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The XCHEM approach interfaces well established quantum chemistry packages with scattering
numerical methods in order to describe single ionization processes in atoms and molecules. This
should allow one to describe electron correlation in the continuum at the same level of accuracy as
quantum chemistry methods do for bound states. Here we have applied this method to study multi-
channel photoionization of Ne in the vicinity of the autoionizing states lying between the 2s22p5 and
2s2p6 ionization thresholds. The calculated total photoionization cross sections are in very good
agreement with the absolute measurement of Samson et al [J. Elect. Spect. Rel. Phen. 123, 265
(2002)], and with independent benchmark calculations performed at the same level of theory. From
these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile
parameters and correlation parameters for the lowest three autoionizing states. The values of these
parameters are in good agreement with those reported in earlier theoretical and experimental work.
We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from
the latter, partial autoionization widths and Starace parameters for the same resonances, not yet
available in the literature. Resonant features in the calculated β parameter are in good agreement
with the experimental observations. We have found that the three lowest resonances preferentially
decay into the 2p−1εd continuum rather than into the 2p−1εs one [Phys. Rev. A 89, 1 (2014)], in
agreement with previous expectations, and that in the vicinity of the resonances the partial 2p−1εs
cross section can be larger than the 2p−1εd one, in contrast with the accepted idea that the latter
should amply dominate in the whole energy range. These results show the potential of the XCHEM

approach to describe highly correlated process in the ionization continuum of many electron systems,
in particular molecules, for which the XCHEM code has been specifically designed.

PACS numbers: 31.15.-p, 31.15.ac, 32.80.Fb, 32.70.Cs

I. INTRODUCTION

Over the last decades, the breakthroughs produced in
the generation of ultrashort pulses in a broad range of
the electromagnetic spectrum, from near infrared (NIR)
femtosecond pulses to extreme ultraviolet (XUV) and X-
ray attosecond ones, have provided us with the tools to
observe and control electron dynamics in a variety of dif-
ferent scenarios, relevant in physics, chemistry and bi-
ology [1–9]. XUV and X-ray pulses are able to ionize
atoms and molecules by absorption of a single photon.
Therefore, the theoretical description of the dynamics
induced by these pulses must explicitly account for the
ionization continuum. In the case of intense pulses, like
those obtained in X-ray free-electron lasers (XFEL) [10],
the non-linear dynamics generated by the absorption of
several photons usually involves more ionization channels
and implies that more than one electron can be promoted
to the continuum.
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Although a plethora of theoretical methods is avail-
able to accurately describe the ionization continuum of
atoms (see, e.g., [11–15] and references therein), this is
not the case for molecules, for which existing methods
are usually designed to describe specific problems, usu-
ally in regions of the photoelectron spectrum where au-
toionization and electron correlation play a minor role.
In contrast, for bound molecular states, electron corre-
lation can be accurately handled by using a variety of
quantum chemistry packages (QCP) based on ab initio
methods [16–22]. With proper adjustments, these meth-
ods can also provide an accurate description of molecular
resonances (hole, shake-up and multiply excited states),
for which electron correlation is even more important [23–
26]. So, extending the applicability of these codes to
the ionization continuum of molecules seems the natural
way to proceed in order to get a similar good description
of electron correlation in the continuum region of the
molecular spectrum. However, in general, this is a very
challenging task. Indeed, most QCPs make use of Gaus-
sian or Slater-type basis functions centered on the vari-
ous atomic locations, which is advantageous to accelerate
convergence in comparison with single-center expansions
but turns into a serious disadvantage when dealing with
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the electronic continuum. This is because Gaussian and
Slater-type functions decrease exponentially and there-
fore are not appropriate to describe the oscillatory be-
havior of the continuum wave function in the asymptotic
region (which is essential to impose the proper boundary
conditions of scattering states). The problem cannot be
solved by just increasing the number of basis functions,
since this procedure rapidly runs into linear dependen-
cies, thus allowing for the description of tipically no more
than one or two radial oscillations[27–30]. For Gaussian
functions, the standard in most QCPs due to their eas-
iness for the evaluation of multi-center two-electron in-
tegrals, the situation is worse than for Slater functions,
since they decrease more rapidly.

Previous work [31–36] has shown that continuum
states of simple diatomic molecules can be accurately
described by using more appropriate functions, such as
B-splines [33, 37, 38] or finite-element discrete-variable-
representation functions (FE-DVR) [39]. However, ex-
tension of these methods to larger molecules would be
very involved, since, e.g., an efficient evaluation of bi-
electronic integrals and consideration of molecular sym-
metry would require the implementation of new algo-
rithms, mimicking the path that standard QCPs have
followed for decades. Thus, most solutions proposed
in the literature have adopted a more pragmatical ap-
proach, which is to combine existing QCPs with scatter-
ing methods that incorporate the latter basis functions.
For instance, recently proposed methods complement the
short-range part represented by Gaussian functions with
a Finite Element (FE) representation of the radial co-
ordinate [40, 41], or a Discrete Variable Representation
(DVR) [42–46], or even plane waves [47]. Others just get
rid of all exponentially decreasing functions by fitting
them to a multi-center B-spline expansion and adding
additional B-splines for the continuum part [48]. In a
recent work [49], some of us have introduced the XCHEM

approach, which overcomes the aforementioned limita-
tions by combining state-of-the-art techniques for the
calculation of correlated excited states, as implemented
in MOLCAS and MOLPRO packages [17, 50], with a
single-center hybrid Gaussian/B-spline basis (GABS) for
the description of the electronic continuum [51]. The
performance of the method has been checked in helium
and the hydrogen molecule [49]. An appealing feature
of the XCHEM method is that it minimizes the num-
ber of mixed poly-centric integrals (involving Gaussian
and B-spline functions simultaneously) that is necessary
to evaluate, so that the increase of computational effort
when the number of electrons increases is comparable to
that of conventional QCPs in bound state calculations.
Also, due to the hybrid nature of the GABS basis, in-
creasing the size of the molecule from, let’s say, N2 to
a small triatomic or tetra-atomic molecule, should keep
computational cost almost at the same level. Although
mainly designed to study molecular ionization, in this
paper we have used the XCHEM method to study the res-
onant photoionization of the neon atom, the first truly

poly-electronic system to which the method is ever ap-
plied. This is an important step to check its performance
before moving to more complex targets.

