction can be taken into account by
calculating a correction to the Coulomb-free action in
Eq. (4) along the Coulomb-free trajectory specified by
conditions (21) [19]. Detailed descriptions of this method
are given in recent reviews [12, 14, 15]. Here we sketch
briefly the algorithm, which has both analytical and
topological parts.
The analytic part includes the following five steps:

(i) Find the Coulomb-free electron trajectories, r(t), in
the laser field, F (t), satisfying (21).
(ii) Find the points t(bp) (different from tν) in the com-
plex time plane at which r2(t(bp)) = 0. These complex

times are branch points of the function
√

r2(t).
(iii) Calculate the Coulomb action along the Coulomb-
free electron trajectory r(t):

δS(ζ) =

∫

C

Z
√

r2(t)
dt, (22)

where Z is the residual atomic charge (Z = 0 and 1 for
negative ions and neutral atoms, respectively). The semi-
infinite integration contour C connecting the start time
(tν) and the detection time (t → ∞) is chosen in such a
way that it avoids cuts generated by the branch points
t(bp). The integral (22) is logarithmically divergent at
the saddle point, so that the integration must start from
a complex time t = ζ close to tν . The value of ζ will be
eliminated from the final result through a regularization
procedure (see the next step).
(iv) Regularize δS by matching it to the field-free
Coulomb action at ζ = tν :

∆Sν(p) = lim
ζ→tν

(

δS(ζ) + i
Z

κ
ln |κ2(ζ − tν)|

)

; (23)

(v) Calculate the Coulomb factor in the ionization am-
plitude, exp(i∆Sν). If the Coulomb correction is a purely
imaginary quantity that is the same for all ν (as in the
case of monochromatic fields), it gives a momentum-
dependent Coulomb factor in the ionization amplitude:

Qν(p) = e−Im∆Sν(p).

The topological part of the problem concerns the ge-
ometry of the integration contour C. In general this is
a complicated computational problem, since it requires
the mapping of all branch points and poles of the func-
tion 1/

√

r2(t) in order to develop a contour that lies on
a single sheet of the Riemann surface. Examples of this
kind of topological analysis can be found in Refs. [7, 60].
Except for the saddle point tν , which generates a first-
order pole of the Coulomb potential energy [whose di-
vergent contribution is safely eliminated by the match-
ing procedure (23)], most of the zeros of the function
r2(t) can be associated with close approaches of the pho-
toelectron to the parent ion due to its oscillations in a
time-dependent laser field. As shown in Ref. [7], the
contributions of these complex-time returns to the ac-
tion (23) can be significant, with a correspondingly large
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effect on the photoelectron spectrum if the parameter
γZ/κ > 1 (see examples in Ref. [7]). In the adiabatic
limit that we consider, however, this value is small (ow-
ing to Z = 1, κ ≃ 1), so that the branch points asso-
ciated with such returns do not play a significant role.
Physically, it can be justified by the increased spreading
of the photoelectron wave packet with increasing laser
period so that the electrons drift away from the lateral
direction (for a LP field), and hence close approaches be-
come less and less likely. Thus we disregard the branch
points generated by returns. Consequently, only one pair
of branch points remains (see below), thus allowing for a
fully analytic treatment.
For ω∆ν ≪ 1, a trajectory in the integral (22) can

be calculated by restricting the time |t − tν | to a small
fraction of the laser period and expanding in τ ≡ t− tν :

dr(t)

dt
= p+A(t) ≈ Vν − Fντ − Ḟν

τ2

2
. (24)

Integrating Eq. (24) over τ and satisfying the initial con-
dition at τ = i∆ν gives the trajectory:

r(t) = Vν(τ−i∆ν)−
Fν

2

(

τ2 +∆2
ν

)

− Ḟν

6
(τ3+i∆3

ν). (25)

