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We calculate the kinetic energy release distributions of fragments produced for electron-impact
dissociation of the vibrationally excited molecular hydrogen ion H+

2 and its isotopologues D+
2 and

T+

2 . Here we apply the adiabatic-nuclei convergent close-coupling method and compare results with
several different methods, including the delta approximation. Results are presented for a number of
dissociative excitation transitions and dissociative ionization as a function of the initial vibrational
state of the molecule. We confirm that the “square root” approximation is a good approximation
for the adiabatic-nuclei kinetic energy release cross sections of H+

2 . Agreement with experiment,
where available, is good.

PACS numbers:

I. INTRODUCTION

Electron-impact dissociative ionization or excitation of
molecular ions

e− +AB+ → A+ + B+ + 2e−, (1)

→ A+ + B+ e−, (2)

→ A+ B+ + e−, (3)

produces fragments with a kinetic energy release (KER)
distribution. These collision processes are among
the most important for determining fusion and low-
temperature plasma dynamics and properties, and can
also be used to control plasma conditions [1, 2]. Infor-
mation about the KER distribution is used to determine
energy deposition and reactivity in the respective media,
which is important in the fields of radiotherapy [3–6] and
astrophysics [7].
The KER distributions correspond to excitations to

the vibrational continuum, and are the fragment single
differential cross sections. Many experimental measure-
ments of the KER cross sections have been used to ex-
tract scattering cross sections [8–18], identify dissociative
processes [8–18], and to determine experimental condi-
tions [18–20], molecular structure [21, 22] and collision
dynamics [21]. The KER cross sections can be extracted
from a complete close-coupling calculation that includes
all degrees of freedom (electronic, vibrational, and ro-
tational). Several theoretical methods have been uti-
lized to give an approximate KER cross section. Stibbe
and Tennyson [23] derived a form of the adiabatic-nuclei
cross section for vibrationally resolved excitations, utiliz-
ing electronic T -matrix elements. A modified form of this
T -matrix approach, and the square root approximation,
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were implemented by Zammit et al. [24] in the study of
positron-H2 scattering.
The molecular hydrogen ion H+

2 is the most convenient
starting point for developing a KER model, as it is the
simplest molecular system and still exhibits all processes
(1)-(3). It is commonly present in fusion and astrophys-
ical plasmas where its dissociative processes play an im-
portant role in determining plasma properties.
There have been a limited number of theoretical cal-

culations of the H+
2 KER cross sections, likely due to

the complexity of calculating accurate collision data for
molecules. Dunn [25] utilized the delta (reflection) ap-
proximation and the first Born approximation electronic
excitation cross sections of Peek [26] to calculate H+

2 KER
cross sections which are valid only in the high incident
electron energy limit. El Ghazaly et al. [18] used the
more accurate square root approximation, with excita-
tion cross sections derived from the oscillator strengths
of Ramaker and Peek [27], yielding results in reasonable
agreement with experiment. The lack of theoretical KER
cross sections calculated using accurate collision data mo-
tivates the present work. Recently, Zammit et al. [28, 29]
applied the convergent close-coupling (CCC) method to
model electron collisions with H+

2 and its isotopologues.
The CCC results were in good agreement with measure-
ments of proton-production and dissociative ionization
cross sections. Utilizing these results, here we calculate
the KER cross sections using the T -matrix, square root
and delta approximation methods, and compare their
agreement with each other and with the measurements of
El Ghazaly et al. [18]. Atomic units are used throughout
this paper unless specified otherwise.