The first unambiguous observations of resonant states
in the photoionization spectra of noble gases were re-
ported in the 1960’s [52–55] and the unusual shape of
the peaks observed in these experiments was explained by
Fano in his seminal 1961 paper [56] as resulting from the
interaction of a discrete state embedded in the continuum
(see also [57]). Neon is the lightest noble atom in which
the remaining cation has a truly poly-electronic charac-
ter, so that photoionization dynamics is much richer than
in helium. For this reason, neon has been systematically
used to test new many-body theoretical methods. More
recently, due to the recent advances in the generation of
shorter and shorter pulses and the possibility to track
electron wave packet dynamics in real time, there has
been a renewed interest in this system [58–62] that calls
for additional theoretical effort.

In this paper, we have used the XCHEM method to
describe the multichannel photoionization of Ne. We
first compare with results of the well-established STOCK

code [15] by performing calculations at the same level
of theory and then with existing experimental and the-
oretical results. The good agreement with these results
show the good performance of the method. Then we
report additional information not yet available in the lit-
erature, as partial photoionization cross sections, partial
autoionization widths for the lowest three 1Po resonances
converging to the 2s2p6 ionization threshold, and the cor-
responding Starace parameters [63] that control the line
shapes of the resonance peaks observed in the partial pho-
toionization cross sections. We show that, as assumed in
earlier work, the 2s2p6εd photoionization cross section
generally dominates over the 2s2p6εs one, but we now
quantify the magnitude of this difference in a wide range
of photon energies and found that, in the vicinity of the
resonances, this is no longer the case.

The paper is organized as follows. Section II presents
the theoretical background, with emphasis in the XCHEM

approach and the theoretical method STOCK used for
benchmarking. Section III illustrates the performance of
XCHEM by using two different levels of electronic corre-
lation and presents the results of the present work. The
paper finishes with some conclusions and future perspec-
tives in section IV. Atomic units are used throughout
unless otherwise stated.

II. THEORETICAL METHODS

When the Ne atom absorbs a photon from the radia-
tion field, with a sufficiently high energy to eject an elec-
tron, the target 10-electron state |i〉 (usually the ground
state) is transformed into one of the accessible 9-electron
parent-ion states |a〉 plus an electron in the continuum
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with a given momentum ~k and spin projection σ:

Nei + γ → Ne+
a + e−~kσ

. (1)

Although a single photon can lead to the ejection of more
than one valence electron, due to electronic correlation,
single ionization is by far the dominant process. The
common practice in most theoretical approaches is to
limit the Hilbert space to a subspace of configurations
accounting for the most relevant dynamics of the pho-
toionization problem. This can be realized by dividing
the position space in two regions: an inner one, in which
the target and parent-ion states lie, and an outer one,
which contains the appropriate asymptotic solutions of
the scattering states. The main differences among the
available implementations based on this space partition
lie in the theory level employed to compute the wave func-
tion in the inner part, and how it matches the long-range
part of the wave function in the outer region. To compute
the target and parent-ion states, any of the tools account-
ing for electron correlation in bound states can be used,
e.g., multi-configuration Hartree-Fock (MCHF), configu-
ration interaction (CI), coupled cluster, etc (see [64–66]).
The next subsection summarizes the approach followed
by XCHEM and how it has been implemented to study
photoionization of the Ne atom. A more detailed de-
scription of the method can be found in Ref. [49].

A. The XCHEM approach

We first define two radial ranges: a short range, ri <
R0, where all N electrons are within a fixed radius R0

from the center of mass of the parent ion and a long
range, rN > R0, where one and only one electron (e.g.,
the N -th one) is allowed to be beyond R0, that is ri<N <
R0. The complete scattering function can be expressed
in terms of a close-coupling (CC) expansion in terms of
short-range N -electron states ℵi and “extended” channel
functions Ῡβi [49]:

Ψ−αE =
∑
i

ℵici,αE +
∑
β

∑
i

Ῡβicβi,αE . (2)

The extended channel functions Ῡβi are defined as

Ῡβi = Nβi Â Υβ(x1, . . . ,xN−1; r̂N , ζNe)ϕi(rN ), (3)

where ϕi are radial functions suitable to describe the con-
tinuum, Nβi are normalization factors ensuring the cor-

rect asymptotic behavior and Â is the antisymmetriza-
tion operator. The asymptotically decoupled chan-
nel functions, Υβ(x1, . . . ,xN−1; r̂N , ζN ), are obtained by
coupling the antisymmetrized parent-ion wave function
Φb with the N -electron spin wave function χ, while its
angular part, given by a symmetry adapted spherical har-

monics X`m(r̂) [67], is factorized,

Υβ(x1, . . . ,xN−1; r̂N , ζN ) =
2S+1[Φb(x1, . . . ,xN−1)⊗2 χ(ζN )]ΣX`m(r̂N ) =∑
Σbσ

CSΣ
SbΣb,

1
2σ

2Sb+1Φb,Σb
2χσ(ζN ) X`m(r̂N ), (4)

where xi denotes the position and spin coordinates of
electron i, r̂N represents the angular coordinates of elec-
tron N , ζN is the spin component of electron N , S is
the total spin of the system, Σ its z projection, Sb and
Σb are the corresponding values for the parent ion, σ is
the z component of the electron spin, and CSΣb

SbΣb,
1
2σ

is

a Clebsh-Gordan coefficient. The channel index β cor-
responds to the set of indexes (S,Σ, b, `,m), while the
parent-ion index b defines entirely the state of the par-
ent ion, except for its total spin projection. As we will
deal with spin-free Hamiltonians, the total spin S and
the spin-projection Σ are conserved. The X`m angular
functions allow us to exploit the symmetry of the system,
reducing the Hilbert space dimension considerably.

