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Quantum steering has recently been formalized in the framework of a resource theory of steering,
and several quantifiers have already been introduced. Here, we propose an information-theoretic
quantifier for steering called intrinsic steerability, which uses conditional mutual information to
measure the deviation of a given assemblage from one having a local hidden-state model. We thus
relate conditional mutual information to quantum steering and introduce monotones that satisfy
certain desirable properties. The idea behind the quantifier is to suppress the correlations that can be
explained by an inaccessible quantum system and then quantify the remaining intrinsic correlations.
A variant of the intrinsic steerability finds operational meaning as the classical communication cost
of sending the measurement choice and outcome to an eavesdropper who possesses a purifying system
of the underlying bipartite quantum state that is being measured.

I. INTRODUCTION

Quantum steering was first introduced by Schrödinger
in 1935 [1] in order to formalize an argument made by
Einstein, Podolsky, and Rosen in [2]. It refers to the fol-
lowing scenario: two parties called Alice and Bob share
a bipartite quantum state. Alice measures her system,
which can have the effect of steering the reduced state
on Bob’s system, depending on the measurement that she
performs. She thus can influence Bob’s subsystem with-
out having access to it. However, Bob does not have any
knowledge about the influence, nor can he detect it unless
Alice communicates the measurement that she performed
and the outcome of the measurement. For example, con-
sider a maximally entangled singlet shared by Alice and
Bob. Alice can measure her system in either the Pauli
σZ basis or the Pauli σX basis. If she measures in the
Pauli σZ basis, the resulting state of Bob’s subsystem is
represented as the ensemble

{
( 1

2 , |1〉〈1|), (
1
2 , |0〉〈0|)

}
. Al-

ternatively, if she measures in the Pauli σX basis, the
state of Bob’s subsystem is represented as the ensemble{

( 1
2 , |+〉〈+|), (

1
2 , |−〉〈−|)

}
.

The notion of steering was formalized in [3], which de-
fines it in the context of an entanglement certification
task, with Alice having access to an untrusted device and
Bob to a trusted quantum system. Alice’s device can be
thought of as a black box, which accepts a classical input
X and outputs a classical system A. The mathematical
description of the relation between Alice’s classical input
X, her output A, and Bob’s quantum system is called an
assemblage, whose formal definition we recall later.

The fact that Alice’s system is classical and Bob’s
system is quantum in the scenario of steering makes
it natural to study in the context of one-sided device-
independent tasks such as quantum key distribution [4]
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and randomness certification [5, 6]. Apart from this,
Ref. [7] demonstrated the usefulness of steering in a task
called sub-channel discrimination, which deals with de-
termining the direction of the evolution of a system.
Consider a state ρ that evolves according to a channel
N =

∑
z pZ(z)Nz, which is equal to a random selection

of a channel Nz according to the probability distribu-
tion pZ . Then the information regarding which path the
system takes is known as sub-channel discrimination.

A framework for a resource theory of steering was in-
troduced in [8], in which one-way classical communica-
tion from Bob to Alice and local operations (1W-LOCC)
are taken as free operations. In this framework, Bob is
also allowed to measure his system and communicate the
classical measurement outcome prior to the measurement
choice by Alice [8, Definition 1]. Thus, he can influence
the input to her black box. See Figure 1 for a schematic
representation. In the resource theory of steering, any
steering monotone should be non-increasing under 1W-
LOCC and equal to zero if a given assemblage is unsteer-
able. It is also desirable for the quantity to be convex.
Several steering quantifiers, including robustness of steer-
ing [9], steerable weight [7], and relative entropy of steer-
ing [8, 10], have been defined and proven to be a steering
monotone.

One contribution of our paper is to introduce intrinsic
steerability as a measure of steering. Intrinsic steerabil-
ity uses conditional mutual information to measure the
deviation of a given assemblage from one having a lo-
cal hidden-state model. The idea behind the quantifier
is to suppress the correlations that can be explained by
an inaccessible quantum system and then quantify the
remaining intrinsic correlations. We prove that intrinsic
steerability is monotone with respect to 1W-LOCC and
also that it is convex and superadditive in general.

We also consider a simpler, restricted class of free op-
erations in which Bob cannot influence Alice’s input to
her black box. In considering this restricted class, we
are motivated by practical, relativistic constraints that
can potentially limit the performance of Alice and Bob’s
quantum devices in any quantum steering protocol. Typ-
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ically, in any such protocol, Alice, Bob, and the source of
their systems are spatially separated, and furthermore,
their quantum devices typically have a finite coherence
time. If Alice were to wait to receive a signal from Bob
before taking any action on her system, the performance
of her device could potentially get much worse than it
would be if she were simply instead to input to her sys-
tem as soon as she receives it from the source. This
perspective motivates a restricted class of 1W-LOCC op-
erations in which any classical communication from Bob
reaches Alice only after she has received the output A
from her black box. We refer to these free operations as
restricted 1W-LOCC.

We define the restricted intrinsic steerability as a steer-
ing quantifier, which is relevant for the aforementioned
restricted class of 1W-LOCC operations. We prove that,
along with it being a monotone with respect to re-
stricted 1W-LOCC and satisfying the properties men-
tioned above, it also satisfies additivity and monogamy.
To our knowledge, this is the first measure shown to be
monogamous and additive with respect to tensor prod-
ucts of assemblages.

Our approach to defining these steering quantifiers
is inspired by the approach of [11] to quantifying non-
Markovianity in Bayesian networks, which in turn bears
connections to the squashed-entanglement measure [12]
and the intrinsic-information quantifier from classical in-
formation theory [13]. To see this, consider that corre-
lations in any unsteerable assemblage can be explained
by a hidden variable, which implies that such an assem-
blage has a Markov-chain structure. Assemblages with
this structure thus have zero conditional mutual infor-
mation when conditioning on the shared variable [14],
where we recall that the conditional mutual information
of a tripartite quantum state σKLM is defined as

I(K;L|M)σ := H(KM)σ +H(LM)σ

−H(KLM)σ −H(M)σ (1)

and H(G)ω := −Tr(ωG log2 ωG) denotes the quantum
entropy of the state ωG defined on system G (note that
throughout this paper, we use the binary logarithm in
the definition of entropy). So our primary idea is to take
a non-signaling extension of an assemblage, remove the
correlations which can be explained by a shared variable
(by conditioning), and then quantify the remaining in-
trinsic correlations.

II. PRELIMINARIES

We begin by reviewing the framework of quantum
steering as discussed in [8]. Let ρAB be a bipartite quan-
tum state shared by Alice and Bob. Suppose that Alice
performs a measurement labeled by x ∈ X , with X de-
noting a finite set of quantum measurements, and she
gets a classical output a ∈ A, with A denoting a finite
set of measurement outcomes. An assemblage consists of

the state of Bob’s subsystem and the conditional proba-
bility of Alice’s outcome a (correlated with Bob’s state)
given the measurement choice x. This is specified as

{pA|X(a|x), ρa,xB }a∈A,x∈X . (2)

The sub-normalized state possessed by Bob is

ρ̂a,xB := pA|X(a|x)ρa,xB . (3)

Taking pX(x) as a probability distribution over mea-
surement choices, we can then embed the assemblage
{ρ̂a,xB }a,x in a classical-quantum state as follows:

ρXAB :=
∑
a,x

pX(x) |x〉〈x|X ⊗ |a〉〈a|A ⊗ ρ̂
a,x
B , (4)

where {|x〉X}x and {|a〉A}a are orthonormal bases. Fol-
lowing the approach of [8], we work directly with an as-
semblage in what follows, such that the device on Alice’s
side is considered as a black box, accepting a classical
input x and outputting a classical variable a with proba-
bility pA|X(a|x), while the quantum state of Bob’s system

is ρa,xB .
Assemblages are restricted by the no-signaling princi-

ple. That is, the reduced state of Bob’s system should
not depend on the input x to Alice’s black box if the
measurement output a is not available to him:∑

a

ρ̂a,xB =
∑
a

ρ̂a,x
′

B ∀x, x′ ∈ X . (5)

This is equivalent to I(X;B)ρ = 0, where

I(X;B)ρ := H(X)ρ +H(B)ρ −H(XB)ρ (6)

is the mutual information of the reduced state ρXB =
TrA(ρXAB).

An assemblage is unsteerable if arises from a classical,
shared random variable Λ in the following sense [3]:

ρ̂a,xB :=
∑
λ

pΛ(λ) pA|XΛ(a|x, λ) ρλB , (7)

where pΛ(λ) is a probability distribution for Λ. The
above structure indicates that the correlations observed
can be explained by a classical random variable Λ, a copy
of which is sent to both Alice and Bob, who then take
actions conditioned on the particular realization λ of Λ.
The set of all unsteerable assemblages is referred to as
LHS (short for assemblages having a “local-hidden-state
model”).

We point out that the setting considered in the re-
source theory of steering [8], reviewed above, is some-
what different from that in [3]. In the original paper [3],
steering is considered as a property of a quantum state.
That is, a quantum state is considered steerable if there
exists a local measurement on Alice’s system that leads
to correlations that cannot be explained in terms of a
local-hidden-state model. The definition considered in
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FIG. 1. This figure represents a 1W-LOCC operation acting
on an assemblage realized by an underlying quantum state
ρAB and measurement apparatus {Ma

x}a. Bob is allowed to
send classical information y to Alice, who chooses the input
x to her black box according to pX|Y .

[8] (and that which we consider here) is to work directly
with an assemblage, i.e., such that Alice’s share of the
bipartite quantum state is embedded in the untrusted
measurement device and the entire embedding is treated
as a black box with unknown internal functioning.