II. THEORY

The molecular CCC method for e−-H+
2 scattering has

been described in detail by Zammit et al. [28, 29, 30].
Here we give a brief overview. The theory is formulated
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in spherical coordinates, with the origin at the geomet-
rical center of the nuclei. Calculations have been per-
formed in the adiabatic-nuclei approximation [30, 31].
This approximation applies the Born-Oppenheimer ap-
proximation to the total scattering wave function, ef-
fectively reducing the electron-molecule scattering prob-
lem to one involving only the electronic degrees of free-
dom. We formulate the scattering system electronic
Schrödinger equation in the body (molecule fixed) frame
at a fixed internuclear distance R and substitute a close-
coupling expansion constructed from a set of target elec-
tronic (Sturmian) pseudostates. Substitution of this ex-
pansion into the Schrödinger equation leads to a set
of momentum-space Lippmann-Schwinger close-coupling
equations for the elctronic T -matrix. These equations are
solved via a K-matrix formulation, which enforces uni-
tarity. Expanding the projectile wave function in par-
tial waves allows one to solve the close-coupling equa-
tions per partial-wave of total (electronic) orbital angu-
lar momentum projection M , spin S, and parity Π. The
electronic body-frame T -matrix elements are then trans-
formed to the laboratory frame using standard techniques
[30, 31]. Here we perform (semi-classical) orientation av-
eraging of the differential and integrated cross sections
[32], which is equivalent to summing over all rotational
excitations from the rotational ground state, analyti-
cally. By performing calculations at many internuclear
distances R, information of the nuclear motion (KER, ro-
tational, and vibrational excitations) can be obtained via
post-processing of the electronic fixed-nuclei T -matrix el-
ements.
Fixed nuclei electronic excitation cross sections in the

total spin channel S are obtained from the electronic T -
matrix elements T S

fLfMf ,iLiMi
(R;Ein) for electronic tran-

sitions i → f , via

σS
f,i(R;Ein) = 4π3 qf (R)

qi

∑

Lf ,Li

Mf ,Mi

∣

∣

∣
T S
fLfMf ,iLiMi

(R;Ein)
∣

∣

∣

2

,

(4)
where the projectile momenta are calculated from the
incident energy Ein and excitation energy εf,i:

qf (R) =
√

2(Ein − εf,i(R)) (5)

qi =
√

2Ein. (6)

The spin-averaged cross sections are given by

σf,i =
∑

S

2S + 1

4
σS
f,i. (7)

The T -matrix elements are solved for a sufficient number
of partial waves to achieve convergence with the use of
an analytic Born subtraction technique [28, 34]. Cross
sections for the dissociative ionization (DI) process (1)
are calculated by summing over all positive energy states:

σDI,i(R;Ein) =
∑

ǫf>0

σf,i(R;Ein), (8)

where ǫf is the energy of state f .

For the case of the H+
2 molecule, practically all excited

electronic state potential energy curves are repulsive [35–
37], and hence all electronic excitations lead to dissoci-
ation. In Fig. 1 we present the potential energy curves
obtained from the spherical formulation, as a function
of internuclear separation. We compare with the exact
results obtained using a spheroidal formulation of the
electronic H+

2 problem [33]. In spheroidal coordinates,
the H+

2 structure problem is separable and can be solved
analytically. The energies obtained from the spherical
structure model are in excellent agreement with the ex-
act results for the higher energy states which are more
hydrogenic. The two lowest energy states are more dif-
ficult to describe with single center orbitals, particularly
at larger internuclear separations. The spherical calcu-
lations were driven to convergence near the equilibrium
separation R = 2.0 a0, and are sufficiently accurate for
scattering calculations up to R = 5.5 a0. We have imple-
mented an extrapolation technique wherever scattering
data is required at larger R.
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FIG. 1: Potential energy curves of the 1sσg, 2pσu, 2pπu

and 2sσg states obtained from the spherical (points) and
spheroidal (lines) electronic structure calculations.

Following the adiabatic-nuclei (AN) approximation
[31], cross sections for transitions between vibrational
bound states χnvn(R) and continuum states χn(R;Ek),
where Ek is the fragment kinetic energy, summed over all
final rotational states Jf can be expressed in the form

dσS
f,ivi

dEk

= 4π3
∑

Lf ,Li

Mf ,Mi

∣

∣

∣

∣

〈

χf

∣

∣

∣

∣

√

qf
qi
T S
fLfMf ,iLiMi

∣

∣

∣

∣

χivi

〉

R

∣

∣

∣

∣

2

.