As the eigenstates of the parent ion (Φb) are negligi-
ble in the region ri > R0, the complete scattering wave
function beyond that boundary can be written

Ψ−αE(x1, . . . ,xN ) =

1

N

∑
β

NβEΥβ(x1, . . . ,xN−1; r̂N , ζN )
u−β,αE(rN )

rN
,(5)

where u−β,αE(r) is the radial function that describes the
continuum electron, given asymptotically by

u−β,αE(r) = δαβ

√
2

πkα
eiΘα(r)−

√
2

πkβ
e−iΘβ(r)S∗βα, (6)

with

Θβ(r) = kβr +
Z

kβ
ln 2kβr − `βπ/2 + σ`β (kβ), (7)

where kβ is the absolute value of the momentum of the
continuum electron in the β channel, Z the charge of
the parent ion, σlβ the Coulomb phase, and Sαβ is the
on-shell scattering matrix [68]. The incoming bound-
ary conditions in Eq. (6) enforces the correct asymptotic
behavior of the complete scattering wave function Ψ−αE
for the photoionization process. The non-Coulomb phase
shifts φµ(E) are extra phases that appear in the scatter-
ing states due to the short-range non-Coulomb compo-
nent of the interaction potential between the scattered
electron and the target. That is why they are very sensi-
tive to electron correlation, and thus, a good observable
to assess the quality of the computed continuum. These
phases can be obtained from the diagonalization of the
Sβα scattering matrix and are also known as eigenphases.

We use three different kinds of functions to build the
N -electron basis: i) a set of localized Gaussian functions
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{GMC
i (x1)} as provided by QCPs (for molecules, they

would be located at the different atomic positions –multi-
center expansion), ii) a set of diffuse even-tempered
Gaussian functions {GSCi (x1)} and iii) a set of B-splines
functions {Bi(x1)} starting at r = R0. Basis functions
defined in ii) and iii) constitute the so called GABS ba-
sis, {GSCi (x1)}∪{Bi(x1)} (for molecules, these functions
would be located at the center of mass –single-center ex-
pansion). The GSCi (x1) functions are in principle defined
in the whole interval r ∈ [0,∞), however, due to their fast
exponential decrease, there is a distance R1 (R1 > R0)
beyond which the overlap with the B-splines starts to be
negligible (see [51] for details). The region (r ∈ [R0, R1])
where both subsets overlap guarantees a smooth transi-
tion from the outer to the inner region, thus providing
great flexibility to the GSCi (x1) functions in the short-
range region, because B-splines compensate the deficien-
cies of the GSCi (x1) functions in reproducing the rapid
oscillations of the diffuse states (Rydberg and continuum
states). From R1 on, B-splines take over the full descrip-
tion of the wave function. This is how the inner part of
the space partition matches almost perfectly the outer-
most part, in contrast with methods that make use of a
rigid boundary to divide the two regions [11]. The typi-
cal thickness of the R1 − R0 transition region is tens of
a.u..

The orbitals that are used to obtain the parent-ion
wave functions |Φb(x)〉 are expanded exclusively in terms
of the GMC

i (x1) functions. In the present atomic case,
this is not a relevant issue, but, in the case of molecules,
it accelerates convergence in terms of angular momenta
(this is due to the multi-center character of this set of
functions in the molecular case). The parent-ion wave
functions are calculated by using the configuration inter-
action (CI) method in the Complete Active Space Self
Consistent Field (CASSCF) approach: a full CI calcula-
tion is carried out in a given active space, while simulta-
neously optimizing the orbitals variationally. Hence the
wave functions can be written as linear combinations of
either configuration state functions (CSF) or Slater de-
terminants:

|Φb(x)〉 =
∑
i

cib
∣∣2Sb+1
q Ξi(x)

〉
=
∑
i

c′ib |Di(x)〉 , (8)

where
∣∣2Sb+1
q Ξi(x)

〉
represents an (N − 1)-electron CSF

with multiplicty 2Sb + 1 and symmetry q, and |Di(x)〉
is a Slater determinant. Going from one representation
to the other is possible by means of the Graphical Uni-
tary Group Approach (GUGA) [69]. We use both the
CSFs to have well defined total spin and symmetry and
the Slater determinants in the framework of the second
quantization theory to obtain the N -electron states [70]:∣∣Φ̄bi(x)

〉
=
∑
j

c′jba
†
i |Dj(x)〉 , (9)

where Φ̄bi describes the parent ion b augmented in the
orbital i. These orbitals are expressed in terms of

the {GMC
i (x1)} and the GSCi (x1) functions. All com-

putations that exclusively rely on Gaussian functions,
(N − 1)-electron target states, N -electron configurations
obtained through Eq. (9), operators matrix elements,
etc., are obtained by using MOLPRO and MOLCAS
packages [17, 50]. Specifically, we use the former for the
CASSCF calculation yielding the initial parent ion wave
functions, and the latter for the augmentation procedure
and subsequent calculation of operator matrix elements.

If the R0 radius (i.e., the distance at which B-splines
start) is chosen so that the density of the parent-ion
states included in the CC expansion (Eq. (2)) is negli-
gible beyond that point, which is not difficult to achieve
because these target states are expressed in terms of the
short-range {GMC

i (x1)} functions, then the permutation
of an electron whose wave function is exclusively de-
scribed by the B-spline functions with the rest of the
N − 1 electrons described by the {GMC

i (x1)} functions
is also negligible. This fact simplifies enormously the
computation of operator matrix elements when B-splines
are involved, because the direct product of an antisym-
metrized parent-ion state with a B-spline is already an
antisymmetric state, thus facilitating its implementation
(see [49] for details). Nevertheless one has to evaluate all
mixed integrals involving the B-spline and the GSCi (x1)
functions. Since none of the available QCPs operate di-
rectly with B-splines, the computation of the matrix el-
ements involving these functions has been implemented.

