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Calculations of electron mass stopping powers (STP) of electons in H2 have been performed using
the convergent close-coupling method for incident electron energies up to 2000 eV. Convergence of
the calculated STP have been established by increasing the size of the close-coupling expansion from
nine to 491 states. Good agreement was found with the STP measurements of Munoz et al. [Chem.
Phys. Lett. 433, 253 (2007)].
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I. INTRODUCTION

Interaction of high energy particles (X-rays, protons
and ions) with matter leads to the production of a large
number of secondary electrons. It is well established that
the secondary electrons play an important role in DNA
damage [1, 2]. Assessment and modeling of radiation
damage, therefore, requires accurate account of the sec-
ondary electron interactions with atoms and molecules.
Furthermore, electron impact processes play an impor-
tant role in studies of planetary atmospheres [3], in-
terstellar medium [4], fusion and industrial plasmas [5].
Given the large number of reaction channels involved in
such processes, theoretical techniques are viewed as the
most appropriate to obtain the required collision data,
while experiment provides crucial tests for theoretical
models. For electron-atom collisions present day ad-
vanced theoretical methods [6–8] can provide detailed re-
sults for electron scattering cross sections for many atoms
to high accuracy. The situation is different for electron-
molecule collisions where reaction channels leading to
molecular vibrations, rotations and dissociation present
additional challenges and progress was largely limited to
low-energy scattering [9, 10].
In this paper we are interested in the electron mass

stopping power (STP) for molecular hydrogen. The STP
(or energy loss functions) is an important parameter of
interest in medical research [11, 12], environmental and
technological applications [13, 14] where energy deposi-
tion of electrons is of primary importance. The H2 STP is
of special interest in astrophysics [4, 15–17] as molecular
hydrogen is the most abundant molecule in the universe,
particularly in the interstellar space and in the atmo-
spheres of gas giants and the outermost planets of the
Solar system.
The calculations of the STP have been performed for

a number of molecules using the Bethe formula [18–20]
combined with the Bragg’s additivity rule [21] with re-
sults available, for example, from the NIST database [22]
above 1000 eV. The Bethe formula is expected to be ac-
curate at high incident electron energies (>1000 eV). An
extension of the Bethe formula to low and intermediate
energies has been attempted in a number of studies using

the concepts of target effective atomic number and mean
excitation energy [23–25]. However, an accurate eval-
uation of the STP in molecules at energies below 1000
eV requires a complete set of electron impact cross sec-
tions for all important reaction channels including exci-
tation, ionization and dissociation. A number of studies
have used a compilation of cross sections for molecular
hydrogen to estimate the STP [17, 26, 27]. Such colli-
sion data sets were based on the experiment available at
the time, semiempirical ionization cross sections and the
Born-Bethe excitation cross section results extended to
low energies by phenomenological techniques.

Experimental determination of the electron STP in
molecular hydrogen have been conducted by Munoz et al.
[28] in the energy range from 15 to 5000 eV. In the exper-
iment the measurement of the energy loss spectra have
been used to determine the mean excitation energy. The
latter was combined with the total inelastic cross sec-
tions (obtained from recommended total and elastic cross
sections) to obtain an estimate of the STP. At energies
above 1000 eV reasonable agreement (within 20%) was
found with the NIST molecular hydrogen results calcu-
lated with the Born-Bethe theory [22], where the NIST
data was the only results used for comparison. Given the
observed discrepancy between the experiment and Born-
Bethe results for the electron STP in methane [29] and
total cross sections for a number of diatomic molecules
[30, 31], a fresh look at the calculations of total cross
sections and STP at intermediate and high energies is
highly desirable.

