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The recently developed wavepacket continuum-discretization approach [Phys. Rev. A 94, 022703
(2016)] is extended to antiproton-helium collisions. The helium target is treated as a three-body
Coulomb system using a frozen-core approximation, in which the electron-electron correlation within
the target is accounted for through the static interaction. The Schrodinger equation for the helium
target is solved numerically to yield bound and continuum states of the active electron. The resulting
continuum state is used to construct wavepacket pseudostates with arbitrary energies. The energies
of the pseudostates are chosen in a way that is ideal for detailed differential ionization studies. Two-
electron target wave functions, formed from the bound and continuum wavepacket states of the
active electron and the 1s orbital of He™, are then utilized in the single-center semiclassical impact-
parameter close-coupling scheme. A comprehensive set of benchmark results, from angle-integrated
to fully differential cross sections for antiproton-impact single ionization of helium in the energy
range from 1 keV to 1 MeV is provided. Furthermore, we use our single-center convergent close-
coupling approach to study fully differential single ionization of helium by 1 MeV proton impact.
The calculated results are in good agreement with recent experimental measurements by Gassert et

al. [Phys. Rev. Lett. 116, 073201 (2016)] for all considered geometries.

PACS numbers: 34.10.+x, 34.50.Gb, 25.43.4+t

I. INTRODUCTION

Studies of processes taking place in ion-atom colli-
sions are not only of fundamental interest, but they have
numerous practical applications, including nuclear fu-
sion reactors, hadron therapy, transport of ions through
gaseous and solid targets, atmospheric science, astro-
physics, etc. [1, 2]. From a theoretical point of view,
accurate and reliable modeling of the relevant processes
over a wide range of projectile energies requires the devel-
opment of sophisticated computational approaches. The
prototype of ion-atom collisions, which served as a start-
ing point for many theoretical approaches [3-11], is the
collision of antiprotons with atomic hydrogen. In the re-
gions of practical interest, this process can safely be con-
sidered without accounting for rearrangement channels
that lead to protonium formation.

Recently, we developed a close-coupling approach to
this collision system based on wavepacket continuum dis-
cretization [12]. When compared to other close-coupling
models, a distinct feature of our approach is its ability
to generate the target continuum pseudostates with arbi-
trary ejection energies. In principle, these can be aligned
across different angular momenta of the target electron,
which greatly improves the accuracy of differential ion-
ization studies. The above approach therefore, is ideal
for calculating the most detailed fully differential cross
sections.

The idea of a wavepacket-based
discretization approach to the target

continuum-
description

can be extended to more complex targets. Regarding
the level of computational complexity, the next tar-
get to consider is helium, i.e., a two-electron system.
Antiproton-helium scattering is, in fact, the simplest
quantum-mechanical four-body problem that allows for
studying electron-correlation effects of the target.

The currently available theoretical approaches applied
to this system mainly differ in two aspects: i) the way
how the corresponding four-body Schroédinger equation
(SE) is solved, and ii) in the treatment of the helium tar-
get. Earlier works [13, 14] based on perturbative methods
produced reasonable results for several integrated cross
sections representing single electron processes at high im-
pact energies. More sophisticated approaches [4, 5, 15—
24] are based on the semiclassical close-coupling formal-
ism, in which the antiproton motion is treated classically
by means of straight-line trajectories. This approxima-
tion is well accepted in ion-atom collisions. Its valid-
ity to reproduce reliable integrated cross sections for all
processes involved in antiproton-helium collisions above
1 keV was demonstrated in Refs. [25, 26], where compar-
isons were made with predictions from fully quantum-
mechanical treatments of the problem.

Various approaches were developed to address the
electron-correlation effects of the target. Close-coupling
calculations [4, 5, 15, 18, 19, 24] that do not solve the SE
directly, but rather convert it into a set of coupled differ-
ential equations by expanding the total scattering wave
function in terms of target pseudostates, can only pro-
duce cross sections for single ionization processes. Within



the framework of such a close-coupling scheme, a number
of works assumed a static correlation of the outer elec-
tron with the inner one confined to the 1s orbital, i.e.,
the frozen-core approximation. More sophisticated cal-
culations by Igarashi et al. [15], Pindzola et al. [21], and
Foster et al. [22], which allowed for multiple configura-
tions for both target electrons, produced total ionization
cross sections that differed considerably from the values
obtained in the frozen-core approximation. However, in
these calculations the type of basis functions used to di-
agonalize the target Hamiltonian does not allow for in-
clusion of double-continuum states in the description of
the He structure, since one would run into the problem
of mixing single- and double-ionization channels. The
root of the problem lies in the fact that for different con-
figurations of the target electrons the energy levels of
the individual one-electron functions that construct the
helium states are generated randomly and not aligned.
A combination of multiple electronic configurations of
the target, represented by the product of one-electron
functions with different continuum energy distributions,
produce target state wave functions that do not allow
for separating one-electron processes from the processes
where both electrons are involved.

Borbély et al. [27] reported accurate total and dou-
bly differential cross sections obtained by directly solv-
ing the fully correlated two-electron time-dependent
Schrédinger equation using the time-dependent close-
coupling (TDCC) method. Baxter and Kirchner
[28, 29] used time-dependent density-functional-theory
(TDDFT) to investigate the role of electron correla-
tions in the integrated single and double ionization in
antiproton-helium collisions.