In summary, the key ingredients of XCHEM are the fol-
lowing: i) the space partition and the basis functions se-
lection for its representation (GABS+multi-center Gaus-
sian expansion), ii) the disjoint support of B-splines from
the parent-ion wave functions included in the CC expan-
sion, and iii) the interface of MOLCAS with scattering
methods, which allows us to include electron correlation
at the same level as that provided by ab initio QCPs for
bound states.

B. The STOCK approach

In order to test the performance of the XCHEM ap-
proach to describe Ne photoionization, we have compared
our results with those of independent numerical calcula-
tions performed with the STOCK code, for a few selected
cases in which we can guarantee that the same level of
electron correlation has been used. Details of the STOCK

code can be found in [15]. Briefly, the method relies
exclusively on B-splines as a primary basis set, and in-
stead of explicitly imposing asymptotic boundary condi-
tions as we do (see Eq. (6)), it makes use of the exterior
complex scaling (ECS) formalism [71, 72], which ensures
outgoing waves in the asymptotic region. For the bound
states, STOCK uses the Multiconfiguration Hartree-Fock
method (MCHF) [65], in which the atomic wave function
is expanded as a linear combination of CSF:

|Ψ(x)〉 =
∑
i

ci
∣∣2S+1Ξi(x)

〉
, (10)
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where the set of coefficients {ci} and radial functions
{Rnl(r)} used to expand the spin orbitals are obtained
from the optimization of the energy functional using the
nonrelativistic atomic Hamiltonian H

E[{ci}, {Rnl(r)}] = 〈Ψ(x)|H |Ψ(x)〉 . (11)

The MCHF problem is solved using the ATSP2K pack-
age [73].

We notice that the STOCK code has been especially
designed to describe atomic systems, so that it is com-
putationally more efficient than the XCHEM code to de-
scribe Ne photoionization (XCHEM has been optimized
to describe molecular systems and incorporates the most
common molecular point symmetries, but not the spher-
ical one). Essentially, STOCK computes the complete
scattering wave function making use of the CC expan-
sion in Eq. (2), but at variance with the XCHEM code,
it does not allow one to select a particular collection of
parent-ion eigenstates {|Φb(x)〉}, but all the states that
diagonalize the (N−1)-electron Hamiltonian. Therefore,
for a computation that includes electronic excitations of
the target, the only way to have an equivalent CC expan-
sion with XCHEM is to include all parent-ion eigenstates,
which is extremely expensive if we are only interested in
describing ionization above the lowest ionization thresh-
olds and obtaining a good description of electron correla-
tion. Thus we have restricted the benchmarking with the
STOCK code to the case in which the parent ion states in
the CC expansion are described by the reference configu-
ration (i.e., no further electronic excitations are allowed
to optimize the parent-ion wave functions).

III. RESULTS

A. Computational details

In our CC expansion, we have included two parent
ions corresponding to the configurations 1s22s22p5 (2Po)
and 1s22s12p6 (2Se), which after augmentation with the
GSCi (x1) and B-spline bases, leads to CI vectors of about
one million components (each component corresponds to
a different configuration) for the neutral system, for the
case of maximum correlation (see below). The wave func-
tions representing the two parent ions were computed by
using different levels of correlation, depending on how
the 9 electrons were distributed in the space defined by
the atomic orbitals. In order to create a common set
of orbitals, valid for both parent ions, a State Average
CASSCF calculation was performed, optimizing with re-
spect to the energetic average of the 2Se and the (triply
degenerate) 2Po states. We will show results for two lev-
els of correlation: i) minimal CI (MCI), in which the
parent ion states are obtained using a CAS(7,4) calcu-
lation. That is, including all configurations (subject to
spin and symmetry restrictions) obtained by seven elec-
trons distributed over the 2s, 2px, 2py and 2pz orbitals
with the 1s orbital being doubly occupied always (note

that this allows for comparison with the STOCK code),
and ii) extended CI (XCI), in which the active space is
extended from the MCI case, to allow also occupation of
3p, 3d and 4s orbitals (i.e. a CAS(7,13) calculation).

At both MCI and XCI level, the parent ions are ob-
tained using as localized Gaussians those defined in the
standard cc-pVQZ basis set [74, 75]. The virtual orbitals
thus resulting from the calculation at either level of the-
ory are disregarded in the augmentation procedure; i.e.
the extra electron may only be found either in orbitals
contained in the active space of the parent ions or in or-
bitals created by the addition of the GABS basis. Failure
to do so would result in the inclusion of highly diffuse lo-
calized orbitals. These may protrude into the B-spline
part of the GABS basis, and would thus render moot the
assumption of zero overlap between localized Gaussians
and B-splines.

The GABS basis consists of B-splines of order k = 7
starting at R0 = 7 a.u. with a node separation of 0.5
a.u. in a box of 200 a.u., and a set of Gaussian functions

(G`miK (~r) = Ni`r
K`e−αir

2

X`m(r̂)) with an even-tempered
sequence of αi exponents as that used in [49] and K` =
`+2k values with `max = 3 and kmax = 2. For the parent-
ions we have considered, we only need a photoelectron
angular momentum up to ` = 2 to describe the 1Se and
1Po total symmetries. This choice leads to the following
powers of r according to the angular momentum: K0 =
0, 2, 4, K1 = 1, 3, 5, and K2 = 2, 4, 6.