For convenience, we introduce a new variable ξ, τ = iξ,
so that rc(ξ) ≡ r(tν + iξ) takes the form:

rc(ξ) = iVν(ξ−∆ν)+
Fν

2
(ξ2−∆2

ν)+i
Ḟν

6
(ξ3−∆3

ν). (26)

Using Eqs. (8)-(10) and (26), r2
c (ξ) including terms up

to (ξ −∆ν)
4 can be presented as:

r2
c (ξ) = (ξ −∆ν)

2
[

κ2 + (ξ −∆ν)∆νF2
ν+

(ξ −∆ν)
2

4

(

F2
ν − Vν · Ḟν

3

)]

, (27)

in which all terms in ∆ν (as well as those involving ω∆ν)
have been dropped if they do not determine a leading
term. Equation (27) explicitly shows that r2

c (ξ) behaves
quadratically at ξ → ∆ν :

r2
c(ξ) ≈ κ2(ξ −∆ν)

2, (28)

and the integral (22) diverges logarithmically at ζ →
tν [19]. Moreover, the function in the square bracket

of Eq. (27) becomes zero at ξ = ξ
(bp)
± :

ξ
(bp)
±,ν = −∆ν

F2
ν + Vν · Ḟν/3

F2
ν − Vν · Ḟν/3

±2

√

V 2
ν F2

ν + κ2Vν · Ḟν/3

F2
ν − Vν · Ḟν/3

. (29)

Using Eq. (10b), the denominators in Eq. (29) become

F2
ν − Vν · Ḟν

3
=

4

3

(

F2
ν − F 2

ν

4

)

.

∆ν

t
(bp)
+,ν

t
(bp)
−,ν

Im t

Re t

tν

tν

R → ∞

FIG. 1. Map of the saddle (tν) and branch points (t
(bp)
±,ν )

in the complex plane of time t. The vertical segment with

endpoints t
(bp)
±,ν is a cut in the Riemann surface. Arrows show

the directions in which the saddle and the branch points move
with increasing Vν . The arc shown by a thin solid line repre-
sents a possible integration path.

Under the condition ω∆ν ≪ 1, ξ
(bp)
±,ν is real and thus

two branch points, t
(bp)
±,ν = tν + iξ

(bp)
±,ν , for given ν are

placed on the line Re t = tν . With increasing Vν they
move along this line in positive (for the “+” solution) and
negative (for the “−” solution) directions (see Fig. 1).

Thus, in order to make 1/
√

r2(t) a bijective function,
we cut the complex plane by a segment bounded by the

points t
(bp)
±,ν (see Fig. 1). Since 1/

√

r2(t) ∝ 1/t for large
t, we can choose any integration path that avoids the
cut, starts near the point tν , and ends at any remote
point on the real time axis. For example, the integration
path shown in Fig. 1 consists of a straight semi-infinite
line starting from ζ ≈ tν and an arc of infinitely large ra-
dius. Evidently, this topology of cuts, branch, and saddle
points holds only in the case F2

ν > F 2
ν /4 and assumes the

validity of the cubic approximation for r(t) [cf. Eq. (26)].

In the case F2
ν < F 2

ν /4, t
(bp)
−,ν is above the saddle point

tν , while t
(bp)
+,ν is located below tν . In the special case

F2
ν = F 2

ν /4, one branch point (t
(bp)
−,ν ) is at infinity, while

t
(bp)
+,ν is located just below the saddle point tν in the first
quadrant of the complex plane. With decreasing Vν , the
branch points move toward each other along the vertical
line t = tν , so that cuts can be drawn as vertical lines

from points t
(bp)
−,ν (straight up) and t

(bp)
+,ν (straight down).

Note that this case is interesting only from a mathemat-
ical point of view, since it is realized only for ω∆ν > 1,
so that the adiabatic approximation is inapplicable.