Technically, the problem can be addressed effectively
with the use of wave packets. Helium wave pack-
ets can be obtained in several steps. First, following
the configuration-interaction approach, the helium wave
function is expressed as a linear combination of products
of two one-electron functions. Next, a basis of N; He™
radial functions representing the bound and continuum
eigenstates of one of the electrons is created. This step
can be carried out fully analytically. In the third step,
the two-electron helium wave function, which contains
the He™ radial functions calculated in the previous step,
is inserted into the appropriate SE for the helium tar-
get. This converts the target SE into a set of coupled
integro-differential equations for N> radial functions rep-
resenting the state of the second electron. This set of
integro-differential equations is solved numerically sub-
ject to appropriate asymptotic boundary conditions.

As a result a set of N7 x Ny one-electron functions
representing various electronic configurations is obtained.
Some of the one-electron radial functions from this set
represent continuum states of the electrons. These states
are not normalizable and, consequently, are not suited
for close-coupling scattering calculations. However, this
issue can be resolved using the technique that was applied
to the description of atomic hydrogen [12], namely one-

electron radial functions representing continuum states
are replaced by normalizable wave packets. Each of these
wavepackets represent nonoverlapping subregions of the
continuum and are the integrals of continuum functions
over the corresponding subregion. In constructing wave-
packets for each electronic configuration, it is necessary
to use the same grid when discretizing the continuum.
This avoids any mixture of various single- and double-
ionization and excitation channels.

The wavepacket-based model of the helium target de-
scribed in this paper not only benefits the current status
of theoretical studies of collisions involving helium tar-
gets, but it will also serve as the background for devel-
oping a powerful approach to collisions with diatomic
molecules. Such an approach will allow for conduct-
ing currently unavailable differential ionization studies
of molecular targets.

The idea of a wavepacket-based description of the
target was previously applied to ionization of helium
by Barna et al. [30]. The authors constructed a basis of
He one-electron functions from Slater orbitals and wave
packets built from hydrogenic Coulomb functions. Rea-
sonable results for single and double ionization cross sec-
tions were obtained at high impact energies.

As a starting point for the present work, we will de-
velop a semiclassical one-center close-coupling approach
to antiproton-helium scattering based on a wavepacket
continuum-discretization procedure, with one of the he-
lium electrons being confined to the 1s orbital. As de-
scribed above, the continuous spectrum of the second
electron is discretized using the wave packets constructed
from the continuum wave function, using the eigenstates
of the frozen-core target Hamiltonian. The approach
starts from the semiclassical four-body SE for the scatter-
ing wave function and leads to a set of coupled differential
equations for the transition probability amplitudes. To
demonstrate the utility of the method, various cross sec-
tions, from angle-integrated to fully differential, will be
calculated for single-electron processes occurring in anti-
proton-helium collisions.

Comparing the prediction with experimental data from
recent measurements of fully differential single ionization
cross sections for the scattering of energetic 1 MeV pro-
tons on helium targets [31] will also be used to test the
developed approach comprehensively. The experimental
setup, based on the well-established cold-target recoil-ion
momentum spectroscopy technique, allowed for obtain-
ing the highest resolution in the ejected-electron angular
distribution data ever reported in the collision plane, as
well as generating data in several other planes. Generally
good agreement was reported [31] between the measured
data and first-Born calculations for all planar geometries
considered.

This was not the case for the differential studies of
single ionization of helium under the impact of heav-
ier projectile of C5%. The experiment for C5% projec-
tiles [32] initiated numerous discussions in the field. Even
today, the most advanced theories remain in strong dis-



agreement with the measurements of the fully differential
single ionization cross sections for the plane perpendic-
ular to the momentum transfer direction. The question
whether this disagreement is due to shortages in the theo-
retical approaches or insufficient experimental resolution
still needs to be answered. In this regard it is interesting
to see whether more sophisticated close-coupling calcula-
tions of proton-impact single ionization of helium might
yield significant corrections to the first-Born calculations,
especially for the perpendicular plane geometry.

The single-center close-coupling approach developed
in the present work is capable of producing cross sec-
tions to compare with the measured differential ioniza-
tion data. At the experimentally considered collision en-
ergy of 1 MeV, the electron capture channels are several
orders of magnitude less important than the direct ion-
ization channel. In this regime, therefore, single-center
approaches are expected to be reliable for studying also
the scattering of positively charged projectiles.

In Sec. IT we give a brief outline of the formalism and
describe the procedure for generating the wave packets.
Details of the calculations are described in Sec. ITI, and
the results are presented in Sec. IV. Finally, in Sec. V,
we highlight the principal findings and draw conclusions
from the present work. Unless specified otherwise, atomic
units are used throughout this manuscript.

II. WAVE PACKET APPROACH

We treat antiproton-helium scattering within the
framework of the one-center semiclassical convergent
close-coupling (CCC) method developed previously [12,
33, 34]. The approach follows from the exact four-body
formalism, where the total scattering wave function W
satisfies the nonrelativistic Schrodinger equation

(H—-E)Vf =0. (1)

The four-body Hamiltonian operator H is written as
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where p is the reduced mass of the projectile-target sys-
tem, while R, r1, and ry are the positions of the incident
antiproton and the two orbital electrons relative to the
helium nucleus. The target nucleus is located at the ori-
gin, and we assume that the projectile is moving along
a classical trajectory R = R(t) = b + vt, where b is
the impact parameter and v is the initial velocity of the
projectile relative to the target. It is defined such that
b-v=0.