(9)
The bound and continuum vibrational wave functions
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χ(R) satisfy the following Schrödinger equation

d2χ

dR2
+2µ

(

Ek −
J(J + 1)−m2

n

2µR2
− εn(R)

)

χ = 0, (10)

where εn(R) is the interaction potential between frag-
ments, i.e. the electronic state potential energy minus the
dissociation energy, J is the rotational quantum number,
mn is the orbital angular momentum projection of the
electronic state n, and µ is the reduced mass of the disso-
ciative products. For H+

2 , µ is half the proton mass. We
remove the explicit dependence of the vibrational func-
tions on J , by taking J = 0 for mn = 0 and J = 1
for mn = ±1. For the calculation of the continuum wave
functions we use the accurate potential energy curves ob-
tained from the spheroidal formulation [33]. The energy
normalized continuum functions are obtained by solving
Eq. (10) using the Numerov method. They have the
asymptotic form

lim
R→∞

χf (R;Ek) =

√

2µ

kπ
sin (kR+ δ) , (11)

and satisfy the property
∫ ∞

0

χf (R;Ek)χf (R;E′
k) dR = δ(Ek − E′

k). (12)

The bound vibrational wave functions χnvn(R) are ob-
tained via diagonalization of the ground electronic state
Hamiltonian in a basis of nuclear functions

φn(~R) =
1

R
ϕnJ (R)YJmJ

(
~̂
R), (13)

where ϕnJ are the Laguerre basis functions as described
in [28, 29]. Here we utilize the 1sσg potential energy
curve from Wolniewicz and Poll [38]. The closure prop-
erty

∑

vn

χnvn(R)χnvn(R
′) +

∫ ∞

0

χn(R;Ek)χn(R
′;Ek) dEk

= δ(R −R′),
(14)

is used to sum over all final vibrational states to obtain
the AN cross section

σf,ivi = 〈χivi |σf,i |χivi〉R (15)

which describes scattering from the vi vibrational level
of the initial electronic state i to all rovibrational levels
of the final electronic state f .
Stibbe and Tennyson [23] derived a form of the KER

cross section which requires the use of off-shell T -matrix
elements to account for the varying proportions in which
the dissociation energy can be split among the dissocia-
tion products and the outgoing electron. By neglecting
the differences in the vibrational energy levels the KER
cross sections of [23] can be simplified to the form of
Eq. (9), where only on-shell T -matrix elements are used.
We hereafter refer to this method of calculation as the
T -matrix method.

A. Square root approximation

Evaluation of Eq. (9) is computationally expensive due
to the large number of numerical integrations which must
be performed. Following El Ghazaly et al. [18], we replace
the constants and the T -matrix elements in Eq. (9) with
the square root of the electronic excitation cross section
at incident electron energy Ein:

dσf,ivi

dEk

=
∣

∣

〈

χf

∣

∣

√
σf,i

∣

∣χivi

〉

R

∣

∣

2
. (16)

This form requires only a single integration and makes
KER calculations much faster. Construction of the DI
KER cross section in the square root approximation for-
mally requires a summation over positive energy states
as in Eq. (8). However, due to the complexity of resolv-
ing R-dependent cross sections for specific states when
their respective potential energy curves cross, we instead
calculate the DI KER cross section via

dσDI,ivi

dEk

=
∣

∣

〈

χf

∣

∣

√
σDI,i

∣

∣χivi

〉

R

∣

∣

2
. (17)

The square root technique was implemented by Za-
mmit et al. [24] to obtain vibrationally resolved excita-
tion cross sections for positron scattering on H2, yield-
ing results practically identical to those obtained with
the T -matrix method. El Ghazaly et al. [18] constructed
model e−-H+

2 KER distributions by replacing the excita-
tion cross sections in Eq. (16) with simple R dependencies
obtained from photonic excitations of H+

2 , and compared
with their experimental measurements with reasonable
success.