Molecular hydrogen is the simplest neutral molecule
and is a natural starting point for application of ad-
vanced theoretical techniques to STP calculations in
molecules. We have recently obtained a comprehensive
set of electron-impact elastic, excitation, ionization and
total cross sections for e−-H2 scattering over a wide en-
ergy range (0.1-300 eV) [32, 33] using the convergent
close-coupling (CCC) method. Here we extend the CCC
calculations to higher energies (2000 eV) where compari-
son with the Born-Bethe theory results is possible. These
cross sections allow the modeling of various processes re-
lated to the interaction of electrons with H2 molecules,
and in particular to evaluate the STP and mean excita-



2

tion energy. We, therefore, are in position to examine
the robustness of the experimental approach for deter-
mining the STP, verify the accuracy of the approximate
techniques utilized in previous studies, and provide the
first fully ab-initio calculations of the STP for low and
intermediate incident electron energies.
Previously we have applied the CCC method to study

antiproton stopping power for a number of atomic tar-
gets [34], hydrogen and water molecules [35]. Here we
extend stopping power calculations to light (electron)
projectiles. The paper is organized as follows. In the
next section we describe the CCC method and STP cal-
culations for e−-H2 collisions. Results and discussion are
given in section III and conclusions are formulated in sec-
tion IV.

II. THEORETICAL METHOD

Application of the CCC method to electron scattering
from molecular hydrogen has been discussed in detail in
Refs. [32, 33, 36]. Only a brief overview is presented
here.

A. CCC method

The molecular CCC method [37] is formulated in a
single-center coordinate system and utilizes the Born-
Oppenheimer approximation of the scattering wave func-
tion. All calculations are performed in the fixed-nuclei
approximation. The internuclear distance R is chosen to
be the average internuclear distance of the H2 ground
state, R = 1.448 a0. Due to the separation of the elec-
tronic and nuclei degrees of freedom the problem reduces
to the solution for electronic wave functions only. The
body frame with the z-axis aligned along the internuclear
line and the origin at the midpoint between the two nuclei
of H2 has been used to obtain the electronic target wave
functions. These will be used to form a close-coupling
expansion of the total electronic scattering wave func-
tion. For the brevity of notation we suppress the explicit
dependence on R in all formulas.
Molecular electronic target states ΦN

n (x1, x2) are con-
structed via a diagonalization procedure of the electronic
Hamiltonian HT in a basis constructed from appropri-
ately symmetry adapted two-electron configurations for
each set of terms of the conserved quantum numbers
(mt, πt, st), where mt is the total target angular momen-
tum projection, st is the spin and πt is the parity:

ΦN
n (x1, x2) =

∑

αβ

C
(n)
αβ φα(r1)φβ(r2)X(sn, vn), (1)

where the 1 and 2 indices are used for the target space, x
is used to denote both the spatial and spin coordinates,
and the two-electron spin function is given by

X(s, v) =
∑

m1m2

Csv
1

2
m1

1

2
m2

χm1
(σ1)χm2

(σ2), (2)

and Clm
l1m1l2m2

is a Clebsch-Gordon coefficient.
The one-electron functions in Eq. (1) are characterized

by the orbital angular momentum projectionmα and par-
ity πα = (−1)lα , and expressed as

φα(r) =
1

r
ϕkαlα(r)Ylαmα

(r̂), (3)

where the radial part is taken as the Laguerre basis func-
tions,

ϕkl(r) =

√

αl(k − 1)!

(k + l)(k + 2l)!
(2αlr)

l+1e−αlrL2l+1
k−1 (2αlr).

(4)

Here αl are the exponential falloff parameters, L2l+1
k−1 are

the associated Laguerre polynomials and k ranges from
1 to Nl, the number of functions for a given value of l.
The resulting set of target (pseudo) states {ΦN

n }, n =
1, ..., N satisfy

〈ΦN
n′ |HT |Φ

N
n 〉 = εNn δn′n, (5)

where εNn is the energy of the state ΦN
n .

These target states are used to perform a multi-channel
expansion of the total electronic scattering wave function

Ψ
N(+)
i (x0, x1, x2) = Aψ

N(+)
i (x0, x1, x2)

= A

N
∑

n=1

fN(+)
n (x0)Φ

N
n (x1, x2), (6)

where the 0 index is used to denote the projectile space
and (+) denotes outgoing spherical wave boundary con-
ditions. The antisymmetrization operator is A = 1 −
P01 − P02 and P0i is the space exchange operator.
The total electronic wave function is a solution of the

Schrödinger equation

(E(+) −H)Ψ
N(+)
i = 0, (7)

where H = K0 + V +HT is the total (electronic) Hamil-
tonian of the scattering system, K0 is the projectile elec-
tron kinetic energy operator and V is the projectile-
target interaction potential. Substitution of the expan-
sion (6) into the Schrödinger equation leads to a set
of momentum-space Lippmann-Schwinger close-coupling
equations for the T -matrix