As discussed above, the most general free operations al-
lowed in the context of quantum steering are 1W-LOCC.
Starting with a given assemblage {ρ̂a,xB }a,x, it is possible
for Bob to perform a quantum instrument on his system,
specified as the following measurement channel acting on
an input state σB :

MB→B′Y (σB) :=
∑
y

Ky(σB)⊗ |y〉〈y|Y , (8)

Ky(σB) :=
∑
t

Ky,tσBK
†
y,t. (9)

The sum map
∑
y Ky is trace preserving, i.e.,∑

y,tK
†
y,tKy,t = IB and each Ky,t is a Kraus operator,

taking a vector in HB to a vector in HB′ . Bob can then
communicate the classical result y to Alice, who chooses
the input x to her black box according to a classical chan-
nel pX|Y (x|y). The state after these operations is

ρXAB′Y :=
∑
a,x,y

pX|Y (x|y) |x〉〈x|X ⊗ |a〉〈a|A

⊗Ky(ρ̂a,xB )⊗ |y〉〈y|Y . (10)

Figure 1 depicts a 1W-LOCC operation acting on an as-
semblage realized by an underlying quantum state ρAB
and measurement apparatus {Ma

x}a.

III. DEFINITIONS AND SUMMARY OF
RESULTS

A. Intrinsic Steerability

We allow Alice and Bob to operate on the assemblage
{ρ̂a,xB }a,x to maximize their correlations, resulting in the

following definition for intrinsic steerability:

Definition 1 (Intrinsic Steerability) Let {ρ̂a,xB }a,x
denote an assemblage, and let ρXAB′Y be a state re-
sulting from a 1W-LOCC operation as described above.
Consider a non-signaling extension ρXAB′EY of ρXAB′Y
of the following form:

ρXAB′EY :=
∑
x,a,y

pX|Y (x|y) |x〉〈x|X ⊗ |a〉〈a|A

⊗ ρ̂a,x,yB′E ⊗ |y〉〈y|Y , (11)

where ρ̂a,x,yB′E satisfies

TrE(ρ̂a,x,yB′E ) = Ky(ρ̂a,xB ) (12)

and the following no-signaling constraints:∑
a

ρ̂a,x,yB′E =
∑
a

ρ̂a,x
′,y

B′E ∀x, x′ ∈ X , y ∈ Y. (13)

We define the intrinsic steerability of a given assemblage
as follows:

S(A;B)ρ̂ := sup
{pX|Y ,{Ky}y}

inf
ρXAB′EY

I(XA;B′|EY )ρ, (14)

where the supremum is with respect to all quantum instru-
ments, consisting of trace non-increasing maps {Ky}y
such that the sum map

∑
y Ky is trace preserving and all

classical channels pX|Y leading to Alice’s input choice x.
The infimum is with respect to all non-signaling exten-
sions of ρXAB′Y . Using the no-signaling constraints,
which imply that I(X;B′|EY )ρ = 0, we can write

S(A;B)ρ̂ := sup
{pX|Y ,{Ky}y}

inf
ρXAB′EY

I(A;B′|EXY )ρ. (15)

The idea behind the intrinsic steerability is to measure
the correlations between Alice and Bob’s systems after
conditioning on all of the systems that an eavesdropper
could have, with the worst possible scenario being that
the eavesdropper possesses an arbitrary non-signaling ex-
tension of Ky(ρ̂a,xB ). We take the order of optimizations
to be similar to the order given for the squashed entangle-
ment of a quantum channel [15]: Alice and Bob first pick
a 1W-LOCC strategy to maximize their correlations, and
Eve is allowed to react to this strategy, with the goal of
minimizing their correlations. Here the only restriction
on Eve’s system is that it has to be no-signaling. It is
possible to have other restrictions on Eve’s system and
have modifications of the measure accordingly. Our most
fundamental result is the following theorem about intrin-
sic steerability.

Theorem 2 The intrinsic steerability S(A;B)ρ̂ is a con-
vex steering monotone. That is, it does not increase on
average under deterministic 1W-LOCC, it vanishes for
an assemblage having a local-hidden-state model, and it
is convex.

Our proof of Theorem 2 is given in Section V.
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B. Restricted Intrinsic Steerability

Definition 1 might seem rather complicated with the
number of systems involved and the number of objects in-
volved in the optimizations. While undesirable, we note
that other steering quantifiers, such as the relative en-
tropy of steering [8, 10], feature similar complications,
and this seems unavoidable, having to do with the struc-
ture of assemblages and 1W-LOCC operations.

We are thus motivated to find simpler definitions, and
we can do so by considering restricted 1W-LOCC opera-
tions as discussed above.

Definition 3 (Restricted Intrinsic Steerability)
Let {ρ̂a,xB }a,x denote an assemblage, and let ρXAB denote
a corresponding classical–quantum state. Consider a
non-signaling extension ρXABE of ρXAB of the following
form:

ρXAB′E :=
∑
a,x

pX(x) |x〉〈x|X ⊗ |a〉〈a|A ⊗ ρ̂
a,x
BE , (16)

where ρ̂a,xBE satisfies TrE(ρ̂a,xBE) = ρ̂a,xB and the following
no-signaling constraints:∑

a

ρ̂a,xBE =
∑
a

ρ̂a,x
′

BE ∀x, x
′ ∈ X . (17)

We define the restricted intrinsic steerability of {ρ̂a,xB }a,x
as follows:

SR(A;B)ρ̂ := sup
pX

inf
ρXABE

I(XA;B|E)ρ, (18)

where the supremum is with respect to all probability dis-
tributions pX and the infimum is with respect to all non-
signaling extensions of ρXAB. Using the no-signaling
constraints, which imply that I(X;B|E)ρ = 0, it follows
that

SR(A;B)ρ̂ := sup
pX

inf
ρXABE

I(A;B|EX)ρ. (19)

We prove that the restricted intrinsic steerability is a
steering monotone with respect to restricted 1W-LOCC
and that it is convex.

Theorem 4 The restricted intrinsic steerability
SR(A;B)ρ̂ is a convex steering monotone with re-
spect to restricted 1W-LOCC. That is, it does not
increase under restricted deterministic 1W-LOCC, it
vanishes for assemblages having a local-hidden-state
model, and it is convex.

Our proof for Theorem 4 is given in Section VI.

By inspecting definitions, we can conclude that intrin-
sic steerability is never smaller than restricted intrinsic
steerability:

S(A;B)ρ̂ ≥ SR(A;B)ρ̂. (20)

This follows because the restricted intrinsic steerabil-
ity involves a supremization over particular 1W-LOCC
strategies that are included in the supremization in the
definition of the intrinsic steerability.

By using known bounds on conditional mutual infor-
mation, the expression in (15), and the fact that taking
an infimum over classical extensions E does not decrease
S(A;B)ρ̂, we can conclude that

0 ≤ S(A;B)ρ̂ ≤ log2 |A|. (21)

The lower bound follows from the strong subadditivity
of quantum entropy [16] and the upper bound follows
from a dimension bound (see, e.g., [17]). Similarly, using
known bounds on conditional mutual information, the
expression in (19), and the fact that taking an infimum
over classical extensions E does not decrease SR(A;B)ρ̂,
we find that

0 ≤ SR(A;B)ρ̂ ≤ min{log2 |A|, log2 |B|}. (22)

IV. EXAMPLES

As an example, consider the following “BB84 assem-
blage” resulting from Pauli σZ or σX measurements on
one share of a maximally entangled state

|Φ〉AB := (|00〉AB + |11〉AB)/
√

2, (23)

consisting of the following four subnormalized states:

ρ̂a=0,x=0
B = 1

2 |0〉〈0|B , (24)

ρ̂a=1,x=0
B = 1

2 |1〉〈1|B , (25)

ρ̂a=0,x=1
B = 1

2 |+〉〈+|B , (26)

ρ̂a=1,x=1
B = 1

2 |−〉〈−|B . (27)

As we show in the proof of Proposition 5, the non-
signaling constraint for this case imposes that any non-
signaling extension of the above assemblage has the
form ρ̂a,xB ⊗ ωE for all a, x ∈ {0, 1} and for some state
ωE . Thus, in this sense, the BB84 assemblage
is unextendible and features a certain kind of
monogamy against non-signaling adversaries. As
a consequence, we find that this assemblage has exactly
one bit of intrinsic steerability.

In Proposition 6, we generalize the above result to
an assemblage resulting from an arbitrary pure bipar-
tite state being measured in the Schmidt basis and the
basis Fourier conjugate to this one. We find that this
assemblage has the same kind of monogamy against non-
signaling adversaries and that it has restricted intrinsic
steerability equal to the entropy of entanglement [18] of
the state being measured.