Substituting Eq. (27) into Eq. (22) and using Eq. (23),
we analytically calculate the integral (22) (see Ref. [67])
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and obtain in the limit ζ → tν :

∆Sν = −iZ
κ
ln

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4κ3

Fν

[
√

1 +
V 2
ν

κ2
+

2√
3

√

1− F 2
ν

4F2
ν

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(30)

Then we obtain the Coulomb factor Qν [=exp(i∆Sν)],

Qν = Q
(ν)
statR(ν), (31)

where

Q
(ν)
stat =

(

2κ3

Fν

)Z/κ

, Fν =
√

F 2
ν , (32)

R(ν) =















2Fν

Fν

[
√

1 +
V 2
ν

κ2
+

2√
3

√

1− F 2
ν

4F2
ν

]















Z/κ

. (33)

The Coulomb correction factors in Eqs. (31)–(33) are
the main results of this work. In order to obtain the
Coulomb-corrected ionization amplitude, Ã(p), each par-
tial amplitude aν(p) in the sum in Eq. (3) must be mul-
tiplied by the factor Qν :

Ã(p) =
∑

ν

Qνaν(p), (34)

where aν is given by Eq. (13). In the limit Vν → 0,

R(ν) → 1 and Q
(ν)
stat in (31) is the well-known static field

Coulomb factor [20, 37], but taken for the field amplitude
at the instant of ionization. Note that the adiabatic re-
sult (30) for the Coulomb correction is purely imaginary.
In order to obtain Coulomb factors for LP and CP

fields from the general result (33), we need an explicit

expression for the scalar product Vν · Ḟν . From Eqs. (16)
and (19) it follows that for a LP field:

Vν · Ḟν = 0, (35)

and for a CP field

Vν · Ḟν = F 2

(

1− p||

pF

)

. (36)

Using Eqs. (17), (33), (35), and the fact that for a LP
field V 2

ν = p2⊥ and F 2
ν = F2

ν , we obtain for a LP field:

R =





2

1 +

√

1 + (p⊥/κ)
2





Z/κ

, (37)

where we have dropped the index ν as unnecessary. For
p⊥ ≪ κ, R can be expanded in a series in p⊥/κ:

R ≈ 1− Zp2⊥
4κ3

+
Zp4⊥
32κ5

(

3 +
Z

κ

)

. (38)

Since for a LP field Vν has zero projection on the polar-

ization axis [see Eq. (29)], ξ
(bp)
±,ν < 0, and the integration

contour can be handled in a standard way: vertically
down to the real axis, and then along it [59]. The static
factor Qstat has a singularity for pz = pF :

Q
(lin)
stat =

(

2κ3

F
√

1− (pz/pF )2

)Z/κ

. (39)

This singularity shows the limitation of the adiabatic
approximation for finding saddle points. Indeed, for
pz > pF Eq. (15) cannot be solved for real times and
a more accurate equation for finding the saddle points
should be used. For pz → pF , Fν tends to zero [see
Eq. (17c)] and the adiabatic approximation breaks down
[since, according to Eq. (17d), ω∆ν → ∞]. In Fig. 2(a)
we show the dependence of ω∆ν on pz for three val-
ues of p⊥, while in Fig. 2(b) we show the dependence

of Q
(lin)
stat on pz. As pz increases, both ω∆ν and Q

(lin)
stat

gradually increase. For a LP field, the factor Q
(lin)
stat does

not depend on p⊥, while the accuracy of the adiabatic
Coulomb correction decreases with increasing p⊥, owing
to the increase in the parameter ω∆ν . Since the factor
R decreases with increasing p⊥ [and does not depend
on pz, see Fig. 2(c)], the Coulomb factor decreases with
increasing p⊥.
For a CP field, using (20a), the factor R has the form:

R =













2γ

ω∆ν

p||

pF
+ γ

√

4p||

3pF
− 1

3













Z/κ

, (40)

where ω∆ν is given by Eq. (20b). It is worthwhile to note
that the result (40) for p|| = pF coincides with R for a
LP field in Eq. (37). In contrast to the case of LP field,
Qstat for a CP field does not depend on the momentum,
since F 2