〈k
(−)
f ΦN

f |TN |ΦN
i k

(+)
i 〉 = 〈k

(−)
f ΦN

f |V |ψ
N(+)
i 〉, (8)

where |k(±)〉 is a projectile electron distorted wave with
energy ǫk = k2/2.
Expanding the projectile wave function in partial

waves

|k(±)〉 =
1

k

∑

L,M

iLe±iδLY ∗
LM (k̂)|kL〉, (9)

where δL is the distorting phase shift and the sum is taken
to some maximum value of Lmax, allows formulation of
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a set of close-coupling equations for the partial-wave T -
matrix. These equations are written separately for each
total symmetry (M,Π,S) specified by the total angular
momentum projection M, parity Π, and spin S,

TMΠS
fLfMf ,iLiMi

(kf , ki) = VMΠS
fLfMf ,iLiMi

(kf , ki) (10)

+

N
∑

n=1

∑

L′M ′

∑

∫

k

dk
VMΠS
fLfMf ,nL′M ′(kf , k)T

MΠS
nL′M ′,iLiMi

(k, ki)

E(+) − εk − εNn + i0
,

and are solved by standard techniques [36, 38].
The projectile-target interaction potential V is not

spherically symmetric and results in the coupling of
partial-wave T -matrix elements with different values of
the projectile angular momentum L. As the size of the
projectile partial-wave expansion (9) increases the size
of the close-coupling equations (10) grows dramatically.
This is also the case when the number of target states
used in the close-coupling expansion (6) is increased. The
principal problem of applying the close-coupling method
to electron-molecule scattering is demonstrating conver-
gence in the cross sections with increasing size of the
partial wave and close-coupling expansions.
Comparison with experiment requires transformation

of the body-frame T -matrix to the laboratory frame,
which is done utilizing an appropriate orientation averag-
ing of the cross sections [36]. The resulting partial-wave
integrated cross sections (ICS) for a transition from an
initial state i to the final state f are given by

σMΠS
f,i =

kf
ki

1

4π

∑

Lf ,Li

Mf ,Mi

|FMΠS
fLfMf ,iLiMi

|2, (11)

where

FMΠS
fLfMf ,iLiMi

= − (2π)2(kfki)
−1iLi−Lf

× TMΠS
fLfMf ,iLiMi

(kf , ki). (12)

Note that for elastic scattering the physical T -matrix is
extracted from the distorted-wave T -matrix [36]. The
spin-averaged cross section summed over partial-waves is
given by

σfi =
∑

S

2S + 1

2(2si + 1)

∑

MΠ

σMΠS
fi . (13)

Convergence of the excitation cross sections with re-
spect to the partial-wave expansion can be improved by
using the Born top-up or analytical Born subtraction pro-
cedure. This method relies on the fact that for large par-
tial waves the excitation T -matrix is well approximated
by the first term on the right hand side of the Lippmann-
Schwinger equation (10). The excitation cross sections
are then obtained as

σS
fi =

∑

MΠ

(σMΠS
fi − σMΠ

fi ) + σAB
fi , (14)

where σAB
fi and σMΠ

fi are the orientation averaged analyt-

ical and partial-wave Born ICS [37]. In the present cal-
culations the maximum total angular momentum projec-
tion and the maximum projectile angular momentum are
chosen to be the same, and Mmax = Lmax = 8 proved to
be sufficient to provide convergent results by comparison
with also conducted calculations with Mmax = Lmax =
6.
The use of Sturmian (Laguerre) functions as the un-

derlying one-electron basis allows us to model both the
bound and continuum spectra of the target by a finite
size expansion in the set of states {ΦN

n }. As the size N
of the expansion increases these states provide an accu-
rate representation of the low-lying bound states of the
target and an increasingly dense square-integrable repre-
sentation of the target continuum, which allows the CCC
method to model all possible electronically driven reac-
tion channels including ionization. Such an approach has
been extensively used in electron-atom scattering [6, 39],
while conversely in electron-molecule scattering, such an
approach has only been applied to a limited number
of problems [33, 37, 40, 41]. For e−-H2 scattering the
previous most detailed results have been obtained with
the close-coupling expansion comprising the seven lowest
nondegenerate states [42–44]. We have shown already
that such a small expansion is insufficient to accurately
model e−-H2 excitation processes [33], here we demon-
strate this for the STP.