Proposition 5 Consider a maximally entangled state

|Φ〉AB :=
1√
2

(|00〉AB + |11〉AB). (28)
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Let measurement x = 0 be Pauli σZ on system A, with
outcomes a = 0 and a = 1. Let measurement x = 1 be
Pauli σX on system A, with outcomes a = 0 and a = 1.
This leads to the following assemblage:{

ρ̂a=0,x=0
B = 1

2 |0〉〈0|B , ρ̂a=1,x=0
B = 1

2 |1〉〈1|B ,
ρ̂a=0,x=1
B = 1

2 |+〉〈+|B , ρ̂a=1,x=1
B = 1

2 |−〉〈−|B

}
,

(29)

which has one bit of intrinsic steerability and restricted
intrinsic steerability:

S(A;B)ρ̂ = SR(A;B)ρ̂ = 1. (30)

Proof. Arbitrary extensions of each of the above sub-
normalized states are as follows:

ρ̂a=0,x=0
BE =

1

2
|0〉〈0|B ⊗ ω00

E , (31)

ρ̂a=1,x=0
BE =

1

2
|1〉〈1|B ⊗ ω10

E , (32)

ρ̂a=0,x=1
BE =

1

2
|+〉〈+|B ⊗ ω01

E , (33)

ρ̂a=1,x=1
BE =

1

2
|−〉〈−|B ⊗ ω11

E , (34)

where ωijE ≥ 0 and Tr(ωijE ) = 1 for all i, j ∈ {0, 1}. The
no-signaling constraint is as follows:

ρ̂a=0,x=0
BE + ρ̂a=1,x=0

BE = ρ̂a=0,x=1
BE + ρ̂a=1,x=1

BE . (35)

Writing out the left-hand side of (35) in matrix form, we
find that

1

2
|0〉〈0|B ⊗ ω00

E +
1

2
|1〉〈1|B ⊗ ω10

E =
1

2

[
ω00
E 0
0 ω10

E

]
. (36)

Writing out the right-hand side of (35) in matrix form,
we find that

1

2
|+〉〈+|B ⊗ ω01

E +
1

2
|−〉〈−|B ⊗ ω11

E (37)

=
1

4
[|0〉〈0|B + |1〉〈0|B + |0〉〈1|B + |1〉〈1|B ]⊗ ω01

E

+
1

4
[|0〉〈0|B − |1〉〈0|B − |0〉〈1|B + |1〉〈1|B ]⊗ ω11

E

(38)

=
1

2
|0〉〈0|B ⊗

(
ω01
E + ω11

E

2

)
+

1

2
|1〉〈0|B ⊗

(
ω01
E − ω11

E

2

)
+

1

2
|0〉〈1|B ⊗

(
ω01
E − ω11

E

2

)
+

1

2
|1〉〈1|B ⊗

(
ω01
E + ω11

E

2

)
. (39)

=
1

2

[
ω01
E +ω11

E

2
ω01
E −ω

11
E

2
ω01
E −ω

11
E

2
ω01
E +ω11

E

2

]
. (40)

So equating them, we find that the following equation
(no-signaling constraint) should be satisfied[

ω00
E 0
0 ω10

E

]
=

[
ω01
E +ω11

E

2
ω01
E −ω

11
E

2
ω01
E −ω

11
E

2
ω01
E +ω11

E

2

]
. (41)

This implies that ω01
E = ω11

E , which in turn implies that
ω10
E = ω01

E = ω11
E = ω00

E . Thus, the only possible exten-
sion allowed in order to satisfy the no-signaling constraint
is a product extension independent of a and x, meaning
one of the following form:

ρ̂a=0,x=0
BE =

1

2
|0〉〈0|B ⊗ ωE ,

ρ̂a=1,x=0
BE =

1

2
|1〉〈1|B ⊗ ωE ,

ρ̂a=0,x=1
BE =

1

2
|+〉〈+|B ⊗ ωE ,

ρ̂a=1,x=1
BE =

1

2
|−〉〈−|B ⊗ ωE , (42)

where ωE ≥ 0 and Tr(ωE) = 1. We can then evaluate the
restricted intrinsic steerability in terms of the following
classical–quantum state:

1
2 |0〉〈0|X ⊗ |0〉〈0|A ⊗

1
2 |0〉〈0|B

+ 1
2 |0〉〈0|X ⊗ |1〉〈1|A ⊗

1
2 |1〉〈1|B

+ 1
2 |1〉〈1|X ⊗ |0〉〈0|A ⊗

1
2 |+〉〈+|B

+ 1
2 |1〉〈1|X ⊗ |1〉〈1|A ⊗

1
2 |−〉〈−|B

⊗ ωE . (43)

The conditional mutual information of this state is as
follows:

I(XA;B|E) = I(XA;B)

= H(B)−H(B|XA) = H(B) = 1, (44)

so that this assemblage has one bit of restricted intrinsic
steerability. The first equality follows because the sys-
tem E is product regardless of the extension, due to the
above analysis with the no-signaling constraint. The sec-
ond equality follows by expanding the mutual informa-
tion. The third equality follows because the state of the
B system is pure when conditioned on systems XA. The
final equality follows because the reduced state on the
B system is maximally mixed. Also, it is clear that this
is the maximum value of the restricted intrinsic steer-
ability, given that it is always bounded from above by
log dim(HB) or log dim(HA). By considering the upper
bound log dim(HA) for intrinsic steerability, we see that
this assemblage achieves the upper bound on intrinsic
steerability and thus has one bit of intrinsic steerability.

Proposition 6 Consider a pure bipartite state |ϕ〉AB in
its Schmidt basis:

|ϕ〉AB :=

d−1∑
j=0

αj |j〉A ⊗ |j〉B , (45)
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where |αj | 6= 0 for all j ∈ {0, . . . , d−1}. Let measurement
x = 0 be a measurement {|j〉〈j|A}j in the Schmidt basis
on system A, with outcomes a = j ∈ {0, . . . , d − 1}. Let

measurement x = 1 be a measurement {|̃j〉〈j̃|A}j in the
Fourier conjugate basis, where

|̃j〉A :=
1√
d

∑
k

e2πijk/d|k〉A, (46)

on system A, with outcomes a = j ∈ {0, . . . , d− 1}. This
leads to the following assemblage:{{

ρ̂a=j,x=0
B = |αj |2 |j〉〈j|B

}
j
,

{
ρ̂a=j,x=1
B =

1

d
Z†(j)|ψ〉〈ψ|BZ(j)

}
j

,

}
, (47)

where |ψ〉B :=
∑
j αj |j〉B. This assemblage has

H({|αj |2}j) = H(A)ϕ (48)

bits of restricted intrinsic steerability. Note that this is
equal to the entropy of entanglement of the state |ϕ〉AB.
If the state |ϕ〉AB is maximally entangled so that αj =

1/
√
d, then the resulting assemblage has log2(d) bits of

intrinsic steerability.

Proof. It is clear that the post-measurement state for
Bob ρ̂a=j,x=0

B is as above. For the other case, consider
that

〈j̃|A ⊗ IB |ϕ〉AB

=
1√
d

d−1∑
k=0

e−2πijk/d〈k|A
d−1∑
l=0

αl|l〉A ⊗ |l〉B (49)

=
1√
d

d−1∑
k,l=0

αke
−2πijk/d〈k|l〉A ⊗ |l〉B (50)

=
1√
d

d−1∑
k=0

αke
−2πijk/d|k〉B . (51)

Now defining the unitary operator Z(j) by Z(j)|k〉 =
e2πijk/d|k〉 for j, k ∈ {0, . . . , d− 1}, we can write

〈j̃|A ⊗ IB |ϕ〉AB =
1√
d
Z†(j)|ψ〉B , (52)

confirming the post-measurement subnormalized states
ρ̂a=j,x=1
B . Arbitrary extensions of each of the above sub-

normalized states are as follows:

ρ̂a=j,x=0
BE = |αj |2 |j〉〈j|B ⊗ ωjE , (53)

ρ̂a=j,x=1
BE =

1

d
Z†(j)|ψ〉〈ψ|BZ(j)⊗ τ jE , (54)

where ωjE , τ
j
E ≥ 0 and Tr(ωjE) = Tr(τ jE) = 1 for all j ∈

{0, . . . , d− 1}. The no-signaling constraint is as follows:

d−1∑
j=0

ρ̂a=j,x=0
BE =

d−1∑
j=0

ρ̂a=j,x=1
BE , (55)

which is the same as

d−1∑
k=0

|k〉〈k|B ⊗ |αk|2 ωkE

=

d−1∑
j=0

1

d
Z†(j)|ψ〉〈ψ|BZ(j)⊗ τ jE (56)

=

d−1∑
j,k,k′=0

1

d
αkα

∗
k′e
−2πij(k−k′)/d|k〉〈k′|B ⊗ τ jE (57)

=
d−1∑
k,k′=0

|k〉〈k′|B ⊗
1

d
αkα

∗
k′

d−1∑
j=0

e−2πij(k−k′)/dτ jE . (58)

Set k′ = 0. For k ∈ {0, 1, . . . , d− 1}, we get the following
constraints from the no-signaling condition:

ω0
E =

1

d

d−1∑
j=0

τ jE , (59)

0 =

d−1∑
j=0

e−2πijk/dτ jE . (60)

We can conclude that τ jE is independent of j, so that

τ jE = ω0
E for all j ∈ {0, . . . , d − 1}. To see this, let us

solve the above equations, thinking of ω0
E as fixed and

τ jE as free for all j ∈ {0, . . . , d− 1}. Consider that

d−1∑
j=0

e−2πijk/d = 0 ∀k ∈ {1, . . . , d− 1}. (61)

Then we can see that τ0
E = τ1

E = · · · = τd−1
E = ω0

E is one
of the solutions of the equations in (59)–(60). Since the
equations are linearly independent, it is a unique solu-
tion. Now considering the other blocks in (56) (i.e., for

k = k′ = 1, . . . , d − 1), we find that ω1
E = · · · = ωd−1

E =
ω0
E . Thus, the only possible extension allowed in order to

satisfy the no-signaling constraint is a product extension
independent of a and x, meaning one of the following
form:

ρ̂a=j,x=0
BE = |αj |2 |j〉〈j|B ⊗ ωE , (62)

ρ̂a=j,x=1
BE =

1

d
Z†(j)|ψ〉〈ψ|BZ(j)⊗ ωE , (63)

where ωE ≥ 0 and Tr(ωE) = 1. We can then evaluate the
restricted intrinsic steerability in terms of the following
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classical–quantum state:

[
p|0〉〈0|X ⊗

∑
j

|j〉〈j|A ⊗ |αj |
2 |j〉〈j|B

+ (1− p) |1〉〈1|X ⊗
∑
j

|j〉〈j|A

⊗ 1

d
Z†(j)|ψ〉〈ψ|BZ(j)

]
⊗ ωE , (64)

where (p, 1−p) is a probability distribution for the input
x. The conditional mutual information of this state is as
follows:

I(XA;B|E) = I(XA;B) = H(B)−H(B|XA) (65)

= H(B) = H({|αj |2}), (66)

so that this assemblage has H({|αj |2}) bits of restricted
intrinsic steerability. The first step follows because the
system E is product regardless of the extension, due to
the above analysis with the no-signaling constraint. The
second step follows by expanding the mutual information.
The third step follows because the state of the B system
is pure when conditioned on systems XA. The final step
follows because the reduced state on the B system is∑
j |αj |

2 |j〉〈j|B , which can be seen from

TrXA

(
p|0〉〈0|X ⊗

∑
j

|j〉〈j|A ⊗ |αj |
2 |j〉〈j|B

+ (1− p) |1〉〈1|X ⊗
∑
j

|j〉〈j|A

⊗ 1

d
Z†(j)|ψ〉〈ψ|BZ(j)

)

= p
∑
j

|αj |2 |j〉〈j|B + (1− p)
∑
j

1

d
Z†(j)|ψ〉〈ψ|BZ(j)

(67)

= p
∑
j

|αj |2 |j〉〈j|B + (1− p)
∑
j

|αj |2 |j〉〈j|B (68)

=
∑
j

|αj |2 |j〉〈j|B . (69)

This state is independent of the input probability distri-
bution, so that the maximum is achieved for any choice
of p ∈ (0, 1).

If the state |ϕ〉AB is maximally entangled, then

H({|αj |2}) = log2(d). (70)

Given the upper bound log(dim(HA)) = log2(d) on
intrinsic steerability, we see that the upper bound is
achieved in this case.

V. INTRINSIC STEERABILITY

We now give a proof for Theorem 2 and proofs for other
properties of the intrinsic steerability stated earlier.

Proposition 7 Intrinsic steerability vanishes for assem-
blages having an LHS model.

Proof. To prove this, consider the following particular
non-signaling extension for an assemblage with a local-
hidden-state model:∑

x,a,λ,y

pX|Y (x|y) |x〉〈x|X ⊗ pA|XΛ(a|x, λ) |a〉〈a|A

⊗
∑
t

Ky,tρ̂
λ
BK

†
y,t ⊗ pΛ(λ) |λ〉〈λ|E ⊗ |y〉〈y|Y . (71)

For this non-signaling extension, conditioned on the val-
ues λ and y, systems XA and B′ are in a product state, so
that the conditional mutual information I(XA;B′|EY )
vanishes. The same argument applies to all quantum in-
struments {Ky}y and channels pX|Y , so that

S(A;B)ρ = 0 (72)

in this case.

Proposition 8 (1W-LOCC monotone) Let
{ρ̂a,xB }a,x be an assemblage, and suppose that{

ρ̂
af ,xf
Bf ,z

:=

∑
a,x

p(af |xf , x, a, z)p(x|xf , z)Kz(ρ̂a,xB )/p(z)

}
af ,xf

,

(73)

is an assemblage that arises from it by the action of a
general 1W-LOCC operation, where

p(z) := Tr

(
Kz

(∑
a

ρ̂a,xB

))
= Tr(Kz(ρB)). (74)

Then the intrinsic steerability is monotone on average
under deterministic 1W-LOCC, in the following sense:∑

z

p(z)S(Af ;Bf )ρ̂z ≤ S(A;B)ρ̂. (75)

Proof. First, we give a proof sketch for the monotonicity
of intrinsic steerability on average under deterministic
1W-LOCC:

S(A;B)ρ̂ ≥
∑
z

pZ(z)S(Af ;Bf )ρ̂z , (76)

where ρ̂z := {ρ̂af ,xfBf ,z
}af ,xf is the assemblage resulting

from a 1W-LOCC operation on the initial assemblage
{ρ̂a,xB }a,x and is given as [8]

ρ̂
af ,xf
Bf ,z

:=
∑
a,x

p(af |a, x, xf , z)p(x|xf , z)Kz(ρ̂a,xB ). (77)
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In the above, p(af |a, x, xf , z) and p(x|xf , z) are local
classical channels that Alice uses, respectively, to pick
the output af of the final assemblage and the input x
to her initial assemblage. The set {Kz}z is such that the
sum map

∑
z Kz is trace preserving and thus corresponds

to a measurement of Bob’s system. The definition of the
intrinsic steerability involves a supremum over measure-
ments of the system Bf of the final assemblage and clas-
sical channels for the input Xf to the final assemblage.
Using data processing and when given Z, we can say that
system Af was obtained by processing systems XXfA.
Then, the two successive measurements on Bob’s system
can be thought of as a single measurement. Since the in-
trinsic steerability involves a supremum over all possible
measurements, the result follows.

We now give a detailed proof. To see this, consider
that, in accordance with the definition of S(Af ;Bf )ρ̂z ,
the assemblages {ρ̂af ,xfBf ,z

}af ,xf can be further prepro-

cessed by a z-dependent 1W-LOCC {pXf |Y Z=z, {L
(z)
y }y},

resulting in the following state:

σz
XfAfB′

fY
:=

∑
af ,xf ,y

p(xf |yz)[xf ]⊗[af ]⊗L(z)
y (ρ̂

af ,xf
Bf ,z

)⊗[y].

(78)

Notation 9 In the above and in what follows, we employ
a shorthand [x] ≡ |x〉〈x|X or [a] ≡ |a〉〈a|A, etc.

The state in (78) is extended by the following one:

σz
XfXAfAB′

fY
:=

∑
af ,a,x,xf ,y

p(xf |yz)[xf ]

⊗ p(x|xf , z)[x]⊗ p(af |xf , x, a, z)[af ]⊗ [a]

⊗
L(z)
y (ρ̂a,xB )

p(z)
⊗ [y], (79)

which in turn are elements of the following classical–
quantum state:

σXfXAfAB′
fY Z

:=
∑
z

σz
XfXAfAB′

fY
⊗ p(z)[z]. (80)

An arbitrary non-signaling extension of the state in (78),
according to that needed in the definition of S(Af ;Bf )ρ̂z ,
is as follows:

σz
XfAfB′

fEY
:=

∑
af ,xf ,y

p(xf |yz)[xf ]⊗ [af ]

⊗ τ̂af ,xf ,y,zB′
fE

⊗ [y], (81)

where τ̂
af ,xf ,y,z

B′
fE

satisfies

TrE(τ̂
af ,xf ,y,z

B′
fE

) = L(z)
y (ρ̂

af ,xf
Bf ,z

), (82)∑
af

τ̂
af ,xf ,y,z

B′
fE

=
∑
af

τ̂
af ,x

′
f ,y,z

B′
fE

∀xf , x′f ∈ Xf , y ∈ Y, z ∈ Z. (83)

A particular non-signaling extension of the state in (78),
according to that needed in the definition of S(Af ;Bf )ρ̂z ,
is as follows:

ζz
XfAfB′

fEY
:=

∑
af ,xf ,y

p(xf |yz)[xf ]⊗ [af ]

⊗
∑
a,x

p(af |xf , x, a, z)p(x|xf , z)ω̂a,x,y,zB′
fE

⊗ [y], (84)

where ω̂a,x,y,zB′
fE

satisfies

TrE(ω̂a,x,y,zB′
fE

) =
L(z)
y (Kz(ρ̂a,xB ))

p(z)
, (85)∑

a

ω̂a,x,y,zB′
fE

=
∑
a

ω̂a,x,y,zB′
fE

∀x, x′ ∈ X , y ∈ Y, z ∈ Z.

(86)

The operator ω̂a,x,y,zB′
fE

will serve as an arbitrary non-

signaling extension needed in the definition of S(A;B)ρ̂.
Let ζXfAfB′

fEY Z
denote the following state:

ζXfAfB′
fEY Z

:=
∑
z

ζz
XfAfB′

fEY
⊗ p(z)[z]. (87)

This in turn is a marginal of the following state:

ζXfXAfAB′
fEY Z

:=
∑

af ,a,xf ,x,y

p(xf |yz)[xf ]

⊗ p(x|xf , z)[x]⊗ p(af |xf , x, a, z)[af ]⊗ [a]

⊗ ω̂a,x,y,zB′
fE

⊗ [y]⊗ p(z)[z]. (88)

Consider that∑
z

p(z) inf
ext. in (81)

I(XfAf ;B′f |EY )σz

≤
∑
z

p(z)I(XfAf ;B′f |EY )ζz (89)

= I(XfAf ;B′f |EY Z)ζ (90)

≤ I(XfXA;B′f |EY Z)ζ (91)

= I(XA;B′f |EY Z)ζ + I(Xf ;B′f |EY ZXA)ζ (92)

= I(XA;B′f |EY Z)ζ . (93)

The first inequality follows because the extension state
ζz
XfAfB′

fEY
is a particular kind of non-signaling extension

required in the definition of S(Af ;Bf )ρ̂z . The first equal-
ity follows because system Z is classical and thus can be
incorporated as a conditioning system in the conditional
mutual information. The second inequality follows from
local data processing for the conditional mutual informa-
tion: given Z, the system Af arises from local processing

of systems XfXA. The second equality follows from the
chain rule for conditional mutual information. The final
equality follows from the fact that systems B′fE are inde-

pendent of Xf when given the classical systems Y ZXA



9

(one can inspect the state in (88) to see this explicitly).
Since the above chain of inequalities holds for any non-
signaling extension of the form in (84), we can conclude
that∑

z

p(z) inf
ext. in (81)