B. Delta approximation

The integrand in Eq. (9) is highly oscillatory except in
the vicinity of the continuum function’s classical turning
point Rc. Accordingly, the integral can be approximated
by the contribution at this point by replacing the con-
tinuum wave function with an appropriately normalized
delta function

χfvf (R;Ek) =
1

√

|dεf/ dR|
δ (Ek − εf (R)) . (18)

Gislason [39] developed an approximate calculation of
the overlap 〈χf |χivi〉, by expanding the effective po-
tential εf (R) and the bound vibrational wave function
χivi(R) about Rc. By taking just the first order term
they recover the correctly normalized delta approxima-
tion. The normalization constant can also be derived by
requiring the continuum functions to satisfy

∫ ∞

0

|〈χf |χivi〉|2 dE = 1. (19)
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FIG. 2: Vibrational weights pvi of H+

2 : FC factors [28], BD
weights [40], and EG weights [18], as a function of vibrational
state number vi.

In the delta approximation the KER cross section be-
comes

dσf,ivi

dEk

=
1

| dεf/ dR|δ (Ek − εf(R)) σf,i(R) |χivi(R)|2 .
(20)

C. Vibrational weighting

Many scattering measurements have been taken with
H+

2 populated in a range of vibrationally excited states
[40]. Hence cross sections need to be weighted according
to a vibrational distribution

dσ̃f,i

dEk

=
∑

vi

pvi
dσf,ivi

dEk

, (21)

where pvi are normalized weights for the distribution of
initial target vibrational levels:

∑

vi

pvi = 1. (22)

We perform calculations using the Franck-Condon (FC)
factors [28, 29, 41], and the vibrational populations mea-
sured by von Busch and Dunn [40] and El Ghazaly et al.
[18], which we refer to hereafter as BD and EG weights,
respectively. We present these vibrational distributions
in Fig. 2.

D. Summation over electronic states

Measurements of the H+
2 KER cross sections contain

contributions from all open electronic transitions. El

Ghazaly et al. [18] measured KER cross sections for H+
2

by the detection of protons. When they are integrated
over Ek, the vibrationally weighted proton-production
(PP) cross section σ̃PP = σ̃DE + 2σ̃DI is obtained. Here
DE designates the dissociative excitation (2)-(3) pro-
cesses. To compare with experiment we must construct
the PP KER cross section

dσ̃pp

dEk

=
∑

ǫf<0

dσ̃f,i

dEk

+ 2
dσDI,i

dEk

. (23)

It can be shown that for each of the three methods de-
tailed above, integration of the vibrationally weighted
KER cross section (21) over Ek yields the vibrationally
weighted AN electronic excitation cross section

σ̃f,i =
∑

vi

pviσf,ivi , (24)

where σf,ivi is given in Eq. (15). Hence, integration of the
PP KER cross section (23) over Ek yields σ̃PP as required
for comparison with El Ghazaly et al. [18]. Note that
the DI cross sections [18, 42] are an order of magnitude
lower than the PP cross sections, and are smaller than
the experimental error bars of σ̃PP [35, 36, 43, 44]. Hence
results of DE, total inelastic and PP cross sections can
be compared with each other reasonably well. Despite
the small contribution to σ̃PP, at some fragment energies
the DI process makes the dominant contribution to the
PP KER cross sections.

III. RESULTS

KER calculations of e−-H+
2 scattering have been per-

formed for incident energies from 30 to 500 eV, using
the delta, square root and T -matrix methods as detailed
in Section II. We calculate KER cross sections for ex-
citation to the 2pσu, 2pπu, 2sσg, 3pσu, 3dσg, and 3dπg

states, as well as the DI KER cross section, and compare
the various methods. The discrete electronic states with
even larger energies than those mentioned above make
negligible contributions to the PP KER cross sections
and hence are not presented here [28]. El Ghazaly et al.
[18] provided measurements of H+

2 and D+
2 KER cross

sections for Ein = 30, 50, 100, and 500 eV. Relative H+
2

KER measurements were also presented by Caudano and
Delfosse [45], and when scaled to the measurements of El
Ghazaly et al. [18] they were in good agreement. For this
reason we omit comparison with Caudano and Delfosse
[45], and compare our results with the more precise mea-
surements, and model calculations of El Ghazaly et al.
[18].