B. Calculation details

To establish convergence of the close-coupling expan-
sion we have performed calculations in a number of mod-
els by increasing the size of the calculations from nine to
491 states, with degenerate states mt = ±|mt| counted
separately. We use the acronym “CC” for models that
include only bound states and “CCC” for those that also
include pseudostates modeling ionization channels. The
largest CCC(491) model was obtained with an underly-
ing Laguerre basis constructed from Nl = 17 − l func-
tions for l ≤ 3. This model has 491 states and includes
92 bound states of H2 plus 399 continuum pseudostates
with energies up to 1000 eV. Comparison with the result
obtained with the CC(92) model, that includes only the
92 bound states, allows us to determine the importance
of the ionization channels. We have performed two other
calculations that have a smaller underlying Laguerre ba-
sis with Nl = 15−l functions. The larger of the two mod-
els CCC(427), included functions with l ≤ 3, while the
CCC(259) model included functions with l ≤ 2. The cal-
culation in the CCC(259) model has been performed with
the projectile partial wave expansion Mmax = Lmax = 6
to verify the convergence with respect to the partial wave
expansion.
A good agreement between the two largest models,

CCC(491) and CCC(427), would indicate the conver-
gence of the obtained collision data with respect to the
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discretization of the target continuum. Comparison with
the CCC(259) model gives an indication of the conver-
gence with respect to including target states constructed
from orbitals with larger angular momentum l. Due to
the unitarity of the close-coupling method the conver-
gence with the underlying Laguerre basis orbital angular
momentum l is fast [45]. The states with the largest
orbital angular momentum values for a given structure
model have cross sections that are somewhat too large as
they model excitation to states with higher l values (not
included in the expansion), however, the cross sections
summed over all states are particularly rapidly conver-
gent. Finally, we also present results obtained with the
first nine states of H2. Comparison between the results
of the CC(92) and CC(9) models will indicate the impor-
tance of the high lying bound states in the STP calcula-
tions.
The CCC calculations reported in Refs. [32, 33]

have been conducted up to 300 eV. Here we extend
the CCC(491) model to 700 eV. The exchange interac-
tion between the projectile and target electrons and in-
terchannel coupling become progressively less important
as the incident electron energy increases. For energies
above 500 eV we have conducted calculations with the
CCC(491) model neglecting exchange and retaining only
singlet states. The collision cross sections have also been
obtained using the first Born approximation (FBA) to
determine the incident electron energy for which inter-
channel coupling becomes negligible.

C. Stopping power

Here we use the results of the CCC calculations to
obtain the STP, or energy loss per unit path length, of
electrons in H2 using the following relation

−
1

ρ

dE

dx
≡ σSTP =

Na

M
σsp, (15)

where Na is the Avogadro number, ρ is the density of the
target, and M is the molar mass. Following our previous
work [34], the stopping cross section in the CCC method
can be obtained as

σsp =

NT
∑

n=1

(εn − ε0)σn, (16)

where σn is the electron impact excitation cross section
from the ground state (indexed n = 0) of H2 with en-
ergy ε0 to a final state n with energy εn at an incident
electron energy Ei. For clarity of presentation, we have
dropped an explicit dependence on the incident electron
energy Ei in all equations. The sum in Eq. (16) goes
over all NT open (energy accessible) target states in the
close-coupling expansion including positive energy pseu-
dostates. Retaining in the sum on the right-hand-side of
Eq. (16) only the negative energy pseudostates (relative
to the H+

2 ground state at R = 1.448 a0) we can obtain

an estimate of the STP due to the bound spectrum of
H2 while including only the positive energy pseudostates
allows us to determine the STP due to the ionization
channels.
To facilitate comparison with the experiment [28] and