ν = F 2. However, the factorR has a branch point
singularity at p|| = pF /4. For p|| ≤ pF /4, ω∆ν takes val-
ues greater than unity and the adiabatic approximation,
as well as the results in this approximation, are invalid
and require special consideration. Furthermore, for such
values of p|| the probability of ionization is exponentially
small. In Fig. 3 we present the dependence of ω∆ν and R
on p|| for three values of p⊥. Neither dependence is sym-
metric with respect to the momentum p|| = pF . More-
over, the minimum in the dependence of ω∆ν on p|| for
fixed p⊥ is shifted toward higher momenta with respect
to p|| = pF and also moves to the right with increasing
p⊥ [see Fig. 3(a)].
The Coulomb-induced modifications of ATI spectra be-

come most apparent for longitudinal electron emission in
a LP field. In this case, the squared factor (39) increases
as (1− p2z/p

2
F )

−Z/κ, thus slightly reducing the (negative)
slope of the spectrum. In the lateral direction, the slope
of the spectrum instead becomes more negative (37), but,
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FIG. 2. Momentum dependence of the adiabatic parame-
ter and Coulomb correction factors for a monochromatic LP
field. (a) Dependence of ω∆ν on pz for three values of p⊥
[see Eq. (17d)]: Solid (red) line: p⊥ = 0; dashed (black)
line: p⊥ = 0.4κ; dotted (blue) line: p⊥ = 0.8κ. (b) Depen-

dence of Q
(lin)
stat on pz [see Eq. (39)]. (c) Dependence of R

on p⊥ [see Eq. (37)]. Calculations employed a field intensity
I = 1014W/cm2, λ = 1.6 µm, Z = 1, κ = 1 a.u., and γ = 0.53.

as the lateral distribution decreases much faster than the
longitudinal one, the lateral Coulomb effect is expected
to be less noticeable. In order to confirm the adiabatic
Coulomb effect in photoelectron distributions along the
polarization direction, in Fig. 4 we compare experimental
data on tunneling ionization of Ne [72] and Ar [2] atoms
to SFA predictions with and without the CC. In our theo-
retical calculations we used a Gaussian shape for the laser
pulses and chose the peak intensities, pulse durations,
and laser wavelengths appropriate for the two experi-
ments, i.e., 1015 W/cm2, 50 fs, and 795 nm for Ref. [72],
and 1.5× 1014 W/cm2, 25 fs, and 2 µm for Ref. [2]. The
theoretical results in Fig. 4(a) were integrated over the
lateral momentum and focally averaged, while those in
Fig. 4(b) were only focal averaged for p⊥ = 0. Owing to
the large difference in the absolute values of the theoret-
ical results with and without the CC, the results without
the CC were scaled to the results including the CC in

0.5 1 1.5 2 2.5 3 3.5

0.5

0.6

0.7

0.8

(a)

0.5 1 1.5 2 2.5 3 3.5

0.6

0.8

1 (b)

ω
∆
ν

p|| (a.u.)

R

FIG. 3. Dependence of (a) the adiabatic parameter ω∆ν (20b)
and (b) the Coulomb correction factor R (40) on p|| for a
monochromatic CP field and three values of p⊥: Solid (red)
lines: p⊥ = 0; dashed (black) lines: p⊥ = 0.4κ; dotted (blue)
lines: p⊥ = 0.8κ. Calculations employed a field intensity
I = 1014W/cm2, λ = 1.6 µm, Z = 1, κ = 1 a.u., γ = 0.53,

pF = 1.87 a.u., and Q
(circ)
stat = 37.47.

order to match the two results at low electron energies.