I(XfAf ;B′f |EY )σz

≤ inf
ext. in (84)

I(XA;B′f |EY Z)ζ . (94)

Now we can take the supremum of both sides with respect

to 1W-LOCC operations {pXf |Y Z=z, {L
(z)
y }y}z and we

find that

sup
{pXf |Y Z=z,{L

(z)
y }y}z

∑
z

p(z) inf
ext. in (81)

I(XfAf ;B′f |EY )σz

≤ sup
{pXf |Y Z=z,{L

(z)
y }y}z

inf
ext. in (84)

I(XA;B′f |EY Z)ζ . (95)

Since the 1W-LOCC operation {pXf |Y Z=z, {L
(z)
y }y}z is

a particular 1W-LOCC operation that can be performed
on the original assemblage {ρ̂a,xB }a,x, we find that

sup
{pXf |Y Z=z,{L

(z)
y }y}z

inf
ext. in (84)

I(XA;B′f |EY Z)ζ

≤ S(A;B)ρ̂. (96)

Since each z-dependent 1W-LOCC operation

{pXf |Y Z=z, {L
(z)
y }y} depends only on a particular

value of z, we can then exchange the supremum and the
sum over z in (95) to conclude that

sup
{pXf |Y Z=z,{L

(z)
y }y}z

∑
z

p(z) inf
ext. in (81)

I(XfAf ;B′f |EY )σz

=
∑
z

p(z) sup
{pXf |Y Z=z,{L

(z)
y }y}

inf
ext. in (81)

I(XfAf ;B′f |EY )σz

(97)

=
∑
z

p(z)S(Af ;Bf )ρ̂z . (98)

Putting these last steps together, we conclude (75).

Proposition 10 (Convexity) Let {ρ̂a,xB }a,x and
{σ̂a,xB }a,x be assemblages, and let λ ∈ [0, 1]. Let {τ̂a,xB }a,x
be a mixture of the two assemblages, defined as

τ̂a,xB := λρ̂a,xB + (1− λ)σ̂a,xB . (99)

Then

S(A;B)τ̂ ≤ λS(A;B)ρ̂ + (1− λ)S(A;B)σ̂. (100)

Proof. We first give a proof sketch for the convexity of
intrinsic steerability. Let λ ∈ [0, 1]. Let {ρ̂a,xB }a,x and
{σ̂a,xB }a,x be two assemblages, and consider an assem-
blage {τ̂a,xB := λρ̂a,xB + (1− λ)σ̂a,xB }a,x. Convexity of the
intrinsic steerability is the following statement:

S(A;B)τ̂ ≤ λS(A;B)ρ̂ + (1− λ)S(A;B)σ̂, (101)

whose physical interpretation is that steering cannot in-
crease when mixing two assemblages. A proof for con-
vexity is similar to known proofs for the convexity of
squashed entanglement [12] and the squashed entan-
glement of a channel [19]. To prove convexity, first
consider arbitrary non-signaling extensions of {ρ̂a,xB }a,x
and {σ̂a,xB }a,x. Embedding these in a larger classical–
quantum state with a label chosen according to λ gives a
particular non-signaling extension of τ̂ . Convexity then
follows from a property of conditional mutual informa-
tion and because the intrinsic steerability involves an in-
fimum over all non-signaling extensions.

We now give a detailed proof. Let {pX|Y , {Ky}y} de-
note an arbitrary 1W-LOCC operation, which leads to
the following classical–quantum state:

τXAB′Y :=
∑
a,x,y

pX|Y (x|y) |x〉〈x|X ⊗ |a〉〈a|A

⊗Ky(τ̂a,xB )⊗ |y〉〈y|Y . (102)

An arbitrary non-signaling extension of this state, is as
follows:

τXAB′Y E :=
∑
a,x,y

pX|Y (x|y) |x〉〈x|X ⊗ |a〉〈a|A

⊗ τ̂a,x,yB′E ⊗ |y〉〈y|Y , (103)

where

TrE(τ̂a,x,yB′E ) = Ky(τ̂a,xB ), (104)∑
a

τ̂a,x,yB′E =
∑
a

τ̂a,x
′,y

B′E ∀x, x′ ∈ X , y ∈ Y. (105)

Let ρ̂a,x,yB′E and σ̂a,x,yB′E be arbitrary non-signaling exten-
sions of Ky(ρ̂a,xB ) and Ky(σ̂a,xB ), satisfying

TrE(ρ̂a,x,yB′E ) = Ky(ρ̂a,xB ), (106)∑
a

ρ̂a,x,yB′E =
∑
a

ρ̂a,x
′,y

B′E ∀x, x′ ∈ X , y ∈ Y, (107)

TrE(σ̂a,x,yB′E ) = Ky(σ̂a,xB ), (108)∑
a

σ̂a,x,yB′E =
∑
a

σ̂a,x
′,y

B′E ∀x, x′ ∈ X , y ∈ Y. (109)

These lead to the following states:

ρXAB′Y E :=
∑
a,x,y

pX|Y (x|y) |x〉〈x|X ⊗ |a〉〈a|A

⊗ ρ̂a,x,yB′E ⊗ |y〉〈y|Y , (110)

σXAB′Y E :=
∑
a,x,y

pX|Y (x|y) |x〉〈x|X ⊗ |a〉〈a|A

⊗ σ̂a,x,yB′E ⊗ |y〉〈y|Y . (111)
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A particular non-signaling extension τ ′
XAB′Y EE′ of τAB′XY , given by

τ ′
XAB′Y EE′ :=

∑
a,x,y

pX|Y (x|y) |x〉〈x|X ⊗ |a〉〈a|A ⊗ (λρ̂a,x,yB′E ⊗ |0〉〈0|E′ + (1− λ)σ̂a,x,yB′E ⊗ |1〉〈1|E′)⊗ |y〉〈y|Y . (112)

Then consider that

inf
ext. in (103)

I(XA;B′|EY )τ ≤ I(XA;B′|EY E′)τ ′ (113)

= λI(XA;B′|EY )ρ + (1− λ)I(XA;B′|EY )σ. (114)

Since the inequality above holds for all general non-signaling extensions of the form in (110) and (111), we conclude
that

inf
ext. in (103)

I(XA;B′|EY )τ ≤ λ inf
ext. in (110)

I(XA;B′|EY )ρ + (1− λ) inf
ext. in (111)

I(XA;B′|EY )σ. (115)

Now taking a supremum over all 1W-LOCC operations, we find that

S(A;B)τ̂ = sup
{pX|Y ,{Ky}y}

inf
ext. in (103)

I(XA;B′|EY )τ (116)

≤ sup
{pX|Y ,{Ky}y}

(
λ inf

ext. in (110)
I(XA;B′|EY )ρ + (1− λ) inf

ext. in (111)
I(XA;B′|EY )σ

)
(117)

≤ λ sup
{pX|Y ,{Ky}y}

inf
ext. in (110)

I(XA;B′|EY )ρ + (1− λ) sup
{pX|Y ,{Ky}y}

inf
ext. in (111)

I(XA;B′|EY )σ (118)

= λS(A;B)ρ̂ + (1− λ)S(A;B)σ̂. (119)

This concludes the proof.

We now consider a superadditivity property of assem-
blages, which holds for intrinsic steerability. Suppose
that Alice has two quantum systems A1 and A2 and
suppose that Bob has two quantum systems B1 and B2.
Alice could perform a local measurement on A1 chosen
according to x1 and with output a1. Similarly, Alice
could perform a local measurement on A2 chosen accord-
ing to x2 and with output a2. This process realizes a
joint assemblage {ρ̂a1,a2,x1,x2

B1B2
}a1,a2,x1,x2

obeying certain
no-signaling constraints, but it also realizes some local
assemblages as well. One would expect that the steering
available in the joint assemblage should never be smaller
than the sum of the steering available in the local as-
semblages, and this is what the following proposition ad-
dresses:

Proposition 11 (Superadditivity) Let
{ρ̂a1,a2,x1,x2

B1B2
}a1,a2,x1,x2

be an assemblage for which
the following additional no-signaling constraints hold∑

a2

ρ̂a1,a2,x1,x2

B1B2
=
∑
a2

ρ̂
a1,a2,x1,x

′
2

B1B2
:= θ̂a1,x1

B1B2
∀x2, x

′
2,∑

a1

ρ̂a1,a2,x1,x2

B1B2
=
∑
a1

ρ̂
a1,a2,x

′
1,x2

B1B2
:= κ̂a2,x2

B1B2
∀x1, x

′
1,

Let {TrB2
(θ̂a1,x1

B1B2
)}a1,x1

and {TrB1
(κ̂a2,x2

B1B2
)}a2,x2

be re-
duced, local assemblages arising from the joint assem-
blage {ρ̂a1,a2,x1,x2

B1B2
}a1,a2,x1,x2

. Then intrinsic steerability
is superadditive in the following sense:

S(A1A2;B1B2)ρ̂ ≥ S(A1;B1)θ̂ + S(A2;B2)κ̂. (120)

Proof. The core idea behind our proof of Proposition 11
is to exploit the chain rule for conditional mutual infor-
mation. First, pick a 1W-LOCC strategy where Alice’s
inputsX1 andX2 depend only on measurement outcomes
Y1 and Y2 of B1 and B2, respectively. The chain rule and
non-negativity of conditional mutual information imply
that

I(X1X2A1A2;B1B2|EY1Y2)ρ ≥
I(X1A1;B1|EY1Y2)ρ + I(X2A2;B2|EB1Y1Y2)ρ, (121)

where system E denotes a non-signaling extension sys-
tem. The idea is then to take EY2 as a non-signaling ex-
tension for X1A1B1Y1, systems EB1Y1 as a non-signaling
extension for X2A2B2Y2, and work from there.