A. Comparison of methods

El Ghazaly et al. [18] calculated BD weighted KER
cross sections using Eqs. (16) and (21), by assuming a



5

parabolic σf,i(R) with respect to R for the 1sσg → 2pσu

transition, and a flat σf,i(R) for the 1sσg → 2pπu tran-
sition. In Fig. 3 we present our BD weighted KER cross
sections for the 2pσu and 2pπu states using the same ap-
proximations. These results are normalized to unit area
under the curve to allow for comparison with El Ghazaly
et al. [18]. The agreement of our calculations with the El
Ghazaly et al. [18] model is very good. The minor dis-
crepancy for the 2pπu results is due to the use of different
potential energy curves.
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FIG. 3: Comparison of the 2pσu (left) and 2pπu (right) BD
weighted normalized KER cross sections with the model cal-
culations of El Ghazaly et al. [18]. These results have been
calculated using the same approximate excitation cross sec-
tions used by El Ghazaly et al. [18] (parabolic for 2pσu and
flat for 2pπu).

From here onwards we utilize the collision data calcu-
lated by Zammit et al. [28, 29]. To make a direct compar-
ison between the square root and T -matrix methods, we
calculate the partial wave KER cross section using both
methods without analytic Born subtraction. We present
these calculations at Ein = 50 and 500 eV for the BD
weighted 2pσu and 2pπu states in Fig. 4. We find excel-
lent agreement between the two methods of calculation,
except minor discrepancies at very low Ek. The level of
agreement between the two methods at Ein = 30 and
100 eV is the same. Similar agreement between the two
methods was also found in the calculation of vibrationally
resolved excitations for positron-H2 scattering by Zam-
mit et al. [24]. As the use of the square root method is
much simpler computationally, we will use it in what fol-
lows to compare with the delta approximation and with
experiment.

In Fig. 5 we present the normalized KER cross sections
for excitation to the 2pσu state of H+

2 by 50 and 500 eV
electrons scattering on the vi = 0, 3, 9 vibrational states
and the BD weighted sum over the vi = 0 to 18 states.
For each, the square root and delta approximations are
compared, and the BD weighted results are also com-
pared with the model calculations of El Ghazaly et al.
[18]. The delta and square root approximation results
are in good agreement for the vi = 0 ground state, but
the discrepancy becomes greater for highly excited vi-
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FIG. 4: The BD weighted partial wave KER cross sections for
the 2pσu and 2pπu states at 50 and 500 eV incident energies,
calculated using the square root approximation and T -matrix
method.

brational states. The cumulative effect is that the delta
approximation adequately reproduces the square root re-
sults at higher Ek, where the largest contribution comes
from lower vibrational states, but fails at low Ek where
the largest contribution is from higher vibrational states.
Our calculations are in better agreement with the El
Ghazaly et al. [18] model calculations at 500 eV than
at 50 eV, because their approximate excitation cross sec-
tions are valid only in the high Ein limit. The disagree-
ment at Ein = 50 eV demonstrates the importance of
using accurate collision data in the KER calculations.
In Fig. 6 the same results are presented for the 2pπu

state. The comparisons between the delta and square
root methods are the same as those described for the 2pσu

state. In addition, we have verified that the square root
and T -matrix methods are in excellent agreement for the
2pσu and 2pπu individual vibrational level partial wave
KER cross sections. The larger discrepancy between our
results and the El Ghazaly et al. [18] model for the 2pπu

state than for the 2pσu state is likely due to our use of
different potential energy curves. The BD weighted 2pσu

results display a peak near the origin which comes from
the highest excited vibrational levels. The largest contri-
bution to the low Ek KER cross section comes from large
values of R, which are sampled only by the higher vibra-
tional levels. At these internuclear separations the 2pσu

state becomes degenerate with the ground 1sσg state, re-
sulting in an increased excitation probability and there-
fore a larger KER cross section. This effect is not present
in the 2pπu results because of the higher asymptotic en-
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FIG. 5: Normalized KER cross sections of the 2pσu state of
H+