B. Photoionization of Ne at MCI level

At this level of correlation we can compare, on an
equal footing, the XCHEM results with those obtained
with STOCK, as explained in II B. Figure 1 shows the
eigenphases computed for the scattering channels with
1Se and 1Po symmetries using both approaches at the
MCI level. For the former symmetry, which is the
same as for the ground state, the continuum above the
lowest ionization threshold corresponds to a state in
which the 2s22p5 parent ion is coupled with an outer
electron described by a p-wave: 2s22p5εp. Above the
2s2p6 threshold, a new continuum emerges for the same
symmetry: 2s2p6εs. For the 1Po symmetry, we have mul-
tiple channels both below and above the 2s2p6 threshold:
2s22p5εs and 2s22p5εd below the 2s2p6 threshold and
the additional channel 2s2p6εp above. Below the
2s2p6 threshold, the continuum contains a single res-
onance series: 2s2p6ns and 2s2p6np for the 1Se and
1Po symmetries, respectively. The agreement between
the XCHEM and STOCK eigenphases is excellent, both
in the resonant and non-resonant regions.

Notice the pronounced jumps in the phases when one
goes through the resonances. The total phase shift,
built up from the sum over all the eigenphases φ(E) =∑
φµ(E), experiences a variation of π when going from

well below to well above the resonance and fulfills the
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FIG. 1: (Color online) Eigenphases in units of π for the scat-
tering channels of symmetry 1Se (top panel) and 1Po (botttom
panel), computed using XCHEM (dashed lines) and STOCK

(solid lines) at MCI level. The region shown below the
2s2p6 ionization threshold (vertical line) extends from well
below the resonances up to the second resonance for the two
resonance series 2s2p6ns and 2s2p6np.

analytical form [76]:

φ(E) = φ0(E) + arctan

(
Γ

2(Er − E)

)
, (12)

where Er is the resonance energy and φ0(E) is the back-
ground of the total phase. From the fit of the computed
total phase to Eq. (12), the resonance energy and width
can be determined. The individual eigenphases fulfill the
equation [77]:

2(E − Er) =

N∑
µ=1

Γµ cot(φ0
µ − φµ(E)), (13)

where φµ(E) and φ0
µ stand for the eigenphase and its cor-

responding background, respectively, and ν = 1, 2, .., N ,
N being the number of open channels for the chosen sym-
metry. The partial autoionization width, Γµ, measures
the strength of the interaction between the resonance and
the scattering channel µ, and its sum over all the open
channels gives the total width Γ =

∑
Γµ. Hence the

ratio Γµ/Γ, usually known as branching ratio, gives the
probability the resonance has to decay into the different
open channels, which is a relevant information to un-
derstand the decay dynamics of these short-lived states.
From Eq. (13), we obtain for the two open channels of
1Po symmetry:

Γ1

Γ2
= − tan(φν(Er)− φ0

1)

tan(φν(Er)− φ0
2)
, ν = 1, 2. (14)

Eq. (14) can be used to compute the Γ1/Γ2 ratio. No-
tice that, in contrast with the total phase, the par-
tial eigenphases experience a variation smaller than π
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FIG. 2: (Color online) Total photoionization cross section
from the ground state of Ne, computed using XCHEM (dashed
lines) and STOCK (solid lines) at MCI level, for lenght (L) and
velocity (V) gauges. Results from Toffoli et al [48], obtained
by using the same level of correlation, are also shown (dashed-
dotted lines). The vertical line indicates the position of the
2s2p6 ionizaion threshold.

radians in the vicinity of the resonances. Figure 1
shows, however, that in the vicinity of the 2s2p6np res-
onances, the 2s22p5εd eigenphase takes most of the π
jump. This indicates that the decay of these resonances
to the 2s22p5εd continuum is the dominant process, as
expected by propensity rules [78].

The 2s2p6np resonant series also leaves its fingerprint
in the photoionization cross section in the form of Fano-
like peaks, due to the interference between the direct and
resonance mediated ionization paths [56]. The partial
photoionization cross section corresponding to a channel
µ is given by

σLµ =
4π2(E − Eg)

c
|〈Ψ−µE |ε̂ ·

∑
~ri|Ψg〉|2

σVµ =
4π2

c(E − Eg)
|〈Ψ−µE |ε̂ ·

∑
~pi|Ψg〉|2, (15)

where the superscripts L and V stand for the length and
velocity gauges respectively. The polarization of the in-
cident light is ε̂, c is the speed of light and Eg the ground
state energy.

Figure 2 shows the total photoionization cross sec-
tion (σ =

∑
σµ), computed with XCHEM and STOCK

at MCI level, for length and velocity gauges. Indepen-
dent theoretical results obtained by other authors, at the
same level of correlation, are also shown [48]. The re-
sults of XCHEM and STOCK in length gauge are indis-
tinguishable to the naked eye. However, in the veloc-
ity gauge, the slopes of the corresponding non-resonant
backgrounds are different, while the position and shape
of the resonance peaks remain similar. Since both cal-
culations were performed at MCI level, the difference in
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the background can only be explained by differences in
the basis functions used in those calculations: a hybrid
Gaussian/B-spline basis in XCHEM and a purely B-spline
one in STOCK. As explained above, in XCHEM, B-spline
functions are only used beyond R0, which means that
the short-range part description of the continuum wave
function is entirely described by Gaussian functions. In
contrast, in STOCK B-splines are used all the way from
the origin to the asymptotic region. B-spline functions
provide more flexibility than Gaussian functions, in par-
ticular, they can better describe the wave function cusp
at r = 0. Hence it is not surprising that discrepancies are
only seen in the velocity gauge, since it emphasizes the
contribution of the short-range part of the wave function.
This is possibly the reason why, in the velocity gauge, the
non-resonant background of Ref. [48] (an all-B-spline cal-
culation) is in better agreement with STOCK than with
XCHEM. Nevertheless, the resonant peaks predicted in
[48] are shifted around 2.2 eV to higher energies, thus
suggesting a poorer representation of electron correlation
in the resonant states.