We now give a detailed proof. Suppose that we ap-
ply to the assemblage {ρ̂a1,a2,x1,x2

B1B2
}a1,a2,x1,x2 a general

1W-LOCC operation {pX1X2|Y , {Ky}y}, resulting in the
following classical–quantum state:

ρA1X1A2X2Y B′
1B

′
2

:=
∑

a1,x1,a2,x2,y

pX1X2|Y (x1, x2|y)[a1]⊗ [x1]⊗ [a2]⊗ [x2]⊗ [y]⊗Ky(ρ̂a1,x1,a2,x2

B1B2
). (122)
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Let ρ̂a1,x1,a2,x2,y
B′

1B
′
2E

be a non-signaling extension of Ky(ρa1,x1,a2,x2

B1B2
) and consider the following extension of the above

state:

ρA1X1A2X2Y B′
1B

′
2

:=
∑

a1,x1,a2,x2,y

pX1X2|Y (x1, x2|y)[a1]⊗ [x1]⊗ [a2]⊗ [x2]⊗ [y]⊗ ρ̂a1,x1,a2,x2,y
B′

1B
′
2E

. (123)

A particular “product” 1W-LOCC operation has the form {pX1|Y1
pX2|Y2

, {Ly1⊗My2}y1,y2} and results in the following
state:

ωA1X1A2X2Y1Y2B′
1B

′
2

:=
∑

a1,x1,a2,x2,y

pX1|Y1
(x1|y1)pX2|Y2

(x2|y2)[a1]⊗ [x1]⊗ [a2]⊗ [x2]⊗ [y1]⊗ [y2]

⊗ (Ly1 ⊗My2) ρ̂a1,x1,a2,x2

B1B2
. (124)

Let ω̂a1,x1,a2,x2,y1,y2
B′

1B
′
2E

be a non-signaling extension of (Ly1 ⊗My2) (ρ̂a1,x1,a2,x2

B1B2
), and define the following state:

ωA1X1A2X2Y1Y2B′
1B

′
2E

:=
∑

a1,x1,a2,x2,y

pX1|Y1
(x1|y1)pX2|Y2

(x2|y2)[a1]⊗ [x1]⊗ [a2]⊗ [x2]⊗ [y1]⊗ [y2]

⊗ ω̂a1,x1,a2,x2,y1,y2
B′

1B
′
2E

. (125)

Let θ̂a1,x1,y1
B′

1F
be a non-signaling extension of Ly1(θ̂a1,x1

B1
) and let κ̂a2,x2,y2

B′
2G

be a non-signaling extension ofMy2(κ̂a2,x2

B2
),

leading to the following classical–quantum states:

θX1A1B′
1FY1

:=
∑
x1,a1

pX1|Y1
(x1|y1)[x1]⊗ [a1]⊗ θ̂a1,x1,y1

B′
1F

⊗ [y1], (126)

κX2A2B′
2GY2

:=
∑
x2,a2

pX2|Y2
(x2|y2)[x2]⊗ [a2]⊗ κ̂a2,x2,y2

B′
2G

⊗ [y2]. (127)

Consider that

I(A1X1A2X2;B′1B
′
2|EY1Y2)ω

= I(A1X1A2X2;B′1|EY1Y2)ω

+ I(A1X1A2X2;B′2|EB′1Y1Y2)ω (128)

= I(A1X1;B′1|EY1Y2)ω + I(A2X2;B′1|EY1Y2A1X1)ω

+ (A2X2;B′2|EB′1Y1Y2)ω

+ I(A1X1;B′2|EB′1Y1Y2A2X2)ω (129)

≥ I(A1X1;B′1|EY1Y2)ω + I(A2X2;B′2|EB′1Y1Y2)ω
(130)

≥ inf
ext. in (126)

I(A1X1;B′1|FY1)θ

+ inf
ext. in (127)

I(A2X2;B′2|GY2)κ. (131)

The first two equalities follow from the chain rule for
conditional mutual information. The first inequality
follows by dropping two of the terms and from the
fact that the conditional mutual information is non-

negative. To see the last inequality, consider that
the state

∑
a2,x2,y2

ω̂a1,x1,a2,x2,y1,y2
B′

1E
⊗ [y2] is a particu-

lar non-signaling extension of Ly1(θ̂a1,x1

B1
) and the state∑

a1,x1,y1
ω̂a1,x1,a2,x2,y1,y2
B′

1B
′
2E

⊗ [y1] is a particular non-

signaling extension ofMy2(κ̂a2,x2

B2
), such that an infimiza-

tion over arbitrary respective non-signaling extensions
θ̂a1,x1,y1
B′

1F
and κ̂a2,x2,y2

B′
2G

can never lead to higher values

of the conditional mutual informations. Since we have
shown the inequality above for an arbitrary non-signaling
extension ω̂a1,x1,a2,x2,y1,y2

B′
1B

′
2E

, we can conclude that

inf
ext. in (125)

I(A1X1A2X2;B′1B
′
2|EY1Y2)ω

≥ inf
ext. in (126)

I(A1X1;B′1|FY1)θ

+ inf
ext. in (127)

I(A2X2;B′2|GY2)κ, (132)

which in turn implies that

sup
{pX1|Y1pX2|Y2 ,{Ly1⊗My2}y1,y2}

inf
ext. in (125)

I(A1X1A2X2;B′1B
′
2|EY1Y2)ω

≥ inf
ext. in (126)

I(A1X1;B′1|FY1)θ + inf
ext. in (127)

I(A2X2;B′2|GY2)κ. (133)
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The reduced 1W-LOCC operations {pX1|Y1
, {Ly1}y1} and {pX2|Y2

, {My2}y2} are arbitrary, and so we can conclude
that

sup
{pX1|Y1pX2|Y2 ,{Ly1⊗My2

}y1,y2}
inf

ext. in (125)
I(A1X1A2X2;B′1B

′
2|EY1Y2)ω

≥ sup
{pX1|Y1 ,{Ly1}y1}

inf
ext. in (126)

I(A1X1;B′1|FY1)θ + sup
{pX2|Y2 ,{My2}y2}

inf
ext. in (127)

I(A2X2;B′2|GY2)κ (134)

= S(A1;B1)θ̂ + S(A2;B2)κ̂. (135)

Finally, since the 1W-LOCC operation
{pX1|Y1

pX2|Y2
, {Ly1 ⊗ My2}y1,y2} has a particular

product form, we could never achieve a lower value
of the quantity on the LHS by allowing for an ar-
bitrary 1W-LOCC operation, implying the desired
superadditivity:

S(A1A2;B1B2)ρ̂ ≥ S(A1;B1)θ̂ + S(A2;B2)κ̂. (136)

This concludes the proof.

VI. RESTRICTED INSTRINSIC
STEERABILITY

As stated above, we also consider a steering quantifier
relevant in the context of restricted 1W-LOCC. Here we
give a proof of Theorem 4 and proofs of various other
properties of restricted intrinsic steerability.

Proposition 12 The restricted intrinsic steerability
vanishes for an assemblage having a local-hidden state
model.

Proof. To prove this, consider the following non-
signaling, classical extension of an unsteerable assem-
blage:

ρXABE :=
∑
a,x

pX(x) |x〉〈x|X ⊗ pA|XΛ(a|x, λ) |a〉〈a|A

⊗ ρ̂λB ⊗ pΛ(λ) |λ〉〈λ|E . (137)

Then I(XA;B|E)ρ =
∑
λ pΛ(λ)I(XA;B)ρλ , where

ρλ
XAB

=
∑
a,x

pX(x) |x〉〈x|X ⊗ pA|XΛ(a|x, λ) |a〉〈a|A ⊗ ρ
λ
B ,

(138)
and we have used the fact that the conditional mutual
information can be written as a convex combination of
mutual informations for a classical conditioning system.
By inspection, we see that systems XA and B are in-
dependent when given the shared variable Λ = λ. By
choosing system E to contain the shared random variable
Λ, the result is that the systems form a Markov chain
XA − E − B, so that the conditional mutual informa-
tion I(XA;B|E)ρ is equal to zero. Since this argument

holds for any probability distribution pX , we conclude
that SR(A;B)ρ̂ = 0.
Proposition 13 (Restricted 1W-LOCC monotone)
Let {ρ̂a,xB }a,x be an assemblage, and let

{pX|Xf , pAf |AXXfZ , {Kz}z} (139)

denote a restricted 1W-LOCC operation that results in
an assemblage {σ̂af ,xfB′ }af ,xf , defined as

σ̂
af ,xf
B′ :=∑
a,x,z

pX|Xf (x|xf )pAf |AXXfZ(af |a, x, xf , z)Kz(ρ̂a,xB ).