We separate the total scattering wave function W
into nuclear and electronic parts according to (see,
e.g., Bransden and McDowell [35])

Uh =t Ry, (3)

where q is the incident momentum of the projectile rela-
tive to the target nucleus. After inserting this into Eq. (1)
and using the semiclassical approximation, we obtain the
nonrelativistic semiclassical time-dependent Schrodinger
equation for the electronic part of the total scattering
wave function:

6\I]e(t7 71,72, R)

(Ht + V)\I/e(t, 71,792, R) =1 ot . (4)
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A% A% 2 2 1
H=-——t-—"z_— _ (5)
2 2 reo T2 |ri— 1y
and
2 1 1
V=-2+ + 6
R |R—’I‘1| |R—’l"2| ( )

is the interaction potential between the projectile and the
target constituents.

The scattering wave function is expanded in terms of
basis functions 9, (71, 72), which are suitably chosen to
represent the entire set of target states, as

\Ije(tu,rlu,r?u woz 7’1,’]"2) ieat7 (7)

an

where N is the number of basis functions and ¢, is the
energy of the target electronic state a. The latter col-
lectively denotes the full set of quantum numbers rep-
resenting that state. The expansion coefficients a, (¢, b)
at t — 400 represent the transition amplitudes into the
various target states.

Substituting this representation of the scattering wave
function into the semiclassical Schrodinger equation (4),
and using the orthogonality properties of the basis func-
tions, one obtains the following set of first-order differen-
tial equations for the time-dependent coeflicients:

Z ez(ea—eﬁ)t

where o = 1,2,..., N. This system is solved subject to
the initial boundary conditions

da b
alt, CalVIUs)as(t,b),  (8)

Ao (—00,b) =04 15, (9)
which assume the atom is initially in the 1s state.
If the basis functions are known, the matrix elements
(Ya|V]1hg) can be evaluated numerically [25].

A. Target description

In the quantum-mechanical convergent close-coupling
(QM-CCC) approach [36], the two-electron helium tar-
get was described using the configuration interaction ap-
proach, where the target states were taken as a sum of



products of one-electron orbitals. The one-electron or-
bitals were composed of orthogonal Laguerre functions.
Two different approximations, frozen-core and multi-core
models of the helium target, were employed. In the
frozen-core approximation, one of the electrons was con-
fined to the 1s orbital. In addition to the bound states,
the model also generated a set of positive-energy pseudo-
states that simulate the contribution of the entire con-
tinuum. Similar to the case of atomic hydrogen [12] the
energies of the He continuum pseudostates for different
values of the angular momentum [ are not aligned, and
there exist some difficulties with creating the desired en-
ergy distribution of the continuum pseudostates. Below
we will extend the ideas of the wave packet continuum-
discretization approach to the two-electron helium tar-
get, which will allow us to construct basis states with
arbitrary energies and distribution.

As shown in [12], the wavepacket continuum pseudo-
states for atomic hydrogen can be obtained by energy in-
tegration of the hydrogen continuum functions. For both
bound and continuum states of atomic hydrogen, the
Schrédinger equation has an analytical solution. Conse-
quently, it was significantly easier to implement the wave-
packet continuum-discretization approach for this target.
For the helium atom, on the other hand, the Schrodinger
equation needs to be solved numerically. As a first step,
we develop a wavepacket-based description of the helium
atom in the frozen-core approximation. Within this ap-
proximation and assuming that the total electronic spin
of He, S = 0, is conserved during the collision, the spatial
part of the target wave function is written as

Ya(ri,r2) = G (r2)0a (1) + S (71)palra).  (10)

Here we use a single set of quantum numbers, «, for
the target state, since only one electron can be excited.
The total wave function of He is anti-symmetric due to
the antisymmetric spin wave function of the singlet spin
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Equation (16) is solved by iteration. The zero-order

state. Then the Schrédinger equation for He becomes

Hyo(r1,72) = (ea + 1 Yu(r1,m2),  (11)

where €, is the state energy of the active electron and
511{: is the energy of the frozen electron, which corre-
sponds to the ground-state energy of He™, i.e. —2 a.u..
Substituting Eq. (10) into Eq. (11) and projecting onto

Il{s°+, we obtain the following integro-differential equa-

tion for q:
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is the Hartree potential for e — He™ scattering. For
negative-energy states of the active electron, the radial
and angular parts are separable according to

Pa(r) = Rui(1)Yim (7). (14)

For positive-energy states, as

n=y2 32 explim)Rua ()Y )i )

(15)

pa(r) =

where n, [, and m are the principal, orbital, and magnetic
quantum numbers of the state a, x is the momentum of
the continuum state and »; is the continuum phase shift.
For both negative and positive energies. Eq. (12)
reduces to the following one-dimensional integro-
differential equation for the radial function R (r):

RET] - 254 Ra(r)

(OWo[REe" RETIR,, (¢)dt| RE=" (r), (16)