Owing to focal averaging of the electron signals in
Refs. [2, 72], the experimental photoelectron spectra are
structureless, with no well-defined ATI peaks or inter-
ference structures. Such data are particularly useful for
verifying our theoretical results, as the monotonic de-
crease of the electron yields [for p‖ > 0.4 a.u. in Fig. 4(a)

and for p2/2 > 0.3 a.u. in Fig. 4(b)] allows for a high-
precision comparison of the slopes of the spectra. [Note
that the low-energy features in the spectra in Fig. 4, i.e.,
the resonant ATI peaks that survive focal averaging [72]
in Fig. 4(a) and the low-energy structure (LES) [2] in
Fig. 4(b), are beyond the scope of our adiabatic treat-
ment, which ignores the bound atomic states responsi-
ble for resonant structures and the soft recollisions that
lead to the emergence of the LES [56, 73].] The com-
parisons in Fig. 4 and Table I show that the theoret-
ical results including our Coulomb factor significantly
improve agreement with the experimental data over the
electron energy range from a few eV (i.e., above the po-
sitions of the resonant ATI features and the LES) and
∼ up = p2F /4. For higher photoelectron energies (be-
yond the scale of Fig. 4) approaching 2up, the adiabatic
approximation fails and the factor (39) begins to over-
estimate the ionization probability. In this part of the
spectrum, non-adiabatic effects related to the first pho-
toelectron recollision come into play and lead to a con-
siderable modification of the Coulomb factor [7]. These
nonadiabatic effects do not allow for an analytic treat-
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FIG. 4. Comparisons of present theoretical results with
experimental photoelectron spectra. (a) Longitudinal pho-
toelectron momentum distribution for ionization of Ne by a
linearly-polarized laser field with λ = 795 nm and peak in-
tensity 1015 W/cm2. (b) Longitudinal photoelectron energy
distribution for ionization of Ar by a linearly-polarized laser
field with λ = 2 µm and peak intensity 1.5 × 1014 W/cm2.
Structured (black) solid lines: experimental data, in (a) from
Ref. [72] and in (b) from Ref. [2]). Smooth (red) solid lines:
present focal-averaged results including the CC [cf. Eq. (34)].
Dashed (blue) lines: present focal-averaged results without
the CC [cf. Eqs. (3) and (13)].

ment.
For noble gas atoms with ionization potentials close

to that of the hydrogen atom, the effective principal
quantum number that determines the magnitude of the
Coulomb factors derived above is n∗ = Z/κ ≃ 1. As
a result, the momentum-dependent adiabatic Coulomb
effects shown in Figs. 2-5 remain rather modest. In con-
trast, for alkali atoms, which have relatively small ioniza-
tion potentials, the effective principal quantum numbers
are relatively large (e.g., n∗ = 1.59, 1.63 and 1.87 for Li,
Na and Cs respectively), which magnifies the Coulomb
effect. This magnification is even larger in the case of
highly-charged ions of noble gas atoms, for which n∗ & 3.

V. COULOMB CORRECTIONS FOR HHG IN

THE ADIABATIC REGIME

The adiabatic analysis presented above for the
Coulomb correction for nonlinear laser ionization pro-
cesses can also be used to analyze HHG spectra and high-
energy electrons in ATI processes. The physics of both
of these laser-induced processes is well described by the

TABLE I. Comparisons of present theoretical results with
experimental photoelectron spectra (arb. u.) for Ne [72] and
for Ar [2] for three particular momenta in Fig. 4(a) and three
particular photoelectron energies in Fig. 4(b). The theoretical
SFA results with and without the CC factor correspond to the
smooth solid (red) curve and the dashed (blue) curve results
respectively in Fig. 4. See the caption of Fig. 4 and the text
for details of the theoretical calculations.