Born-Bethe calculations [22] it is useful to define a mean
excitation energy

Ē =
σsp
σinel

, (17)

where the total inelastic (reaction) cross section is given
by

σinel =

NT
∑

n=1

σn, (18)

and is equal to the difference between the total σtot and
elastic σel scattering cross sections. The STP (15) can
now be written as

−
1

ρ

dE

dx
=
Na

M
Ēσinel =

Na

M
Ē(1− η)σtot, (19)

where η = σel/σtot. This form of the electron mass STP
(19) is consistent with the analysis of Munoz et al. [28].
They determined the mean excitation energy Ē from
their measured energy-loss spectrum, and obtained the
total inelastic cross sections (18) from recommended to-
tal scattering cross sections and the values of parameter
η obtained from fitting to the data of van Wingerden
et al. [46]. Note, however, that while Eq. (19) offers a
useful alternative for the experimental evaluation of the
STP, in the present calculations both Eqs. (15) and (19)
necessarily produce the same values of the STP.
The STP calculated in this work refer to the electronic

excitations of H2. Within the fixed-nuclei approximation
adopted in the present CCC calculations we neglect an
explicit account of vibrational and rotational excitations.
Explicit account of rovibrational excitations is of impor-
tance only at very low energies, well below the first exci-
tation threshold, and will be considered elsewhere. The
dissociative processes are accounted for indirectly in the
present technique, as in the fixed-nuclei approximation
the calculated excitation cross sections describe scatter-
ing to all rovibrational levels of electronic excited states,
including dissociation.

III. RESULTS AND DISCUSSION

We present convergence studies for the electron mass
STP in Fig. 1. We find very good agreement between
CCC(491), CCC(427) and CCC(259) results that estab-
lishes the convergence of our calculations with an ac-
curacy of better than 5%. At high energies, 500 eV
and above, the no-exchange approximation becomes suf-
ficiently accurate. From 1000 eV the FBA becomes valid
and is in good agreement with the Born-Bethe results
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[22]. The CC(92) model significantly underestimates the
STP at energies larger than 30 eV. This demonstrates
the importance of the ionization channels for STP cal-
culations. Comparison between the CC(92) and CC(9)
models shows the importance of excitations to the highly
excited bound states.

The results of the CCC(491) model have been com-
bined at high energies with no-exchange CCC(491) and
FBA results. These combined data, labeled as CCC are
presented in Table I and Fig. 2 together with its parti-
tion on the bound and ionization components. In Fig. 3
the CCC results are compared with the estimates of the
STP obtained by Gumus [25], Takayanagi and Nakata
[26], Miles et al. [27] and Dalgarno et al. [17] and the ex-
periment of Munoz et al. [28]. Previous estimates of the
STP were based on the phenomenological extension of
the Bethe formula to low and intermediate energies [25]
and evaluation of the available experimental and theo-
retical data for excitation and ionization cross sections
[17, 26, 27]. These studies utilized theoretical results that
were predominately based on Born-Bethe theory with
phenomenological modifications at low energies. Given
the large (>20%) uncertainties of the experimental e−-
H2 excitation cross sections and difficulty in producing
reliable cross sections from Born-Bethe theory at low en-
ergies the uncertainties in these STP estimates are ex-
pected to be large. This is clearly seen in Fig. 3 where
the differences between the previous STP estimates are
particularly large below 100 eV. The CCC results agree
best with the estimate of Dalgarno et al. [17]. The CCC
results, the previous estimates of Dalgarno et al. [17], Gu-
mus [25], Takayanagi and Nakata [26], Miles et al. [27],
and the experiment [28] show the maximum value for
STP at around 75 eV, which is a similar position to the
maximum for methane based tissue equivalent gas mix-
ture [29]. The experiment of Munoz et al. [28] has uncer-
tainty of 13%. We find that the CCC results are some-
what below the experiment for incident electron energies
less than 50 eV, but in good agreement at higher ener-
gies. The disagreement below 50 eV is rather unexpected
and deserves some attention.