[
approximation R (r) is obtained by setting the right-
hand-side of Eq. (16) to zero. Subsequent approxima-
tions are derived using the previous-order approxima-
tions. At each iteration the linear inhomogeneous second-

order differential equation for RS (r) is solved by the Nu-



TABLE I. Energies (eV) of selected bound states of the helium
atom. The present results are compared with the energies of
the frozen-core Laguerre pseudostates (LPS) [36] and the data
derived from optical spectra by Moore [37].

state present LPS [36] Moore [37]
1s -23.7416 -23.74139 -24.5862
2s -3.9035 -3.90343 -3.97155
3s -1.6483 -1.64828 -1.66705
2p -3.3307 -3.33198 -3.36931
3p -1.48847 -1.48950 -1.50035
3d -1.51024 -1.51150 -1.51329

merov method. The iteration process is continued until
an accuracy ‘R((;H)(r) — RY (T)} < 107? is achieved for
each point in the r-grid. For the bound states of the
active electron (g, < 0), we require lim,_, R (r) = 0.
The bound states are found by utilizing a standard shoot-
ing method by requiring the continuity of R, (r) and
dRy(r)/dr at ro, where

(i+1) 4 ot ot
5 —;+2WO[R{1 ,RET ] =0. (18)

r

For the continuum states, R, (r) is matched to the
Coulomb function at large r, which is also used to de-
rive the continuum phase shift 7;. In the final step, the
active-electron wave functions are normalized to satisfy

(Rar|Ra) = bara (19)
for bound states (g, < 0) and
(Rar|Ra) = 6(Kar — Ka) (20)

for the continuum states (g, > 0).

Table I lists the results for the ionization potential of
the selected helium bound states obtained by applying
the Numerov method described above. The present re-
sults are compared with the corresponding energy lev-
els of the frozen-core Laguerre pseudostates constructed
from a basis of size 20 — [ and fall-off parameter \; = 1
for [ = 0 — 2, respectively. Also given are the benchmark
results of Moore [37] derived from an analysis of optical
spectra. At least a three-digit agreement is observed be-
tween the present results and the energy levels of the
frozen-core Laguerre pseudostates. The derivation of
bound states with higher energies requires a longer radial
range in the solution of Eq. (16). According to [36], bet-
ter agreement with the results of Moore [37] was achieved
when relaxing a frozen-core approximation.

Unlike bound states, which only exist at discrete lev-
els of the target energy spectrum, continuum states can
be generated by solving Eq. (16) for arbitrary electron
ejection energies. This greatly simplifies calculations of
differential ionization cross sections in the first Born ap-
proximation. However, the nonnormalizable nature of
the He continuum wave function makes it inapplicable
for close-coupling scattering models.

To overcome this problem while keeping the flexibility
of generating a state for arbitrary continuum energies, we
use the wavepacket continuum-discretization approach,
which was recently applied to describe the structure of
atomic hydrogen [12]. To construct normalizable wave
packets, we first take the continuous spectrum of the ac-
tive electron with some maximum value of energy Fy,ax
and then divide the entire interval [0, Fiax| into N, non-
overlapping intervals (discretization bins) [£_1, &N,
with & = 0 and En, = Emax. To obtain converged cross
sections, Fyax and N. must be sufficiently large. Every
such energy bin corresponds to the interval [;_1, ;] in
momentum space, where x; = v/2&;. The wave packet
(WP) corresponding to each of the bins is built from the
following integral of the continuum function (which is the
solution of Eq. (16)):

RY"(r) = v /

Ri—1

Ki

dkRg (1), (21)

where v;; is the normalization coefficient. Then the wave-
packet based on two-electron helium wave functions is
written as
+ .
o T (r1,m2) =¢hs (ra) Ry (r1)Yigm, (1)
+ R
+ 01y (r) R (r2)Yim, (72). (22)

From the normalization condition

WY1ty =1, (23)
one finds that

Vnate = (2 (RS IRV ) + 61,00m,0 (RIS |REST) ) |
(24)

For atomic hydrogen, these normalization coefficients
were directly related to the width of the éth bin [12].
In addition, condition (20) ensures the orthogonality of
the wave-packet pseudostates,

W1 = bavan- (25)

N, wave-packet pseudostates representing the [0, Eyax]
region of the active electron continuum, together with Ny,
bound states, form a practically complete set of pseudo-
states for a particular angular momentum [, provided
N. and Ny, are sufficiently large. Including other an-
gular momenta, the total number of channels becomes
N = Y20 4+ 1)(Ny, — [ + N.), where oy is the
maximum allowed angular momentum. The number of
negative- and positive-energy states is increased until ad-
equate convergence is achieved in the predicted cross sec-
tions that we are interested in.