(140)

Then

SR(A;B)ρ̂ ≥ SR(Af ;B′)σ̂. (141)

Proof. Taking a distribution pXf over the black-box
inputs of the final assemblage, we can embed the state of
the final assemblage into the following classical–quantum
state:

σXfAfB′ :=
∑
xf ,af

pXf (xf )[xf ]⊗ [af ]⊗ σ̂af ,xfB′ , (142)

which is a marginal of the following state:

σXfXAfAZB′ :=
∑

xf ,af ,a,x,z

pXf (xf )[xf ]

⊗ pX|Xf (x|xf )[x]⊗ pAf |AXXfZ(af |a, x, xf , z)[af ]

⊗ [a]⊗ [z]⊗Kz(ρ̂a,xB ). (143)

An arbitrary non-signaling extension of the state in (142)
is as follows:

σXfAfB′E :=
∑
xf ,af

pXf (xf )[xf ]⊗ [af ]⊗ σ̂af ,xfB′E , (144)

where

TrE(σ̂
af ,xf
B′E ) = σ̂

af ,xf
B′ , (145)∑

af

σ̂
af ,xf
B′E =

∑
af

σ̂
af ,xf
B′E ∀xf , x′f ∈ Xf . (146)
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A particular non-signaling extension of the state in (142) is as follows:

ωXfAfB′EZ :=
∑
xf ,af

pXf (xf )[xf ]⊗ [af ]⊗
∑

xf ,af ,a,x,z

pX|Xf (x|xf )pAf |AXXfZ(af |a, x, xf , z)Kz(ρ̂a,xBE)⊗ [z], (147)

where

TrE(ρ̂a,xBE) = ρ̂a,xB ,
∑
a

ρ̂a,xBE =
∑
a

ρ̂a,x
′

BE ∀x, x′ ∈ X . (148)

The state ωXfAfB′E is a marginal of the following state:

ωXfXAfAB′EZ :=
∑

xf ,af ,a,x,z

pXf (xf )[xf ]⊗pX|Xf (x|xf )[x]⊗pAf |AXXfZ(af |a, x, xf , z)[af ]⊗ [a]⊗Kz(ρ̂a,xBE)⊗ [z]. (149)

Let ρXABE be the following state:

ρXABE :=
∑
xf ,a,x

pXf (xf )[xf ]⊗ pX|Xf (x|xf )[x]

⊗ [a]⊗ ρ̂a,xBE . (150)

Consider that

inf
ext. in (144)

I(XfAf ;B′|E)σ

≤ I(XfAf ;B′|EZ)ω (151)

≤ I(XfAfXA;B′|EZ)ω (152)

= I(XA;B′|EZ)ω + I(Xf ;B′|EZXA)ω

+ I(Af ;B′|EZXfXA)ω (153)

= I(XA;B′|EZ)ω (154)

≤ I(XA;B′Z|E)ω (155)

≤ I(XA;B|E)ρ. (156)

The first inequality follows because the non-signaling ex-
tension in (147) is a particular kind of non-signaling ex-
tension. The second inequality follows from data pro-
cessing. The first equality follows from the chain rule for
conditional mutual information. The second equality fol-
lows from various Markov-chain structures when inspect-
ing (149): Xf is independent of B′E when given ZXA,

and Af is independent of B′E when given ZXfXA, so

that I(Xf ;B′|EZXA)ω = I(Af ;B′|EZXfXA)ω = 0.
The third inequality follows by applying the chain rule
for and non-negativity of conditional mutual information.
The last inequality follows again from data processing.
Since the inequality holds for all non-signaling extensions
of the form in (150), we can conclude that

inf
ext. in (144)

I(XfAf ;B′|E)σ

≤ inf
ext. in (150)

I(XA;B|E)ρ (157)

≤ sup
pX

inf
ext. in (150)

I(XA;B|E)ρ. (158)

Since the inequality above holds for an arbitrary choice
of pXf , we can finally conclude that

sup
pXf

inf
ext. in (144)

I(XfAf ;B′|E)σ

≤ sup
pX

inf
ext. in (150)

I(XA;B|E)ρ, (159)

which is equivalent to the statement of the proposition.

The proof of convexity of the restricted intrinsic steer-
ability is along the same lines as that for intrinsic steer-
ability, given already in the proof of Proposition 10. We
summarize the result as the following proposition:

Proposition 14 (Convexity) Let {ρ̂a,xB }a,x and
{σ̂a,xB }a,x be assemblages, and let λ ∈ [0, 1]. Let {τ̂a,xB }a,x
be a mixture of the two assemblages, defined as

τ̂a,xB := λρ̂a,xB + (1− λ)σ̂a,xB . (160)

Then

SR(A;B)τ̂ ≤ λSR(A;B)ρ̂ + (1− λ)SR(A;B)σ̂. (161)

Proposition 15 (Superadditivity and Additivity)
Let {ρ̂a1,a2,x1,x2

B1B2
}a1,a2,x1,x2

be an assemblage for which
the following additional no-signaling constraints hold∑

a2

ρ̂a1,a2,x1,x2

B1B2
=
∑
a2

ρ̂
a1,a2,x1,x

′
2

B1B2
:= θ̂a1,x1

B1B2
∀x2, x

′
2,

(162)∑
a1

ρ̂a1,a2,x1,x2

B1B2
=
∑
a1

ρ̂
a1,a2,x

′
1,x2

B1B2
:= κ̂a2,x2

B1B2
∀x1, x

′
1,

(163)

Let {TrB2
(θ̂a1,x1

B1B2
)}a1,x1

and {TrB1
(κ̂a2,x2

B1B2
)}a2,x2

be re-
duced assemblages arising from the joint assemblage
{ρ̂a1,a2,x1,x2

B1B2
}a1,a2,x1,x2

. Then the restricted intrinsic
steerability is superadditive in the following sense:

SR(A1A2;B1B2)ρ̂ ≥ SR(A1;B1)θ̂+SR(A2;B2)κ̂. (164)
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If the assemblage {ρ̂a1,a2,x1,x2

B1B2
}a1,a2,x1,x2

has a tensor-

product form, so that ρ̂a1,a2,x1,x2

B1B2
= θ̂a1,x1

B1
⊗ κ̂a2,x2

B2
for

assemblages {θ̂a1,x1

B1
}a1,x1

and {κ̂a2,x2

B2
}a2,x2

, then the re-
stricted intrinsic steerability is additive:

SR(A1A2;B1B2)ρ̂ = SR(A1;B1)θ̂+SR(A2;B2)κ̂. (165)

Proof. The superadditivity of restricted intrinsic steer-
ability is similar to the proof above for intrinsic steerabil-
ity. Thus, to prove the additivity of intrinsic steerability
with respect to product assemblages, it is sufficient to

prove the following subadditivity inequality:

SR(A1A2;B1B2)ρ̂ ≤ SR(A1;B1)θ̂+SR(A2;B2)κ̂. (166)

Our proof of the above inequality has some similarities
to the proof of the additivity of the squashed entangle-
ment of a channel [15] (there are, however, some key

differences). Let θ̂a1,x1

B1E1
and κ̂a2,x2

B2E2
be non-signaling ex-

tensions of θ̂a1,x1

B1
and κ̂a2,x2

B2
, respectively, and suppose

that |θ̂a1,x1〉B1E1F1
and |κ̂a2,x2〉B2E2F2

purify θ̂a1,x1

B1E1
and

κ̂a2,x2

B2E2
, respectively. Consider the following states:

ρX1X2A1A2B1B2E
:=

∑
x1,x2,a1,a2

pX1X2(x1, x2)[x1]⊗ [x2]⊗ [a1]⊗ [a2]⊗ ρ̂a1,a2,x1,x2

B1B2E
, (167)

ωX1X2A1A2B1B2E1E2F1F2
:=

∑
x1,x2,a1,a2

pX1X2
(x1, x2)[x1]⊗ [x2]⊗ [a1]⊗ [a2]⊗ θ̂a1,x1

B1E1F1
⊗ κ̂a2,x2

B2E2F2
, (168)

where pX1X2
(x1, x2) is some probability distribution and TrE(ρ̂a1,a2,x1,x2

B1B2E
) = θ̂a1,x1

B1
⊗ κ̂a2,x2

B2
. Consider that

inf
ρA1A2X1X2B1B2E

I(A1A2X1X2;B1B2|E)ρ

≤ I(A1A2X1X2;B1B2|E1E2)ω (169)

= H(B1B2|E1E2)ω −H(B1B2|E1E2A1X1A2X2)ω (170)

= H(B1B2|E1E2)ω +H(B1B2|F1F2A1X1A2X2)ω (171)

≤ H(B1|E1)ω +H(B2|E2)ω +H(B1|F1A1X1)ω +H(B2|F2A2X2)ω (172)

= H(B1|E1)ω +H(B2|E2)ω −H(B1|E1A1X1)ω −H(B2|E2A2X2)ω (173)

= I(X1A1;B1|E1)ω + I(X2A2;B2|E2)ω. (174)

The first inequality follows because ωX1X2A1A2B1B2E1E2
is a particular non-signaling extension whereas

ρX1X2A1A2B1B2E
is an arbitrary non-signaling extension. The first equality follows from the chain rule for condi-

tional mutual information. Conditioned on A1A2X1X2, the state on B1E1B2E2F1F2 is pure, and so the second
equality follows from the duality of conditional entropy. The first inequality is a consequence of the strong subaddi-
tivity of quantum entropy [16]. The third equality follows again from the duality of conditional entropy as well as
the no-signaling condition. To see this for the entropy H(B1|F1A1X1)ω, consider that this entropy is evaluated with
respect to the following reduced state:

TrX2A2B2E2F2

( ∑
x1,x2,a1,a2

pX1X2(x1, x2)[x1]⊗ [x2]⊗ [a1]⊗ [a2]⊗ θ̂a1,x1

B1E1F1
⊗ κ̂a2,x2

B2E2F2

)
=

∑
x1,x2,a1,a2

pX1X2
(x1, x2)[x1]⊗ [a1]⊗ θ̂a1,x1

B1E1F1
⊗ TrB2E2F2

{κ̂a2,x2

B2E2F2
} (175)