p|| (a.u.) Expt. [72] With CC Without CC

0.5 5.63 5.59 5.47

1 3.00 2.83 2.68

1.5 0.90 0.79 0.68

p2/2(a.u.) Expt. [2] With CC Without CC

0.5 3.22 3.31 3.13

1 1.43 1.45 1.28

1.5 0.52 0.64 0.57

rescattering scenario [11, 40, 68, 69], which is based on
analyzing the contributions of closed photoelectron tra-
jectories. These trajectories start at time ti and return at
time tf , when the photoelectron either recombines with
emission of a photon or rescatters to form the high-energy
ATI plateau. The Coulomb correction for closed trajec-
tories requires: (i) an additional regularization of an inte-
gral similar to (22) at the moment of recombination (tf );
and (ii) a more detailed topological analysis of the saddle
and branch points. Our analysis is in progress and will be
presented elsewhere. Nevertheless, it can be shown that,
for a low-frequency laser field and either a high-energy
photon or electron, the returning part of a closed tra-
jectory gives a negligible contribution into the imaginary
part of the Coulomb correction to the action. Indeed, the
integration contour for the Coulomb correction in this
case connects two points in the complex plane, ti and tf ,
with the imaginary part of tf much smaller than that of
ti. Due to analyticity of the integrand in Eq. (22), we can
deform the contour so that it comprises two paths: the
first path (ionization) starts at the saddle point ti and
goes to infinity, while the second path (return or recom-
bination) starts from infinity and arrives at tf . As noted
in Sec. IV, in the adiabatic limit the major contribution
to the Coulomb integral is accumulated in the vicinity
of saddle points. This contribution is determined by the
behavior of r2(t) in that part of the complex time plane:
for the saddle point ti, r2(t) ≈ −κ2(t − ti)

2 and thus
the ionization path integral is given by the scaling fac-
tor Z/(iκ) [see Eq. (30)] and is purely imaginary, while
for the saddle point tf , r

2(t) ≈ ṙ2(tf )(t − tf )
2 and the

corresponding scaling factor is given by the Sommerfeld
parameter Z/

√

ṙ2(tf ), which is real and, for high energy
harmonics or electrons, is of order Zω/F < 1. Thus, the
contribution to the Coulomb integral from the returning
path is mostly real and therefore is not expected to have
a significant effect on HHG and ATI spectra. This quali-
tative analysis is supported by the fairly good agreement
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of calculated TDSE results with analytic results [42–46],
in which the Coulomb effects are accounted for heuristi-
cally in the ionization and recombination (or rescatter-
ing) steps. Below, we focus on the Coulomb correction
for HHG spectra.
The real part of the complex times ti, ti = Re ti, and

tf (neglecting the imaginary part of tf ) satisfy the equa-
tions [70]:

∂

∂ti
K2

i = 0, (41a)

K2
f = 2E, (41b)

where E = Ω− Ip, Ω is the harmonic frequency and

Ki = A(ti)−
1

tf − ti

∫ tf

ti

A(ξ)dξ, (42)

Kf = A(tf )−
1

tf − ti

∫ tf

ti

A(ξ)dξ. (43)

The saddle point ti associated with tunneling has the
imaginary part, ∆ = Im ti [70]:

∆ =

√

K2
i + κ2

F , F =

√

1

2

∂2K2
i

∂t
2
i

, (44)

From Eq. (41a), one finds that F satisfies the same equa-
tion as for ionization [cf. Eq. (10b)]:

F =

√

F 2
i −Ki · Ḟi , (45)

where Fi ≡ F (ti) and Ḟi = ∂Fi/∂ti. To an accuracy up
to ∼ ∆3, a trajectory satisfying the initial condition (21)
has the form (25):

r(t) = Vi(τ − i∆)− Fi

2

(

τ2 +∆2
)

− Ḟi

6
(τ3 + i∆3), (46)

where τ = t− ti and

Vi = Ki + i∆
Ki

tf − ti
− ∆2

2

Ki

(tf − ti)2
≈ Kie

i ∆

tf−ti . (47)