—1/2

B. Scattering amplitudes

The full scattering amplitude can be calculated from
the scattering wave function W according to [38, 39]

Tyias,a) = (®; [H — E[U}), (26)



where g7 and g; are the momenta of the scattered and in-
cident projectile, respectively, s the asymptotic wave
function describing the final state, and the arrow over
the four-body Hamiltonian operator H indicates the di-
rection of its action. As discussed in [12], scattering
amplitudes for the transitions into bound states of the
target are directly defined by the transition amplitudes
T;\Z] (gr,qi), whereas the scattering amplitude for ioniza-
tion of the active electron with momentum & contains
the overlap between the two-electron wave packet w}NP
and the active electron’s continuum functions ¢ defined
n (15). Accordingly, the ionization amplitude is written
as

Twi(ar, qi) =(osl07 ")TT (a5, i)
lmax - 10 A
(_Z)le L}/l’m (H)T’rg,\l]mz(qfv qz)
2T KA/ W, ’
(27)

where the index n corresponds to the bin with width
wy, and kK = Kk, = /2&,. Consequently, both excitation
and ionization amplitudes are obtained upon calculation
of the transition matrix elements T (gy, g;), which are
related to the impact-parameter space transition proba-
bility amplitudes through [40]

1 .
T as.a) =g [ dbe®las(oe,t) ~op]

—eimles+m/2) / dbbla (00, b) — 8 75]Jm(pLb),
0
(28)

where p = ¢; — g7 and as(t,b) = e™%a;(t,b). The
required impact-parameter space transition probability
amplitudes themselves are obtained by solving the system
of differential equations (8) using standard Runge-Kutta
routines. Depending on the type of the pseudostates uti-
lized, the matrix elements in Eq. (8) are calculated using
the strategy that works best for that particular case. For
Laguerre pseudostates the calculation strategy for the
matrix elements is described in [36]. With the proposed
wavepacket pseudostates, they are calculated using the
expression

e+ e+
(GalVIg) =2X[par 5] + 2008 05) X [Pa 61 ]
C+ C+
+ 2(pa| O VX [p1 T, 05]
+2(palop) X B, plle™], (29)

where

Xif.gl= [arf) (-5 + e ) o) (30)

is the one-electron transition matrix element similar to
that emerging in the formulation of antiproton-hydrogen
collisions. Details of X[f,g| are given in [41].

Once the scattering amplitudes have been obtained,
various differential and integrated cross sections can be
calculated as described in [12].

IIT. DETAILS OF CALCULATIONS

In this section we provide some details of our anti-
proton-helium calculations. As mentioned earlier, the
present calculations are based on the frozen-core approx-
imation to the helium target. Consequently, any of the
target states considered can be characterized with a set
of only three quantum numbers {n, [, m} representing the
active electron. The strategy used for convergence stud-
ies of the final results, therefore, can be the same as that
used for antiproton-hydrogen collisions [12], where the
target states were also described by the same set of quan-
tum numbers.

Several parameters associated with the target and the
projectile need to be investigated to establish the con-
vergence of the predictions. Parameters characterizing
the active electron of the target, such as the maximum
allowed orbital quantum number l.x, the number of
bound (negative-energy) eigenstates Ny, — [, the maxi-
mum energy Fp.x of the active electron continuum cov-
ered by wavepacket bins, and the number of bins within
this interval N,, define the overall target structure. Each
of these parameters is systematically increased while fix-
ing the others at sufficiently large values. This procedure
is continued until the parameter-dependent variation of
the results is reduced to a level of less than one percent.
For antiproton-helium collisions at intermediate and high
energies, this was achieved with [, = 7, Np = 10 — [,
Frax =400 eV and N. = 30.

With the above parameters, the total number of target
states in the present calculations was N = Ziz"(‘)" (Ny +
N. —1)(2l + 1) = 2112 at all antiproton energies con-
sidered. This number also defines the size of the system
of coupled differential equations (8). Another parame-
ter that determines the accuracy of the target structure
calculations is the number of quadrature points for in-
tegration within each bin. It was chosen depending on
the width of the bin. Typically, at least 40 points were
used for the small bins, and the number of points was
increased for larger bins as required.

The target-structure parameters, which produced con-
verged results for antiproton-impact single ionization of
helium, also yield converged results for the proton im-
pact at 1 MeV incident energy considered in this work.
At this impact energy, electron-capture channels associ-
ated with proton projectiles are negligible compared to
the direct ionization channel. Hence the single-center
close-coupling approach developed here is adequate.

Apart from establishing convergence of the final results
with respect to the target-structure parameters, we also
validated our code by switching off the coupling between
the discretized channels. We obtained excellent agree-
ment with the first-Born results calculated in the full
treatment. Unlike in the case of proton or antiproton im-
pact ionization of hydrogen, for the helium target there is
no closed analytical expression for the ionization ampli-
tude. However, it is possible to numerically calculate the
wave version of the first Born amplitude in the helium



frozen-core approximation by using the partial-wave ex-
pansion method. This method of calculating ionization
amplitude requires the direct use of the active-electron
continuum function instead of the wave-packets. In this
case one can compare the results obtained using the con-
tinuum functions and the wavepackets for each partial-
wave term individually.

Finally, we also obtained convergent results with re-
spect to the parameters associated with the projectile.
The set of coupled differential equations (8) was solved
by varying the z-component (z = vt) of the projectile po-
sition from —200 to +200 a.u. at all energies. The upper
limit for the impact parameter by.x was proportionally
increased from 10 a.u. at 1 keV and to 40 a.u. at 1 MeV.
At all considered energies the radial grid required for the
calculations of the matrix elements was extended up to
500 a.u..

