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For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase
of these drives can be used to generate zero-duration arbitrary “virtual” Z-gates which, combined
with two Xπ/2 gates, can generate any SU(2) gate. Here we show how to best utilize these virtual
Z-gates to both improve algorithms and correct pulse errors. We perform randomized benchmarking
using a Clifford set of Hadamard and Z-gates and show that the error per Clifford is reduced versus
a set consisting of standard finite-duration X and Y gates. Z-gates can correct unitary rotation
errors for weakly anharmonic qubits as an alternative to pulse shaping techniques such as DRAG.
We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage
and Z-gates to correct rotation errors (DRAGZ) realizes a 13.3 ns Xπ/2 gate characterized by low

error (1.95[3] × 10−4) and low leakage (3.1[6] × 10−6). Ultimately leakage is limited by the finite
temperature of the qubit, but this limit is two orders-of-magnitude smaller than pulse errors due to
decoherence.

Computers based on quantum bits (qubits) are pre-
dicted to outperform classical computers for certain crit-
ical problems, e.g., factoring. Unlike a classical bit, which
is discretely in the state 0 or 1, a qubit can be in a super-
position state |Ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉 where
|0〉 and |1〉 are the quantum versions of the classical 0
and 1 states. This single-qubit superposition state can
be geometrically represented as a point on the surface
of a unit-sphere known as the Bloch sphere. Critical
to implementing a quantum computer is the ability to
control the state of the qubit, i.e., transform the qubit
state arbitrarily between two points on the Bloch sphere.
This is accomplished by unitary transformations (gates),
which correspond to rotations of the state around dif-
ferent axes in the Bloch sphere representation. Phys-
ically, X and Y gates (rotations around the X and Y
axes) are generated by modulating the coupling between
the states |0〉 and |1〉 at the frequency difference between
these states ω01 = (E|1〉−E|0〉)/h̄. This modulation drive
has the general form Ω(t) cos(ωDt− γ) where Ω(t) is the
drive strength of the rotation, ωD is the drive frequency
(ωD = ω01 on resonance) and γ is the drive phase. The
duration of the gate is set by the desired rotation angle
and the drive strength. On-resonance, when γ = 0, the
qubit state rotates around the X axis and when γ = π

2
the rotation is around the Y axis. Therefore, the geo-
metric X and Y axes in the Bloch sphere correspond to
a real π

2 phase difference between drive fields.
Rotations around the remaining axis (Z axis), i.e., Z-

gates, correspond to a change in the relative phase be-
tween the |0〉 and |1〉 states. A Z-gate can be imple-
mented by either detuning the frequency of the qubit
with respect to the drive field for some finite amount of
time (e.g. see Ref. [1]) or by composite X and Y gates.
The result is that the qubit state rotates with respect
to the X and Y axes. However, it is equivalent to ro-
tate the axes with respect to the qubit state – such a
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gate is known as a virtual Z-gate which corresponds to
adding a phase offset to the drive field for all subsequent
X and Y gates. This includes adding a phase offset to
any two-qubit drives such as a drive used to implement
a CNOT gate via cross-resonance [2]. In many qubit im-
plementations this phase, γ, is defined by classical con-
trol hardware and software. A Z-gate implemented in
this way is essentially perfect; the classical hardware is
self-calibrated via a global frequency reference (e.g., an
atomic clock) and the gate has zero duration. Virtual-
Z (VZ) gates have long been used in quantum experi-
ments such as in NMR [3], ions [4], and superconducting
qubits [5]. Utilizing these gates can improve the over-
all fidelity of a quantum circuit if the circuit is opti-
mized to maximize the number of single-qubit Z-gates.
Additionally, any arbitrary rotation in the Bloch sphere
can be generated by combining Z and Xπ/2 gates. This
greatly simplifies calibration procedures because only a
single drive strength must be calibrated.

Furthermore, Z-gates can compensate for certain uni-
tary errors which occur in physical qubit implementa-
tions. For example, when driving X and Y rotations in
weakly anharmonic superconducting transmon qubits [6]
there are unitary rotation errors (Stark shifts errors) and
population leakage. Both of these errors can be corrected
by implementing a full DRAG pulse [7], which involves
pulse shaping and dynamic frequency tuning. However,
only the pulse shaping component of DRAG is typically
implemented [1, 8, 9], which cannot simultaneously cor-
rect both errors (we herein refer to DRAG by this defini-
tion). In most experiments DRAG is optimized to correct
the more dominant unitary errors. This problem is solved
by adding VZ-gates since VZ-gates can correct unitary
phase errors while pulse shaping is then optimized to
minimize leakage. Similar errors are common when driv-
ing two-qubit gates, such as the parametric iSWAP [10],
cross-resonance [11] and adiabatic CZ [12], so VZ-gates
plus pulse shaping is also applicable in multiqubit sys-
tems.