In contrast to the case of ionization, Vi has a small imag-
inary part [cf. Vν (7)], which is not surprising, because Vi

is not an observable. Since ω∆ ≪ 1 and tf − ti ∼ ω−1, in
practical calculations we can neglect the imaginary part
of Vi. Thus, the Coulomb factor is given by Eq. (31) with
these substitutions: Fν → Fi, Vν → Vi, and Fν → F .
According to Eq. (41a), for a one-dimensional (1D)

field (e.g., a linearly polarized laser pulse or a multicolor
field with components linearly polarized in the same di-
rection), ionization events happen at instants for which
Ki = 0, and thus the Coulomb factor coincides with the
static one [see Eq. (32) with Fν → Fi]. This result jus-
tifies the ad hoc generalization of the ionization factor
for an electron in a short-range potential to that for an
electron in an atom that was used in Refs. [42–44, 71].
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FIG. 5. Dependence on the harmonic energy (E = Ω − Ip)

of the Coulomb correction factors (a) Q
(ν)
stat and (b) R

(ν) for
HHG in a bicircular laser field for each of the four most signifi-
cant trajectories ν. The color gradient of each curve shows the
relative contribution of each trajectory ν. Calculations were
performed for Ip = 13.65 eV and for a bicircular field (48)
with ω = 0.775 eV, I = 1014 W/cm2, N = 3.

To test the accuracy ofQstat for a more complicated 2D
case, we calculate it for the case of HHG in a bicircular
laser field. We parametrize the vector potential of the
bicircular field (thus ensuring there is no DC component)
as follows:

A(t) = A1(t) +A2(t), Ai =
∂

∂t
Ri(t), (48)

Ri =
Fi

ω2
i

e
−2 ln 2 t2

τ2
i (ex cosωit+ eyηi sinωit), (49)

where ω1 = ω, ω2 = 2ω, F1 = F2 = F , τ1 = τ2 = 2πN/ω,
and η1 = −η2 = 1. Our calculation is for an inten-
sity I = cF 2/(8π) = 1014 W/cm2 and a wavelength

λ = 1.6µm (~ω = 0.775 eV). The dependence ofQ
(ν)
stat and

R(ν) [see Eqs. (31)–(33)] on the photoelectron energy E
at the instant of recombination is shown in Fig. 5 for each
of the four most significant trajectories ν. Our calcula-
tions show that the Coulomb factors decrease gradually
with increasing harmonic energy. This fact is related to
the increasing velocity Vi at the moment of ionization.
We note that in the 2D case the Coulomb factor can be
approximated with good accuracy by its static counter-
part only in a narrow range of harmonic energies.

VI. SUMMARY AND CONCLUSIONS

In this work we have derived general analytic expres-
sions [see Eqs. (31)–(33)] for the Coulomb factor in the
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probability amplitude for nonlinear ionization by a low-
frequency intense laser field for the case in which the
Keldysh parameter γ is small. We have also presented de-
tailed applications of our general formulas to the impor-
tant special cases of LP and CP laser fields. Our analytic
expressions, obtained in the adiabatic approximation, fill
the need for reliable Coulomb correction factors in the
gap between the static field (momentum-independent)
Coulomb factor responsible for the enhancement of the
total ionization rate [19, 55] and the one for arbitrary γ
and p, which requires a demanding numerical calculation
within the CCSFA or ARM methods. Application of our
general formulas to the benchmarking cases of LP and CP
fields shows that a noticeable dependence of the Coulomb
factor on the photoelectron momentum survives even in
the adiabatic limit.

The method developed in this paper has also allowed
us to calculate the Coulomb factor in the probability for
HHG. Here we predict that, in contrast to the case of
a quasi-monochromatic LP pulse, the HHG spectrum in
a bicircular laser field is rather strongly modified by the
Coulomb interaction.
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Appendix A: Strong field detachment probability in

the adiabatic approximation

To specify momentum distribution for LP and CP
fields, we consider a rectangular temporal envelope f(t)
for a laser pulse with an N -cycle flat part:

f(t) =

{

1, 0 ≤ t ≤ 2πN

0, otherwise
.