To ensure consistency of our calculations, we always
pay particular attention to obtaining the same total ion-
ization cross section by either summing over the partial
cross sections for excitation of the positive-energy states
or by integrating the fully (five-fold) differential cross sec-
tion (FDCS)

q

dSU(q 5 i, K/) K
PO U ) Y

dEdQ,d;

:‘LLQ

over all variables. The fully differential cross section de-
scribes a scattering event when the electron is ejected into
the solid angle dQ2. around the direction Q. = (6., ¢.)
with the energy between E and E + dF, while the pro-
jectile is scattered into the solid angle d€2; around the
direction Qf = (Gf, gf)j)

IV. RESULTS AND DISCUSSION

In this section we present our wave-packet based CCC
(WP-CCQC) results for antiproton-helium fully and par-
tially differential ionization cross sections, as well as the
total ionization cross section. The collision geometries
and projectile energies are chosen in a way that allows for
the most comprehensive comparison with our quantum-
mechanical CCC results published in Refs. [36] and pre-
dictions from other semiclassical theories [4, 5]. Lastly,
we show in-plane and out-of-plane triply differential sin-
gle ionization cross sections for 1 MeV proton-helium
collisions, which were obtained using the present single-
center convergent close-coupling approach, and compare
them with recent experimental data [31].

A. Single ionization of He by antiprotons

Figure 1 exhibits our results for the fully differential
cross section in the collision plane for 1 MeV antiproton
helium collisions. The present WP-CCC results are com-
pared with the coupled-pseudostate (CP) calculations
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Es=5eV
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FIG. 1. (color online) Fully differential cross section in the
collision plane for antiproton-impact ionization of helium in
its ground state for a projectile energy F,,, momentum trans-
fer p, and energy of the ejected electron E.. The results of
the semiclassical CP approach of McGovern et al. [4] are also
shown. The arrow indicates the direction of the momentum
transfer.

of McGovern et al. [4]. Here the direction of the scat-
tered antiprotons is fixed and given by the value of the
momentum transfer, p = 0.4 a.u., while the electron-
ejection angle 0, runs from —180° to 180° relative to
the direction of the incident antiproton. Since the copla-
nar geometry is considered, the azimuthal coordinates of
the ejected electron ¢, and the antiproton ¢; are set to
zero. The arrow indicates the direction of the momentum
transfer p. The ejected-electron energy is fixed at 5 eV.
We note that the flexibility of the presently developed
WP basis in distributing the positive-energy states arbi-
trarily allows us to have a state with energy 5 eV for all [.
This helps to improve the accuracy of the calculations.

As seen from the figure, for every indicated antiproton
energy and momentum transfer the WP-CCC and the
CP calculations of McGovern et al. [4] are in excellent
agreement. Both theories predict the binary and recoil
peaks at the same electron-ejection angle, which qualita-
tively describes the phenomenon of suppressed electron
ejection along the direction of the scattered antiprotons
(essentially near the forward direction). Due to the re-
pulsive Coulomb force between the antiproton and the
electron, the binary peak is shifted to the right from the
momentum-transfer direction.

The triply differential (in energy and two-dimensional
solid angle of the ejected electron) cross sections (TDCS)
[42], 30 /d E.d2, are presented in Fig. 2 for the ejected-
electron energy of E. =5 eV and various energies of the
incident antiproton as a function of the electron-ejection
angle 6.,. The results of the coupled-pseudostate ap-
proach of McGovern et al. [4] are also shown for compari-
son. Since this TDCS is formed by integrating the FDCS
over the solid angle of the projectile, the results displayed
in Fig. 1 retain some features of the corresponding FDCS



shown in Fig. 1. As expected, electron emission is sup-
pressed at small ejection angles when the projectile en-
ergy is low and relatively flat at the higher energy. The
features seen around 80° and at 180° are results from in-
tegration over the binary and recoil peaks of the FDCS,
respectively. The small difference between the WP-CCC
and CP results of McGovern et al. [4] could be due to the
absence of a Laguerre pseudostate exactly at 5 eV in the
latter calculations.
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FIG. 2. (color online) The triply differential cross section

dga/dEedQe for antiproton-impact ionization of helium at
60 and 500 keV for the ejected-electron energy of 5 eV. The
present WP-CCC results are compared with those of the cou-
pled pseudostates approach of McGovern et al. [4].

Figure 3 displays our results for the doubly differential
cross section (DDCS) in the ejection angle of the electron,
d?0/dS2,, in comparison with the calculations of McGov-
ern et al. [4]. The presently calculated cross section has
a small maximum at zero ejection angle, a more pro-
nounced maximum around 60°, and a minimum around
110°. The relatively large cross section in the backward
direction indicates the propensity for the electron to be
ejected in the opposite direction to the antiproton. The
agreement between the present WP-CCC results and the
semiclassical approaches McGovern et al. [5] is generally
good.

Carrying out kinematically complete experiments is
a complicated task due to the difficulties related with
the production of a stable high-intensity antiproton
beam. However, the recent developments of recoil-ion
and ejected-electron momentum spectroscopy make ac-
curate measurements of differential cross sections in the
momenta of these particles possible. In fact, the recoil ion
carries as much information on the three-body ionization
dynamics as the projectile and the ejected electron. Such
a pioneering experiment [14] on antiproton impact ion-
ization of He was reported at 945 keV, where the singly
differential cross section was measured as a function of
the longitudinal recoil-ion and the ejected-electron mo-
menta.