C. Photoionization of Ne at XCI level

Figure 3 shows the total cross sections again, but this
time computed at the XCI level with XCHEM. They are
compared with the experimental values reported in [86].
The comparison is made on absolute scale (no rescal-
ing of either the calculated or the measured cross sec-
tions). As can be seen, the agreement between theory
and experiment is very good. Also, the results obtained
in the length and velocity gauges are much closer to each
other than in Fig. 2, which is the natural consequence of
having used a much larger configuration expansion. An-
other difference with Fig. 2 is that the resonant peaks
are displaced to lower energies, thus indicating an even
better description of electron correlation in the resonant
states. Interestingly, the XCHEM result computed in
length gauge is closer to the measured data than that
obtained in velocity gauge. This fact stresses once again
that the quality of the wave functions in the short-range
domain, though acceptable, is not as good as in the mid-
dle and long ranges, due to the intrinsic limitations of
the Gaussian expansion in the innermost region.

Let us now analyze in more detail the resonance struc-
tures observed in the spectrum. We have evaluated the
resonance parameters by fitting the calculated total cross
section to the formula [57]:

σ(E) = σ0(E)

[
ρ2 (q + ε)

2

ε2 + 1
+ 1− ρ2

]
, (16)

where σ0(E) is the total cross section background (a

smooth function of the energy), ε = 2(E−Er)
Γ is the re-

duced energy, q the Fano parameter and ρ2 the correla-
tion parameter (0 ≤ ρ2 ≤ 1). This formula is a gener-
alization of the usual Fano formula to the case of mul-
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FIG. 3: (Color online) Total photoionization cross section
from the ground state of Ne, computed using XCHEM (solid
lines) at the XCI level, for lenght (L) and velocity (V) gauges.
Absolute cross sections measured by Samson et al [86] are also
shown (solid line with squares). The vertical line indicates the
position of the 2s2p6 ionizaion threshold.

tichannel photoionization. Notice that the usual single-
channel Fano formula is recovered when ρ2 = 1, so that
ρ is a measure of the correlation between the different
open channels in the photoionization process.

Table I shows the results obtained from the fit of
the cross sections calculated at XCI correlation level.
We have extracted the energy Er, total autoinization
width Γ, profile parameter q and correlation parame-
ter ρ2 for the lowest three 1Po resonances converging
to the 2s2p6 ionization threshold. For consistency, en-
ergies and widths have also been evaluated by fitting
the total scattering phases to Eq. (12). All parame-
ters have been evaluated by using results obtained in
both length and velocity gauge, and are compared with
previously reported theoretical and experimental results
(we do not compare the values of the total cross sec-
tion background because all measurements but those of
[86] -see Fig. 3- were reported in arbitrary units). It
is worth noticing that among the four resonance pa-
rameters, q is the most sensitive one to the quality of
the basis, because it depends both on the coupling be-
tween the discrete state embedded in the continuum
and the non-resonant continuum components, and on
the dipole coupling between the ground and the mod-
ified discrete state (perturbed discrete state due to the
non-zero coupling with the non-resonant continuum). As
can be seen, values of the resonance energies are very
close for the different computation schemes (in percent),
while ρ2, Γ, and q exhibit a higher dispersion. It is
worth noticing that the other theoretical results shown
in the table were obtained by using very different lev-
els of theory: the relativistic random-phase approxima-
tion (RRPA) together with the relativistic multichan-
nel quantum-defect theory (RMQDT) [81], the R-matrix
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TABLE I: Resonance parameters for the lowest three 1Po resonances converging to the 2s2p6 threshold. The XCHEM results
at the XCI level (highlighted in bold) have been obtained in three different ways: by fitting the total phase shift and by fitting
the total cross sections obtained in length and velocity gauges. The results are compared with theoretical and experimental
values reported in the literature. Uncertainties, where quoted, are given in parentheses, and experimental values are given in
italics for an easy identification.

Resonance Energy (eV) Width (meV) Profile parameter q Correlation coefficient ρ2

2s2p63p 45.431a,b,c 15.0a,b −1.47b 0.79b

45.5442(50)d 15.1c −1.34c 0.77c

45.546(8)f 16(2)d -1.58(1)e 0.75(5)e

45.53397d 13(2)e,f -1.6(2)f 0.70(7)f

45.557e 13g -1,59(1)e 0.72e

49.725g 18.6(10)e -1.53(1)e 0.73e

46.253h 34.9d -1.4g 0.77g,j

45.5655i 13.9h -3.69h 0.514h

45.538k 11.4i -0.34j 0.93j

11.7j -1.16j 0.91j

12.1j -1.61j 0.76j

31.8k -1.30j

-1.32k

2s2p64p 46.942a,b,c 4.3a,b,c −1.26b 0.84b

47.1193(50)d 5.7(10)e −1.67c 0.85c

47.121(5)f 4.5(1.5)f -1.47(1)e 0.78(11)e

47.11092d 7g -1.6(3)f 0.70(7)f

47.111e 4.3e -1.88e 0.72e

51.318g 6.65d -1.82e 0.73e

47.397h 3.86h -1.35g 0.63g

47.1278i 5.28i -3.95h 0.505h

3.8j -1.75j 0.76j

-1.46j 0.77j

2s2p65p 47.506a 1.6a −1.35b 0.86b,c

47.502b,c 1.7b,c −1.78c 0.6(2)e

47.6952(15)d 3.6(18)e -1.46(5)e 0.70(14)f

47.692(5)f 2(1)f -1.6(5)f 0.74e

51.894g 2.47d -1.9e 0.75e

47.687e 1.8e -1.87e 0.71g

47.69182d 3g -1.15g 0.502h

47.814h 1.62h -4.05f

47.6975i 2.61i

aXCHEM: fit of the total phase.
bXCHEM: fit of the total cross section in length gauge.
cXCHEM: fit of the total cross section in velocity gauge.
dReference [79].
eReference [80].
fReference [55].
gReference [81].
hReference [82].
iReference [83].
jReference [84].
kReference [85].

method, sometimes combined with the multichannel
quantum-defect theory (MQDT) [79, 80, 83, 84], the time
dependent local density approximation (TDLDA) [82],
and the time-dependent configuration-interaction singles
(TDCIS) [85].