2 at Ein = 50 and 500 eV. The first three rows present
scattering on the vi = 0, 3, and 9 states, and the final row
presents the BD weighted sum over the vi = 0 to 18 states,
compared with the model calculations of El Ghazaly et al.
[18].

ergy of this state.

B. Proton-production KER cross sections

In Fig. 7 we present the BD, EG, and FC weighted
PP KER cross sections for Ein = 30, 50, 100, and 500
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FIG. 6: Same as in Fig. 5 but for the 2pπu state of H+
2 .

eV, and compare with the experimental measurements of
El Ghazaly et al. [18]. We also show the individual BD
weighted KER cross sections of the 2pσu, 2pπu, 2sσg,
3pσu, 3dσg, and 3dπg states of H+

2 as well as the DI
KER cross section. All calculations have been performed
using the square root approximation, which we confirmed
above to be a very good approximation of the T -matrix
method. These figures illustrate the relative contribu-
tions of each state to the PP KER cross section. As noted
by El Ghazaly et al. [18], and in our previous investiga-
tions [28, 29] into e−-H+

2 scattering, the 2pσu state makes
the largest contribution, followed by the 2pπu state, and
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DI. The remaining states make very little contribution to
the PP KER cross section. The PP KER cross sections
calculated using the different vibrational weights are in
good agreement with each other for Ek greater than 4 eV,
but are in significant disagreement at lower Ek, demon-
strating the sensitivity of the low Ek KER cross section
to the choice of vibrational distribution. At each Ein our
results are in good qualitative agreement with El Ghaz-
aly et al. [18], and at Ein = 50 eV our results are in good
quantitative agreement.
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FIG. 7: KER cross sections of the 2pσu, 2pπu, 2sσg , 3pσu,
3dσg, and 3dπg states, and DI for H+

2 at 30, 50, 100, and 500
eV incident electron energies, calculated using the square root
approximation. The individual channels presented here were
calculated using BD weights. The FC, BD, and EG weighted
PP KER cross sections are also presented in comparison with
the measurements of El Ghazaly et al. [18].

El Ghazaly et al. [18] extracted DI cross sections as a
function of incident electron energy from the high frag-
ment energy tail of the KER cross sections, reasoning
that the DI KER cross section extends well beyond the
DE processes. Here, however, we have demonstrated that
the 2pσu state makes a significant contribution to the
high fragment energy tail. At 30 eV incident energy the
2pσu state makes the dominant contribution, and at 500
eV it still accounts for approximately one third of the
high fragment energy tail. The underlying CCC DI cross
sections used in this work were compared [28] with the
measurements of El Ghazaly et al. [18] and Peart and
Dolder [42]. The CCC cross sections are in good agree-
ment with Peart and Dolder [42], but El Ghazaly et al.
[18] are substantially higher, likely due to the contribu-

tion from the 2pσu state.
In Fig. 8 we present upper and lower bounds for the EG

weighted PP KER cross sections, constructed by weight-
ing the cross sections with the renormalized maximum
and minimum values of the EG weights shown in Fig. 2.
The EG weights, along with the renormalized bounds
are presented in Table I. The upper bound weights have
a larger contribution from the higher vibrational levels
than the lower bound weights. The uncertainty in the
vibrational distribution has no significant effect in the re-
gion Ek > 3 eV, but for Ek < 3 eV it has a strong effect.
At all four incident energies the EG weighted PP KER
cross sections are in better agreement with El Ghazaly
et al. [18] when we take the lower bound of the vibrational
distribution. In particular, the agreement for Ein = 50
and 500 eV is very good. This demonstrates the sen-
sitivity of the results to uncertainties in the vibrational
distribution. Our results suggest that the actual vibra-
tional population in the experiment of El Ghazaly et al.
[18] had smaller weights for the highest vibrational states
than what was reported.
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FIG. 8: The upper and lower bounds on the EG weighted
PP KER cross section for 30, 50, 100, and 500 eV incident
electrons. The results are compared with the measurements
of El Ghazaly et al. [18].