For a LP laser field, F (t) = ezFf(t) cosωt, the real part
of the saddle points in the adiabatic approximation is
given by Eq. (16). Thus with this electric field we can

calculate S(p, tν) analytically:

S+ ≡ S
(

p, t
(+)
ν

)

= −3Fpz
4ω2

√

1−
(

pz
pF

)2

+
1

ω

(

p2

2
+ Ip + up

)(

arcsin
pz
pF

+ 2πν

)

, (A1a)

S− ≡ S
(

p, t
(−)
ν

)

=
3Fpz
4ω2

√

1−
(

pz
pF

)2

+
1

ω

(

p2

2
+ Ip + up

)(

π − arcsin
pz
pF

+ 2πν

)

, (A1b)

where up = F 2/(4ω2). In order to calculate the detach-
ment probability, we must specify fl(p, tν) in Eq. (13).
For an initial s-state, the function f0(p, tν) has the
form [37]:

f0(p, t
(±)
ν ) =

Cκ 0

2π

√

κ

2
, (A2)

while for a p-state its form depends on the azimuthal
quantum number m [37]:

f1(p, t
(±)
ν ) = ∓Cκ 1

2π

√

3κ

2

[

1 +
(p⊥
κ

)2
]

, m = 0, (A3)

f1(p, t
(±)
ν ) = −mCκ 1

2π

√

3κ

4

p⊥
κ
, m = ±1, (A4)

where Cκ l is the dimensionless asymptotic coefficient of
the bound state ψ0:

ψ0(r)|κr≫1 ≈
√
κCκ l

e−κr

r
Yl,m(r̂).

Substituting Eqs. (17), (A1)-(A4) into (13), we obtain
the detachment amplitude (3) in the form:

A(p) =
|fl(p, t±ν )|e

−
κ
3
lin

3Flin
+iS++iπα

√
2πκlinFlin

×
[

(−1)l + ei(S−−S+)
] sin(2πNα)

sin(πα)
, (A5)

where l = 0, 1 and α = (p2/2+Ip+up)/ω. The differential
(in pz and p⊥) detachment probability is then found to
be:

d2P(p)

dp
= |A(p)|2

=
2l+ 1

(2π)3
C2

κ l

[1 + (p⊥/κ)
2]l−|m|−1/2

[1− (pz/pF )
2
]1/2F

(p⊥
2κ

)2|m|

e
−

2κ3
lin

3Flin

×
[

1 + (−1)l+m cos(S− − S+)
]

[

sin(2πNα)

sin(πα)

]2

. (A6)

For large N we can approximate:
[

sin(2πNα)

sin(πα)

]2

≈ 2Nω
∑

n

δ

(

p2

2
+ Ip + up − nω

)

=
T ω2

2π

∑

n

δ

(

p2

2
+ Ip + up − nω

)

, (A7)
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where n is an integer number and T = 4πN/ω. We
notice that the limiting case of a DC field can be obtained
from (A6) by setting N = 1/2 and taking the limit ω → 0
and, hence, pF → ∞. In this case the third line of (A6)

is equal 1,
√

1− (pz/pF )2 → 1, κlin → κ, and Flin → F .

For a CP field, F (t) = Ff(t)(ex cosωt+ey sinωt), the
action S(p, tν) has a simple form:

S(p, tν) =

(

p2

2
+ Ip + 2up

)

tν . (A8)

For the case of an initial s-state, the differential (in p||

and p⊥) detachment probability takes form:

d2P(p)

dp
=

C2
κ 0

2(2π)3

√

pF /p||

Fκ
exp

[

−2κ3

F
κ

3

√

pF
p||

]

×
[

sin(2πNα)

sin(πα)

]2

, (A9)

where α = (p2/2 + Ip + 2up)/ω and

κ =
√

1 + (p⊥/κ)2 + (p|| − pF )2/κ2. (A10)

Near its maxima, d2P(p)/dp has a Gaussian distribution
that is independent of the angle ϕ and has cylindrical
symmetry with respect to the axis perpendicular to the
polarization plane [36, 37].
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