Considering the XCHEM results only, the Er, Γ and

ρ2 parameters obtained from the different fits agree very
well to each other. For the Fano q parameter, differences
between the results extracted from the length and the
velocity gauges are larger. The XCHEM resonance en-
ergies are 0.1-0.2 eV lower than the experimental ones,
and are comparable or even better than those obtained
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FIG. 4: (Color online) Partial photoionization cross sec-
tions computed using XCHEM at the XCI level and in veloc-
ity gauge. The three panels a, b, c display the energy region
([Er − 4Γ, Er + 4Γ]) around the 2s2p63p (Γ = 15.1 meV),
2s2p64p (Γ = 4.3 meV) and 2s2p65p (Γ = 1.7 meV) reso-
nances, respectively , which can decay into the 2s22p5εs and
the 2s22p5εd continua.

from other theoretical methods. The agreement with the
experimental total widths is also quite good: the com-
puted values are within the experimental error bars or
pretty close. For the q parameters, apart from the slight
gauge discrepancy indicated above, the agreement with
the experimental values is quite acceptable.

From the partial cross sections, one can get information
about the decay of the resonances to the different open
channels. As shown by Starace [63], the photoionization
partial cross sections can be written as:

σµ(ε) =
σ0
µ(ε)

ε2 + 1
{ε2 + 2ε[q<(αµ)−=(αµ)] + 1

−2q=(αµ)− 2<(αµ) + (q2 + 1)|αµ|2}, (17)

where σ0
µ(ε) is the partial cross section background and

αµ = <(αµ) + i=(αµ) is the Starace parameter [63]. The
αµ parameters are not independent of each other, they
fulfill the following relation:∑

µ

σ0
µ(ε)|αµ|2 = σ0(ε)ρ2, (18)

where σ0(ε) and ρ2 are the background and the correla-
tion parameters, respectively, appearing in the total cross
section. Figure 4 shows the 2p−1εs and 2p−1εd partial
cross sections around the 2s2p63p, 2s2p64p and 2s2p65p
resonances. As expected, the 2p−1εd channel clearly
dominates the photoionization process. Only when the
partial cross section associated with the dominant chan-
nel undergoes a very pronounced dip in the vicinity of the
resonances, the 2p−1εs partial cross section takes over,
but only in very narrow energy intervals.
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FIG. 5: (Color online) Total photoionization cross sections
(panels a, b and c) and β asymmetry parameter (panels d,
e and f) near the 2s2p63p, 2s2p64p and 2s2p65p resonances.
Solid lines: our results in length (black) and velocity (pur-
ple) gauges; black circles: experimental results digitized from
Ref. [80]. As explained in the text, the theoretical results
have been shifted in energy by 0.126, 0.170 and 0.185 eV for
the first, the second and the third resonance, respectively.

It is easy to demonstrate that

Γν
Γµ

=
σ0
ν |αν |2

σ0
µ|αµ|2

, (19)

so, in principle, if we were able to extract the back-
grounds σ0

µ and the Starace parameters αµ by fitting the
partial cross sections to Eq. (17), then we could get the
branching ratios from (19). The problem lies now on how
to perform the fitting. The partial cross sections, like the
total one, are nonlinear functions of the fitting parame-
ters, but extracting the resonance parameters from the
partial ones has two additional complications: (i) there
are extra parameters, namely the αµ and (ii) the αµ pa-
rameters belonging to different channels are not indepen-
dent (as shown by Eq. (18)). For this reason, for each
partial cross section, we will fix the parameters already
obtained from the fit of the total cross section (Er, Γ
and q) and will only leave three free parameters: <(αµ),
=(αµ) and σ0

µ. The parameters must be determined by
imposing simultaneously the condition given by Eq. (18).
Due to this additional condition, for many initial values
of the αµ parameters convergence is not reached or leads
to absurd values. To double check the results of this fit-
ting procedure, we have also adopted the following pro-
cedure. We have linearized Eq. (17), by introducing the
new parameters C1µ and C2µ [87] defined as

C1µ = 2[q<(αµ)−=(αµ)],

C2µ = 1− 2q=αµ − 2<(αµ) + (q2 + 1)|αµ|2, (20)
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TABLE II: Starace parameters and branching ratios (Γµ/Γ) for the same resonances as in Table I . The coefficients C1µ and
C2µ and its error bars (in brackets), obtained through the fitting to the partial cross sections using (21), are also shown.

Resonance µ C1µ C2µ Re(αµ) Im(αµ) Γµ/Γ

2s2p63p 2s22p5εs 2.451(0.009)a 4.151(0.014)a -0.770a -0.097a 0.046c

1.971(0.008)b 3.443(0.010)b -0.677b -0.079b 0.044d

0.049e

2s22p5εd -2.649(0.008)a 1.754(0.012)a 0.934a -0.045a 0.954c

-2.391(0.008)b 1.429 (0.011)b 0.931b -0.051b 0.956d

0.951e

2s2p64p 2s22p5εs 1.352(0.009)a 2.200(0.010)a -0.453a -0.105a 0.022c

1.663(0.007)b 2.246(0.009)b -0.432b -0.111b 0.021d

0.021e

2s22p5εd -2.301(0.011)a 1.392(0.017)a 0.846a 0.085a 0.978c

-3.145(0.013)b 2.600(0.024)b 0.863b 0.132b 0.979d

0.979e

2s2p65p 2s22p5εs 1.798(0.041)a 2.493(0.052)a -0.536a -0.176a 0.025c

2.167(0.038)b 2.581(0.053)b -0.507b -0.180b 0.025d

0.024e

2s22p5εd -2.544(0.027)a 1.618(0.042)a 0.963a -0.028a 0.975c

-3.395(0.024)b 2.882(0.046)b 0.964b -0.018b 0.975d

0.976e

aFit of the partial cross section in length gauge.
bFit of the partial cross section in velocity gauge.
cUsing Eq. (19) in length gauge.
dUsing Eq. (19) in velocity gauge.
eUsing Eq. (14).