These quantities can be obtained from the triply dif-
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FIG. 3. (color online) The doubly differential cross section
d*c/dQ2. for antiproton-impact single ionization of helium at
60 keV. Results of the coupled pseudostates approach of Mc-
Govern et al. [5] are also presented.

ferential ionization cross section d*c(qs, i, K)/dEdQ. if
we impose the following dynamic constraints required by
energy and momentum conservation:

€r — €

0
Pr| =D — K| = — Kk cos e, (32)
where p, and k) are, respectively, the longitudinal mo-
menta for the recoil ion and the ionized electron, while p
is the longitudinal projectile momentum transfer. With
this we can write

do *© 1 d%
— = ———dFE 33
dﬁH /H2l/2 K dEdQe ’ ( )
and
+

do 1 dPo

= ————dFE. 34
deH /e* KR dEdQe ( )

The integration limits of (34) can be obtained from (32)
or the relationship

Kt =wvcosh, £ \/v2 cos? 0 + 2(pyv — |eol) (35)

using et = (k%)?/2.

Figure 4 shows the ejected-electron longitudinal mo-
mentum distribution in single ionization of helium by
antiproton impact at 945 keV. We compare our FC re-
sults with the experimental data of Khayyat et al. [14]
and predictions from other calculations. Apart from the
CTMC calculations, there is reasonably good agreement
between the various theories and experiment.

The corresponding recoil-ion longitudinal momentum
distribution is given in Fig. 5. Only the CTMC approach
clearly fails to reproduce the experimental data. The
CDW results show a systematic discrepancy at positive
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FIG. 4. (color online) Ejected-electron longitudinal momen-
tum distribution for single ionization of helium by 945 keV
antiproton impact. The experimental data, CDW, and
CTMC calculations are due to Khayyat et al. [14]. The CDW-
EIS and QM-CCC calculations are due to Fainstein and Ro-
driguez [13] and Abdurakhmanov et al. [36].

momentum values. Similar measurements, but at lower
impact energies, would be helpful in testing the theo-
retical approaches to fully differential ionization by anti-
proton impact.
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FIG. 5. Recoil-ion longitudinal momentum distribution for
single ionization of helium by 945 keV antiproton impact.
The experimental data, CDW, and CTMC calculations are
due to Khayyat et al. [14], and the CDW-EIS calculations are
due to Fainstein and Rodriguez [13]. The frozen-core QM-
CCC calculations are from [36].

Figure 6 shows the total cross section for antiproton
impact single ionization of helium for incident energies
ranging from 1 keV to 1 MeV. The latest experiment
was carried out at CERN [43], where data were ob-
tained starting from antiproton impact energies as low
as 3.42 keV. These measurements exhibit a rather slow
fall-off of the cross section with the decreasing impact

energy. We see that the highest two energy points of
this dataset agree reasonably well with the earlier exper-
iment by Hvelplund et al. [44], which itself is in overall
agreement with the first experiment reported by Ander-
sen et al. [45].

The lines represent various theoretical calculations
based on the frozen-core approximation of the helium tar-
get [4, 15, 19, 36]. All of these calculations start off by
diagonalizing the helium Hamiltonian in a suitable two-
electron basis with the assumption that the inner elec-
tron is always in the ground state. The only difference
is that different representations of the radial part of the
target active electron wave function are used: wavepacket
bin pseudostates in the present approach, Slater-type or-
bitals by Lee et al. [19], Sturmian functions by Igarashi
et al. [15], and Laguerre functions by McGovern et al. [4]
and Abdurakhmanov et al. [36]. The calculation of Ab-
durakhmanov et al. [36] also differs from the others by
the fact that the approach is fully quantum mechanical.
All presented calculations are in quite good agreement
with each other and experiment above 100 keV. However,
below 100 keV there is some variation and also disagree-
ment with the experiment. This may indicate that a more
accurate multi-core treatment of the helium target is re-
quired to reproduce the low-energy behavior of the total
ionization cross section. The semiclassical straight-line
trajectory approximation is expected to slowly deterio-
rate with reducing energy, therefore around 1 keV QM-
CCC is more reliable as it is fully quantum-mechanical
and does not use a straight-line trajectory. Interestingly,
using a more accurate description of the helium target,
beyond the frozen-core approximation, will likely result
in a reduction of the predicted cross sections, at least at
high energies [23, 36]. Assuming the experimental data
are normalized correctly, an improvement in the theoret-
ical description may thus lead to a slight deterioration
of the agreement between theory and experiment. This
issue will be addressed in our future studies.

B. Single ionization of He by 1 MeV protons

A recent experiment by Gassert et al. [31] provided
data on the fully differential cross sections for single
ionization of helium by 1 MeV protons in the collision
plane and several other planar geometries. Since this
is in the high-energy regime, the present single-center
close-coupling approach can be applied with confidence
to calculate the cross sections for the measured differen-
tial ionization data. Here the electron capture channels
associated with proton impact are expected to be sev-
eral orders of magnitude less important than the direct
ionization channels and, consequently, can be neglected.