=
∑
x1,a1

pX1
(x1)[x1]⊗ [a1]⊗ θ̂a1,x1

B1E1F1
⊗ TrB2

(∑
x2

pX2|X1
(x2|x1)

∑
a2

κ̂a2,x2

B2

)
(176)

=
∑
x1,a1

pX1
(x1)[x1]⊗ [a1]⊗ θ̂a1,x1

B1E1F1
⊗ TrB2

(∑
x2

pX2|X1
(x2|x1)κB2

)
(177)

=
∑
x1,a1

pX1(x1)[x1]⊗ [a1]⊗ θ̂a1,x1

B1E1F1
⊗ TrB2(κB2) (178)

=
∑
x1,a1

pX1
(x1)[x1]⊗ [a1]⊗ θ̂a1,x1

B1E1F1
. (179)

In the above, the third equality is the critical one in which we have used the no-signaling constraint for the assem-
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blage {κ̂a2,x2

B2
}a2,x2

, allowing for the effective removal of
correlation between X1 and X2. Thus, the above analy-
sis allows for seeing that the remaining state on B1E1F1

conditioned on A1 and X1 is independent of any of the
second system. For the last equality, we employ the defi-
nition of conditional mutual information. Since the above
development holds for all non-signaling extensions of the
form in (168), we find that

inf
ρA1A2X1X2B1B2E

I(A1A2X1X2;B1B2|E1)ρ

≤ inf
ωA1X1B1E1

I(A1X1;B1|E1)ω

+ inf
ωA2X2B2E2

I(A2X2;B2|E2)ω (180)

≤ sup
pX1

inf
ωA1X1B1E1

I(A1X1;B1|E1)ω

+ sup
pX2

inf
ωA2X2B2E2

I(A2X2;B2|E2)ω. (181)

Since the above inequality holds for an arbitrary prob-
ability distribution pX1X2 , we conclude that

sup
pX1X2

inf
ρA1A2X1X2B1B2E

I(A1A2X1X2;B1B2|E)ρ

≤ sup
pX1

inf
ωA1X1B1E1

I(A1X1;B1|E1)ω

+ sup
pX2

inf
ωA2X2B2E2

I(A2X2;B2|E2)ω, (182)

which is equivalent to (166).
Monogamy of steering has been explored in [20, 21].

We prove here that the restricted intrinsic steerability is
monogamous in the following sense: for a tripartite state
ρABC , Alice and Charlie perform measurements on their
systems and steer Bob’s system. We see that their ability
to steer Bob’s system is restricted.

Proposition 16 (Monogamy) Let {ρ̂a,c,x1,x2

B } be an
assemblage with classical inputs x1 and x2 for Alice and
Charlie, respectively, and classical outputs a and c for
Alice and Charlie, respectively, and obeying the following
additional no-signaling constraints:∑

c

ρ̂a,c,x1,x2

B =
∑
c

ρ̂
a,c,x1,x

′
2

B := θ̂a,x1

B ∀x2, x
′
2, (183)∑

a

ρ̂a,c,x1,x2

B =
∑
a

ρ̂
a,c,x′

1,x2

B := κ̂c,x2

B ∀x1, x
′
1, (184)

such that the reduced assemblages are {θ̂a,x1

B }a,x1
and

{κ̂c,x2

B }c,x2
. Then the following monogamy inequality

holds

SR(AC;B)ρ̂ ≥ SR(A;B)θ̂ + SR(C;B)κ̂. (185)

Proof. This proof follows from an application of the
chain rule for conditional mutual information, much like
the proof of monogamy for the squashed entanglement

[22]. First, consider the following classical–quantum
state:

ρX1X2ACBE
:=∑

x1,x2,a,c

pX1
(x1)pX2

(x2)[x1]⊗ [x2]⊗ [a]⊗ [c]⊗ ρ̂a,c,x1,x2

BE ,

(186)

where ρ̂a,c,x1,x2

BE is a non-signaling extension of ρ̂a,c,x1,x2

B .
Let

θX1ABF
:=
∑
x1,a

pX1
(x1)[x1]⊗ [a]⊗ θ̂a,x1

BF , (187)

κX2CBG
:=
∑
x2,a

pX2
(x2)[x2]⊗ [c]⊗ κ̂c,x2

BG , (188)

where θ̂a,x1

BF is a non-signaling extension of θ̂a,x1

B and κ̂c,x2

BG
is a non-signaling extension of κ̂c,x2

B . Then we have from
the chain rule for conditional mutual information that

I(X1X2AC;B|E)ρ

= I(X1A;B|E)ρ + I(X2C;B|EAX1)ρ (189)

≥ inf
θX1ABF

I(X1A;B|E)θ + inf
κX2CBG

I(X2C;B|G)κ.

(190)

Since the above inequality holds for all non-signaling ex-
tensions ρX1X2ACBE

, we conclude that

inf
ρX1X2ACBE

I(X1X2AC;B|E)ρ

≥ inf
θX1ABF

I(X1A;B|E)θ + inf
κX2CBG

I(X2C;B|G)κ.

(191)

Optimizing the left-hand side with respect to product
distributions, we find that

sup
pX1

,pX2

inf
ρX1X2ACBE

I(X1X2AC;B|E)ρ

≥ inf
θX1ABF

I(X1A;B|E)θ + inf
κX2CBG

I(X2C;B|G)κ.

(192)

The development holds for any choice of distributions
pX1

and pX2
, and so we conclude that

sup
pX1

,pX2

inf
ρX1X2ACBE

I(X1X2AC;B|E)ρ

≥ sup
pX1

inf
θX1ABF

I(X1A;B|E)θ + sup
pX2

inf
κX2CBG

I(X2C;B|G)κ

(193)

= SR(A;B)θ̂ + SR(C;B)κ̂. (194)

Finally optimizing the left-hand side with respect to all
input distributions pX1X2

, we conclude (185).
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VII. OPERATIONAL INTERPRETATION

Let ψABE be a pure tripartite state, pX a probabil-

ity distribution, and {Λ(x)
a }a a positive operator-valued

measure (POVM) for each x. Then {pX(x)Λ
(x)
a }a,x is

a POVM as well, representing a random choice of the

POVM {Λ(x)
a }a according to pX , along with keeping a

record x of the choice in addition to the measurement
outcome a. Consider the following state resulting from
performing the POVM on ψABE :

ρXABE :=
∑
x

|x〉〈x|X ⊗ |a〉〈a|A

⊗ TrA((pX(x)Λ(x)
a ⊗ IBE)ψABE). (195)

Here we consider that Alice performs the measurement

{pX(x)Λ
(x)
a }a,x on her system A, which results in the

measurement outcomes being placed in classical systems
XA. Suppose now that many copies of the above state
ψABE are available, and that Alice would like to perform

individual measurements {pX(x)Λ
(x)
a }a,x of her systems

and send all of the outcomes to Eve, who possesses the E
systems. Alice could certainly simply perform the mea-
surements and send the outcomes to Eve, but if she shares
randomness with Eve, then she can simulate the measure-
ments in such a way as to reduce the number of classical
bits she would need to send to Eve. Furthermore, the
simulation can be such that no external party observ-
ing all of the systems could tell the difference between
the scenario in which Alice actually performs the mea-
surements and the one in which Alice and Eve perform
a simulation of the measurements. One of the main re-
sults of [23] is that the conditional mutual information
I(XA;B|E)ρ is the optimal rate of classical information
that Alice needs to send to Eve in order to have a suc-
cessful simulation. The protocol that achieves this task
is called measurement compression with quantum side
information [23]. Thus, this information-processing task
gives an operational interpretation of the main quantity
I(XA;B|E)ρ appearing in the restricted intrinsic steer-
ability. We note that our setting above, regarding the
classical communication cost of simulating steering, is
rather different from the setting considered in [24].

VIII. OTHER POSSIBLE MEASURES

We note here that other variations of the intrinsic
steerability are possible. Fix an assemblage {ρ̂a,xB }a,x.
Let Eve have a non-signaling extension of this as-
semblage, and we write the extended assemblage as

{ρ̂a,xBE}a,x. Bob applies the quantum instrument con-
sisting of trace-non-increasing completely positive maps
{Ky}y, gets the outcome y, and publicly announces it.
Then, Alice prepares the input x based on y, and Eve
performs a quantum channel κy on her system. The state
after this scenario is given by

ρAXB′Y E :=
∑
x,a,y

pX|Y (x|y) |x〉〈x|X ⊗ |a〉〈a|A

⊗ (Ky ⊗ κy)(ρ̂a,xBE)⊗ |y〉〈y|Y . (196)

We could then define a variation of the intrinsic steer-
ability as

inf
ρAXBYE

sup
{p(x|y),{Ky}y}

I(AX;B|EY )ρ. (197)

This quantity however is generally larger than the in-
trinsic steerability, and we suspect that the definition we
provided will be more useful in future applications be-
cause the definition we gave is analogous to the squashed
entanglement of a channel [15], which has found a num-
ber of applications in quantum information theory. We
note that it is possible to consider other restrictions that
result in a modification of the measure accordingly.

IX. CONCLUSION

We have introduced a quantifier for quantum steering
based on conditional quantum mutual information. It
exploits the Markov-chain structure of assemblages with
a local hidden-state model, measuring the deviation of
a given assemblage from one having a local-hidden-state
model. The intrinsic steerability is a steering monotone
and superadditive in general. This suggests that the in-
trinsic steerability should find applications in protocols
where steering as a resource is relevant. Also, we looked
at a restricted class of free operations. In this case, the
quantity simplifies considerably and also satisfies additiv-
ity and monogamy. The restricted intrinsic steerability
could find applications in protocols where it suffices to
consider the restricted class of free operations.
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