so that Eq. (17) results in

σµ(ε) =
σ0
µ(ε)

ε2 + 1
(ε2 + C1µε+ C2µ). (21)

This way, only the positions and widths of the resonances
are fixed. There is one last and important thing to be
taken into account, which is the boundary conditions for
C1µ and C2µ. From Eq. (20), the αµ parameters are
determined from a quadratic equation, so that two roots
are obtained:

<(αµ) =
qC1µ + 2±

√
4C2µ − C2

1µ

2(1 + q2)
,

=(αµ) =
q(2±

√
4C2µ − C2

1µ)− C1µ

2(1 + q2)
. (22)

From the fact that <(αµ) and =(αµ) must be real num-
bers, one obtains 4C2µ ≥ C2

1µ. This condition must be
imposed during the fitting process in order to get mean-
ingful results, because it reflects the fact that the partial
cross section is a non-negative quantity. This constraint
in C1µ and C2µ also manifests in the universal scaling of
the resonances, as described e.g. in Ref. [88, 89]. Then

one has to select the correct Starace parameter from the
two solutions of Eq. (22). For this we can use Eq. (18) to
find the roots that better fulfill this condition. Actually
most of the roots rejected following this selection criteria
imply a correlation parameter ρ2 > 1, which is outside
its validity range. Nevertheless, if there are more than
two roots that satisfy reasonably well Eq. (18), then we
cannot be certain about which one is correct and we need
extra information to remove the ambiguity, for instance,
by computing the branching ratios using an independent
method.

The results obtained for C1µ, C2µ, αµ and Γµ/Γ using
the different methods are shown in Table II. The gauge
invariance of the Starace parameters is worse than that of
partial widths Γµ but better than that of the q parameter.
The values of the partial widths obtained with different
methods agree very well with each other. These numbers
confirm the known qualitative behavior: 95% of the decay
of the first resonance goes into the 2p−1εd channel, and
98% of the second and the third resonances.

The interference between the two open scattering
channels 2p−1εs and 2p−1εd below the 2s2p6 ionization
threshold manifests in the electron angular distribution,
which, for incident linearly polarized light, is given in
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terms of the β asymmetry parameter [90, 91]:

dσ(E)

dk̂
=
σ(E)

4π
[1 + βP2(cos θ)], (23)

where P2 is the second order Legendre polynomial and θ
is the electron emission angle referred to the polarization
direction. In Figure 5 we compare the results obtained
with XCHEM near the 2s2p63p, 2s2p64p and 2s2p65p res-
onances with the experimental ones reported in Ref. [80].
For completeness we also compare with Ref. [80] the total
photoionization cross section near the same resonances.
For a better visualization, our results have been shifted
by 0.126, 0.170 and 0.185 eV for the first, the second and
the third resonance, respectively. These energy shifts
correspond to the differences between the resonance po-
sitions reported in Ref. [80] and the XCHEM ones given in
Table I. As expected from the results reported in this Ta-
ble, the agreement for the total photoionization cross sec-
tions is quite good. For the β parameter, which is much
more sensitive to the level of correlation included in the
calculation, the discrepancy with experiment is higher,
around 15-20% in the non resonant region, although the
resonant profiles are reasonably reproduced. These dis-
crepancies are comparable to those reported in [80] when
comparing with results obtained by using the R-matrix
method.

IV. CONCLUSION

We have used the XCHEM approach to study mul-
tichannel photoionization of Ne in the vicinity of
the autoionizing states lying between the 2s22p5 and
2s2p6 ionization thresholds. This is the first application
of the XCHEM approach to the case in which the remain-
ing cation is a multi-electron target. Comparison with
the results of independent benchmark calculations with
the STOCK code, performed at the same level of the-
ory, demonstrates the good performance of our approach.
Our calculated total photoionization cross sections, ob-
tained at the XCI level, are also in very good agreement
with the absolute ones measured by Samson et al [86].
From these results, we have extracted resonance param-
eters, namely, resonance positions, total autoionization
widths, Fano profile parameters and correlation parame-
ters for the lowest three autoionizing states. These are in
good agreement with those reported in earlier theoretical
and experimental work.

We have gone a step further and evaluated β asym-
metry parameters and partial photoionization cross sec-
tions, and, from them, partial autoionization widths and
Starace parameters for the lowest three resonances. Our
results confirm earlier expectations that the resonances
of 1Po symmetry converging to the 2s2p6 threshold are
much more likely to decay into the 2p−1εd continuum
than into the 2p−1εs one [85], but we have now quantified
how much likely: 95% vs 5%, respectively, for the lowest
resonance, and 98% and 2% for the other two resonances.
We have also shown that, in very narrow ranges of the
photoelectron energy, in the vicinity of the resonances,
the partial 2p−1εs cross section can be larger than the
2p−1εd one, in contrast with the expectation that the
latter should amply dominate in the whole energy range.

These results show the capabilities of the XCHEM code
to describe electron correlation in the continuum and
hence autoionization decay in multi-electron systems,
which is of crucial importance in the case of molecu-
lar targets and for which the XCHEM code has been de-
signed. In fact, the description of atomic systems with
the XCHEM code is more challenging than that of molec-
ular systems, since one cannot use multi-center Gaus-
sian expansions without compromising spherical symme-
try. In particular, it is hard to preserve the degeneracy
of thresholds, which implies that rather large powers of
the Gaussian pre-exponential factors (K`) must be used
to obtain an accurate representation of continuum states
in the short and middle ranges. This gives us confidence
that the description of resonant molecular photoioniza-
tion with the XCHEM code should be rather straightfor-
ward.
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M. Meckel, M. Schöffler, N. Neumann, R. Wallauer,
S. Voss, et al., Nat. Phys. 6, 139 (2010), ISSN 1745-2473,
URL http://dx.doi.org/10.1038/nphys1498.

[3] M. Dell’Angela, T. Anniyev, M. Beye, R. Coffee,
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