Figure 7 compares our results for the FDCS in the
collision (C) plane with the experimental data and the
first Born approximation (FBA) calculations of Gassert
et al. [31] [46]. For this scattering regime, where the
ejected-electron energy is 6.5 eV and the scattering an-
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FIG. 6. (color online) Total single-ionization cross section for
antiproton-helium scattering. The present calculations (WP-
CCCQC) are compared with experimental data by Knudsen et al.
[43], Andersen et al. [45] and Hvelplund et al. [44], QM-CCC
results [36], and various semiclassical calculations by McGov-
ern et al. [4], Igarashi et al. [15], and Lee et al. [19].

gle of the protons is given by the momentum transfer of
p = 0.75 a.u., we see good agreement with experiment
at all electron emission angles considered here. Further-
more, in comparison with the FBA results, the present
calculations show better agreement with experiment at
the electron emission angles in the region from —180° to
80° and around 180°. The experimental data peak at
about 6, = 61.5°, while our results at 73.5°. This is a
slight improvement from the first Born calculations that
peak at 76.5°. The WP-CCC results are fully convergent
(within the frozen-core approximation). Therefore, we
believe that the remaining discrepancy in the peak angle
could be due to the frozen-core approximation used. A
multi-core approach may lead to a better agreement with
the experiment. At the same time, we have to mention
that the experimental angular resolution is reported to
be +10° [31]. So, the aforementioned discrepancy is very
close to the experimental uncertainty.

The same FDCS but multiplied by |sinf.| (as pre-
sented in [31]) are shown in Fig. 7. The latter highlights
the vicinity of the node separating the binary and the
recoil peak. Note that the experimental peak shifts to
0. = 67.5°. The maximum of the WP-CCC results shifts
to 77°. However, there is nothing physical in the shift
and it is purely due to the extra |sinf,| factor in the
FDCS.

Figure 9 shows the same comparison for the azimuthal
(A) plane (., = 90°). Here we also see good agree-
ment with experiment at almost all electron emission
angles considered. At backward electron emission an-
gles, the present results lie slightly below the measured
data, whereas the previous FBA results were slightly
higher. Note that the WP-CCC results are fully sym-
metric around ¢, = 0°.

Figures 10 and 11 show our predictions for the FDCS
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FIG. 7. (color online) Fully differential cross sections for sin-
gle ionization of helium by 1-MeV protons in the collision
plane. The electron emission energy is Fe = 6.5 eV, and the
total momentum transfer p = 0.75 a.u.. The present calcu-
lations (WP-CCC) are compared with the experimental data
and FBA calculations by Gassert et al. [31]. The arrow indi-
cates the direction of the momentum transfer.
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FIG. 8. (color online) Same as in Figure 7 but multiplied by
| sin Oc|.

in the collision and azimuthal planes for 0.5 and 2 MeV
protons, in anticipation of experimental data [47] at these
impact energies.

V. CONCLUSIONS AND OUTLOOK

The problem of antiproton scattering from helium
has been considered within the framework of the re-
cently developed wavepacket based target continuum-
discretization approach [12]. The electron-electron corre-
lation of the target was taken into account in the frozen-
core approximation. Two-electron wave functions de-
scribing the target were built from a linear combination of
products of one-electron functions representing the core
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FIG. 9. (color online) Same as in Figure 7 but for emission
into the azimuthal plane (6. = 90°) given as a function of the
azimuthal emission angle ¢..
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FIG. 10. (color online) Same as in Figure 7 but for 0.5 and 2
MeV protons.

ion of He' and the active electron. While the He™ core
was described by its ground-state wave function, the basis
of active-electron functions was generated from numeri-
cally calculated discrete negative-energy state wave func-
tions and continuum wave packets. The wave packets are
the integrals of the radial continuum wave function over
the regions of the bins discretizing the continuum. The
energies of the continuum wave packets were chosen so
that they aligned for different orbital angular momenta.

The above approach is ideal for detailed differential
ionization studies. The density of the continuum dis-
cretization can be as high as necessary. The generated
orthonormal basis of two-electron wave functions was
used in the target-based one-center expansion of the total
scattering wave function. This converts the semiclassical
three-body Schrodinger equation into a set of coupled-
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channel differential equations, which need to be solved
for a range of impact parameters. A comprehensive set
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FIG. 11. (color online) Same as in Figure 9 but for 0.5 and 2
MeV protons.

of results, from integrated to fully differential cross sec-
tions for antiproton-impact single ionization of helium in
the energy range from 1 keV to 1 MeV, was generated.

Furthermore, we applied our wavepacket single-
center convergent close-coupling approach to study fully-
differential single ionization of helium by 1 MeV proton
impact. This was done by changing the charge of the
projectile in the code for antiproton-helium scattering.
Our calculations are in very good agreement with recent
experimental measurements [31] for all experimentally
considered geometries. Predictions for 0.5 and 2 MeV
protons are also given, in anticipation of further mea-
surements.

The development of a multi-core treatment of the he-
lium target based on the wavepacket target continuum-
discretization approach is planned for the near future.
This will not only improve the accuracy of the predicted
cross sections for single-electron processes, but it will also
enable the calculation of cross sections for two-electron
processes. Extension of the two-centre CCC method [48]
to the proton-helium system is currently underway.
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