In Fig. 9 we present the BD weighted 2pσu, 2pπu, and
DI KER cross sections for 50 eV electrons scattering on
individual vibrational levels of H+

2 . This figure demon-
strates that the low-lying vibrational states make the
largest contribution to the vibrationally summed KER
cross section at high Ek. The very good agreement of
our PP KER cross sections with El Ghazaly et al. [18] at
high Ek (see Fig. 7) indicates that we have calculated [28]
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TABLE I: EG weights [18] for the initial vibrational states
vi of H+

2 . Also presented are the upper and lower bounds
we placed on the EG weights by taking the bounds given by
experimental uncertainty (see Fig. 2) and renormalizing to
satisfy Eq. (22).

vi EG weights [18]
Renormalized bounds

Upper Lower

0 0.14620 0.14258 0.15063
1 0.18290 0.17703 0.19010
2 0.16090 0.15639 0.16642
3 0.13740 0.13429 0.14120
4 0.10700 0.10560 0.10870
5 0.06770 0.06822 0.06705
6 0.05480 0.05584 0.05351
7 0.03870 0.04027 0.03677
8 0.02860 0.03038 0.02640
9 0.02750 0.02930 0.02528
10 0.01230 0.01407 0.01011
11 0.01030 0.01201 0.00819
12 0.01080 0.01253 0.00867
13 0.00600 0.00748 0.00418
14 0.00040 0.00870 0.00000
15 0.00170 0.00263 0.00056
16 0.00170 0.00263 0.00056
17 0.00170 0.00263 0.00056
18 0.00170 0.00263 0.00056
19 0.00170 0.00263 0.00056

accurate collision data for both DE and DI from the low-
lying vibrational states. This confirms that these results
can serve as a benchmark calculation.

C. The isotopologues D+

2 and T+

2

In the Born-Oppenheimer approximation, the isotopo-
logues D+

2 and T+
2 have potential energy curves and elec-

tronic excitation cross sections identical to those of H+
2 .

Hence, to calculate KER cross sections for these isotopo-
logues, all that is required is to obtain the bound vibra-
tional levels, using the appropriate reduced mass µ for
D+

2 or T+
2 (half the mass of a deuteron and a triton,

respectively) in Eq. (10).
The vibrational levels become more closely spaced in

energy as µ is increased, resulting in a greater number
of bound states. In Fig. 10 we present the FC factors
[28] for H+

2 , D
+
2 , and T+

2 , as a function of the vibrational
state energy. The low Ek spike present in the H+

2 results
is due to the contribution from vibrational states v = 15
and above. These levels have energies greater than -0.505
hartrees (see Fig. 10). Summing the FC factors for vi-
brational levels with energies greater than -0.505 yields
0.005 for H+

2 , 0.003 for D+
2 , and 0.001 for T+

2 . Therefore,
the KER cross sections for the vibrational levels which
contribute to the low Ek spike are weighted less for D+

2

and T+
2 . As for H+

2 , it is likely that the FC distribution
assumed here has a larger weighting on the higher vibra-
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FIG. 9: The BD weighted 2pσu, 2pπu and DI KER cross
sections for 50 eV electrons scattering on individual vibra-
tional levels of H+

2 , demonstrating that the low-lying vibra-
tional states make the largest contribution at high Ek.

tional states than what is produced in experiment. This
is evident from the behavior of the measurements at low
Ek.