It is important to emphasize that Munoz et al. [28]
have not measured the STP directly. They derived the
mean excitation energy from the measured energy loss
spectra and used it to estimate the experimental STP
via Eq. (19). This procedure required an estimate of the
total and elastic cross sections that come with their own
uncertainties. It is, therefore, preferable to compare di-
rectly with the quantity being measured. We extracted
the mean excitation energy values from the data pre-
sented by Munoz et al. [28] and assigned 9% uncertainty
to the experimental values, the same as the uncertainty
reported at 100 eV. The results of the CCC calculations
for Ē are given in Table I and are compared with the
experiment in Fig. 4. We find very good agreement with
our calculations from the lowest measured energy point
at 15 eV to 300 eV. At larger energies our values are
about 10% higher than the experiment and are just above
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FIG. 1: Convergence studies of the mass stopping power for
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FIG. 2: The bound and ionization components the mass stop-
ping power (STP) for electron scattering on the ground state
of H2 calculated using the CCC method

the experimental error bars. The measured mean exci-
tation energy remains approximately constant above 100
eV with the value of 20.3 ± 1.8 eV [28]. Our results
show a similar behavior but the constant value of 23 eV
at energies larger than 400 eV.
The mean excitation energy enters as a parameter in

the Born-Bethe procedure for the determination of the
STP. The value of 19.2 eV was adopted in the Born-
Bethe method [22] and is calculated from the oscillator
strength distribution. Similar calculations using the os-
cillator strengths obtained in the CCC(491) model give
the value of 20.9 eV in the length form and 19.4 eV in
the velocity form. The difference between the length and
velocity forms gives an indication of the uncertainty of
the present calculations due to the accuracy of the target
wave functions which we therefore estimate to be about
7%.
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TABLE I: Mass stopping power (STP) in units of MeV cm2/g
and mean excittaion energy (Ē) in units of eV for electron
scattering on the ground state of H2 calculated using the CCC
method.

E(eV) STP Ē E(eV) STP Ē

11 135.6 10.3 50 987.0 17.5
12 134.1 10.3 60 1040.6 18.1
13 228.1 11.3 70 1075.0 18.7
14 268.8 11.5 90 1085.0 19.5
15 321.7 11.9 100 1079.7 19.8
16 346.8 12.3 130 1027.0 20.6
17 388.5 12.7 160 964.2 21.2
18 416.3 13.0 200 880.0 21.8
19 453.9 13.3 250 780.1 22.1
20 482.4 13.6 300 700.0 22.3
22 527.4 14.0 500 495.7 22.8
25 614.5 14.7 700 384.8 22.9
30 727.6 15.6 1000 294.0 23.1
35 808.5 16.1 1500 208.5 22.9
40 871.7 16.6 2000 162.7 22.7
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FIG. 3: Mass stopping power for electron scattering on the
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Given the good agreement between the CCC results
and measured mean excitation energy in the 15 - 50 eV
region, the discrepancy for the STP in this energy region
should be due to the total and elastic cross sections used
by Munoz et al. [28]. In Fig. 5 we compare total and elas-
tic cross sections obtained in the CCC(491) calculations
with the values used by Munoz et al. [28]. For the total
cross sections we find generally better agreement than for
the elastic cross sections. For the latter the discrepancy
in the 15 - 50 eV region is manifest. From our previ-
ous studies [32], we note that our converged CCC(491)
model results are in excellent agreement with other mea-
surements [47–50] available for this energy range. Note,
however, that the origin of the apparent discrepancy for
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the STP in Fig. 3 is ultimately not due to the values of the
elastic and total scattering cross sections used by Munoz
et al. [28], but due to the too optimistic uncertainties of
the experimental data in the 15 - 50 eV region.
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FIG. 5: Total, inelastic, and elastic cross sections for electron
scattering on the ground state of H2. The results of the CCC
calculations are compared with the cross sections adopted by
Munoz et al. [28].

The elastic cross sections presented in Fig. 5 have been
obtained from the parameter η and total cross sections
presented in Table 2 of Munoz et al. [28]. The param-
eter η (the ratio of elastic to total scattering cross sec-
tions), has been fitted by Munoz et al. [28] to a simple
function η = exp(−0.511 ln(Ei) + 1.219) using the semi-
empirical data from vanWingerden et al. [46] and utilized
in Eq. (19) to obtain the STP. The data of vanWingerden
et al. [46] for energies less that 100 eV are based on ex-
perimental data of Srivastava et al. [51]. The uncertainty
in the latter measurements is 18%. The same 18% uncer-
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tainty have been applied to the Munoz et al. [28] elastic
cross sections presented in Fig. 5. The uncertainty of the
total cross sections has been estimated by Munoz et al.

[28] to be 5%. From the total and elastic cross sections
and their uncertainties one can determine the total in-
elastic cross section and its uncertainty. The standard
error analysis gives for the absolute uncertainties

∆inel =
√

∆2
tot +∆2

el. (20)

The total inelastic cross sections as obtained from the
Munoz et al. [28] data and its uncertainties are also pre-
sented in Fig. 5 and compared with the results of the
CCC calculations. At low energies the uncertainty in
the total inelastic cross section is particularly large and
exceeds 100% of the experimental value at the lowest en-
ergy (15 eV). As the incident electron energy increases
the absolute value of the elastic cross section drops much
faster than the total cross section and the uncertainty in
the latter becomes the dominant contribution to ∆inel.
The uncertainty of the STP can now be obtained from
the uncertainties of the mean excitation energy and the
total inelastic cross sections

∆STP = σSTP

√

(∆Ē/Ē)2 + (∆inel/σinel)2. (21)

Given the excellent agreement between the CCC elastic
cross section [32, 33] and a number of elastic cross sec-
tions measurements [47–50] we have replaced the elastic
cross sections used by Munoz et al. [28] with the CCC
cross sections in the 15 - 100 eV energy region, assigned a
5% uncertainty to these values and recalculated the STP
utilizing the Munoz et al. [28] measured mean excitation
energy and their estimate of the total cross section. The
STP uncertainties have been obtained as described above
with ∆tot/σtot = 5% and ∆Ē/Ē = 9% at all energies and
∆el/σel = 5% below and at 100 eV, and ∆el/σel = 18%
above 100 eV. In Fig. 6 we present the comparison of the
modified experimental data and the CCC calculations for
the STP. As expected, the experimental uncertainties are
large at energies less than 50 eV and the CCC results are
now within the errorbars.

IV. CONCLUSIONS

The electron mass STP in H2 have been calculated
using the CCC method. The convergence of the STP
has been established by increasing the size of the close-
coupling expansion from nine to 491 states. The ion-
ization channels have been found to make major contri-
butions to the STP. We estimate that the uncertainties
of the CCC STP and mean excitation energy are better
than 9%, which is due to the convergence of the close-
coupling expansion (5%) and the underlying target struc-
ture accuracy (7%). The accuracy of the present CCC
results is a significant improvement over previous STP

estimates produced from available experimental e−-H2
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FIG. 6: Mass stopping power for electron scattering on the
ground state of H2. The CCC results are described in the text.
Experimental data are due to Munoz et al. [28]. Modification
of the absolute values and uncertainties of the experimental
data of Munoz et al. [28] is described in the text.

cross sections and Born-Bethe theory [17, 25–27]. We
find generally reasonably good agreement with these es-
timates of the STP, in particular with the data of Dal-
garno et al. [17]. Good agreement with measurements of
Munoz et al. [28] is found over the energy range from 15
eV to 2000 eV, though an apparent discrepancy in the 15
- 50 eV region was identified. We determined that this
discrepancy is due to the too optimistic experimental un-
certainties in this energy region. Comparison with the di-
rectly measured mean excitation energy showed excellent
agreement in the same energy region. We have confirmed
for H2 that the procedure used by Munoz et al. [28] to
calculate the STP is sufficiently reliable when accurate
elastic and total cross sections are used, however, it can
lead to large experimental uncertainties for incident elec-
tron energies up to few times the ionization potential.

V. ACKNOWLEDGMENTS

We would like to thank Dr James Colgan for reviewing
this manuscript. This work was supported by the United
States Air Force Office of Scientific Research, Los Alamos
National Laboratory (LANL) and Curtin University. Za-
mmit would like to specifically acknowledge LANLs ASC
PEM Atomic Physics Project for its support. The LANL
is operated by Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S.
Department of Energy under Contract No. DE-AC52-
06NA25396. Resources were provided by the Pawsey Su-
percomputing center with funding from the Australian
government and the government of Western Australia.



8
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