In Fig. 11 we present the FC weighted PP KER cross
sections for H+

2 , and compare them with the deuteron-
production (DP) and triton-production (TP) KER cross
sections for D+

2 and T+
2 , respectively. The results for all

three isotopologues are practically the same, except in
the region Ek ≤ 2 eV. This is due to the fact that, in the
Born-Oppenheimer approximation, the isotopologues are
distinguished only by their vibrational levels and popula-
tions, which do not have a strong effect on the KER cross
sections except at low Ek. The spike near the origin is
less pronounced for the heavy isotopologues than for H+

2 ,
due to the decrease in population of the high energy vi-
brational levels. In Fig. 12 we compare the Ein = 100 eV
D+

2 DP KER cross section with the D+
2 measurements
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FIG. 11: FC weighted PP KER cross sections for 30, 50, 100,
and 500 eV electrons incident on H+

2 , compared with the DP
and TP KER cross sections for D+

2 and T+
2 , respectively.

of El Ghazaly et al. [18]. Although the present H+
2 and

D+
2 KER results are very similar away from low Ek as

expected, we have a worse level of agreement with exper-
iment for D+

2 than we did for the H+
2 results presented in

Fig. 7. The D+
2 measurements of El Ghazaly et al. [18] are

higher than the H+
2 measurements in the high Ek region

where our calculations show they should be in agreement.

As shown previously, the PP KER cross sections at large
Ek are relatively insensitive to the assumed vibrational
distributions (Figs. 7 and 8), hence the discrepancy be-
tween our D+

2 results and experiment is unlikely to be
(primarily) due to the assumed FC distribution. The dif-
ference between the H+

2 and D+
2 measurements deserves

further investigation.
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FIG. 12: KER cross sections of the 2pσu, 2pπu, 2sσg, 3pσu,
3dσg, and 3dπg states, and DI for D+

2 at 100 eV incident elec-
tron energy, calculated using the square root approximation.
The individual channels presented here were calculated with
BD weights. The FC and BD weighted DP KER cross sec-
tions are also presented in comparison with the measurements
of El Ghazaly et al. [18].

IV. CONCLUSIONS

We have calculated KER cross sections for electron
scattering on H+

2 in the incident energy range from 30
to 500 eV. We have compared calculations using the T -
matrix method, the delta (reflection) approximation and
the square root approximation. We find that the delta
approximation, which replaces the continuum wave func-
tion with a delta function, is in poor agreement with the
other methods except when scattering from the ground
vibrational state. The T -matrix and square root meth-
ods are in excellent agreement for the two most important
dissociative excitations (1sσg → 2pσu and 1sσg → 2pπu)
over the range of incident energies that we have per-
formed calculations for.
We have demonstrated that our results reproduce the

model calculations of El Ghazaly et al. [18] when we im-
plement the same approximations, and find good agree-
ment with their experimental data when we perform cal-
culations using accurate collision data calculated using
the molecular CCC method [28, 29]. The uncertainty
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in the population of the high vibrational states in the
experiment of El Ghazaly et al. [18] could be responsi-
ble for the moderate agreement of their results with our
calculations.
We have shown that in the low Ek region, the KER

cross section is highly sensitive to the inclusion of highly
excited vibrational states and, therefore, the choice of
vibrational weights. Accurate knowledge of the target
vibrational population is hence required to model exper-
imental KER cross sections.
We have compared the KER cross sections for H+

2 , D
+
2 ,

and T+
2 , and demonstrated that the results for all three

molecules are similar except in the low Ek region, where
the different populations of highly excited vibrational
states have a strong effect. Surprisingly our H+

2 KER
results are in better agreement with the measurements
of El Ghazaly et al. [18] than the D+

2 results, which still
showed reasonable agreement at Ein = 100 eV. Measure-
ments of the T+

2 KER cross sections are not available,
but the good agreement of our H+

2 and D+
2 results with

experiment suggest that our T+
2 calculations are similarly

accurate.
In the future we plan to extend the present model to

produce KER cross sections for electron scattering on

vibrationally excited H2, and then for more complicated
molecules, particularly those of relevance to the modeling
of fusion and industrial plasmas.
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