In this paper we explore how the VZ-gate can be used
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FIG. 1. (Color Online) Schematic of the typical experimen-
tal setup for generating shaped microwave pulses for driving
superconducting qubits.

to minimize circuit error and, for superconducting trans-
mon qubits, minimize pulse errors. First, we review the
theory of the VZ-gate and show one specific formula for
an arbitrary SU(2) gate. Next, we compare randomized
benchmarking [13] of a qubit using Cliffords generated
from two different sets of basis gates – one set using X
and Y rotations and the other set using X and Z rota-
tions. We show that the error per Clifford is lower for
the XZ basis set, since the the number of finite-duration
gates (i.e., X and Y rotations) required to represent each
Clifford gate is reduced. We also perform interleaved
benchmarking of the S gate (Zπ/2) and measure an er-
ror rate that is consistent with a perfect gate. Next,
we demonstrate that VZ-gates can be used to compen-
sate Stark-shift errors that arise when driving most X
and Y rotations in weakly anharmonic systems. This
technique, Gaussian plus Z (GZ), is a straightfoward al-
ternative to the commonly used DRAG pulse [1, 7–9].
We show via randomized benchmarking that the pulse
error for DRAG and GZ is essentially equivalent. Next,
we measure population leakage to the |2〉 state during
these RB sequences (see Ref. [14] for similar work). We
show that GZ and DRAG (optimized for fidelity) have
similar leakage rates. Combining DRAG and VZ-gates
(DRAGZ) improves leakage without a loss of fidelity as
does passive filtering plus VZ-gates (FILTZ). For pulses
longer than 25 ns we find that the leakage rates for all
methods are similar and limited by heating. Finally, we
discuss some considerations when using these gates in a
multi-qubit system.

I. THEORY

To elucidate the concept of the virtual Z-gate (VZ-
gate), we first review basic single qubit gates as they are
physically realized in many labs, i.e., with a local oscil-
lator (LO) shaped by an arbitrary waveform generator
(AWG) through an IQ mixer (setup shown in Fig. 1).

The LO is a single tone microwave source that outputs
a constant signal cos(ωLOt). The AWG outputs a pro-
grammable series of discrete voltage points at a specific
sample rate, e.g., for the Tektronix 5014 used in these ex-
periments that sample rate is 1.2GSa/s (0.833ns between
points). These points are internally filtered so that the
output is a smooth waveform. Including this filter (F ),
the AWG output is

V (t) =

∫ t

0

dτF (t − τ)

∞
∑

n=0

Vn ⊓ (n− τ/T ) (1)

where {Vn} is the set of AWG voltages, T is the AWG
period and ⊓(x) is a pulse function defined as ⊓(x) =
{1, 0} conditioned on |x| ≤ 1/2. The IQ mixer multiplies
the I and Q channels with the LO such that,

VRF (t) = VI(t) cos(ωLOt)

+VQ(t)[1 + ǫQ] sin(ωLOt+ ǫφ)

+ǫLO cos(ωLOt) (2)

where the ǫ terms are non-ideal errors common to IQ
mixers.
The AWG voltages are used to shape the pulse and

shift the pulse frequency to resonance via single side-
band (SSB) modulation. If the desired pulse envelope is
Ω(t) and the drive frequency is ωD = ωLO + ωSSB then
the output of an ideal AWG (ignoring the pixelation and
filtering described by Eqn. 1) is,

VI(t) = Ω(t) cos(ωSSBt− γ), (3)

VQ(t) = −Ω(t) sin(ωSSBt− γ). (4)

These AWG signals, when applied to the inputs of an
ideal mixer, output the desired drive pulse

VRF (t) = Ω(t) cos(ωDt− γ). (5)

A series of n shaped microwave pulses driving an anhar-
monic oscillator (a good description of a transmon qubit)
is described by the Hamiltonian (in the lab frame),

H/h̄ =
∑

n

Ωn(t) cos(ωDt+ γn)(â+ â†) + ω01n̂

+
α

2
(n̂− 1)n̂, (6)

where â(â†) is the annihilation (creation) operator of the
oscillator, n̂ = â†â is the number operator and α is the
anharmonicity. The |0〉 and |1〉 levels of this oscillator
are the qubit levels. Leakage to higher levels and unitary
errors due to mixing with these levels will be discussed
in § III and IV. For simplicity we rewrite just the qubit
Hamiltonian,

H/h̄ =
∑

n

Ωn(t) cos(ωDt− γn)σ̂X − ω01

2
σ̂Z , (7)

where σ̂X , σ̂Z are the Pauli operators. For a resonant
drive (ωD = ω01), the Hamiltonian in the qubit rotating
frame is,

H̃/h̄ =
∑

n

Ωn(t)

2
[cos(γn)σ̂X + sin(γn)σ̂Y ] (8)
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Assuming a constant amplitude pulse Ωn for duration T ,
the unitary transformation (the gate) due to pulse n is,

Un = e−iΩnT
2 [cos(γn)σ̂X+sin(γn)σ̂Y ], (9)

and so a γn = 0(π2 ) pulse is a rotation of angle ΩnT
around the X (Y) axis of the Bloch sphere. Therefore, the
AWG controls both the pulse rotation and the rotation
axes. Since γ controls the rotation axes, intuitively we
can perform a VZ-gate by adjusting γ. More formally,
we can show how this works by consider two consecutive

X pulses, Xθ = e−i θ2 σ̂X , with the phase γ offset by φ
between the pulses. The total unitary is,

e−i θ2 (cos(φ)σ̂X+sin(φ)σ̂Y ) ·Xθ, (10)

which can be expanded to,

ei
φ
2 σ̂Z · e−i θ2 σ̂X · e−iφ2 σ̂Z ·Xθ, (11)

which equals

Z−φ ·Xθ · Zφ ·Xθ. (12)

Therefore, by simply adding a phase offset in software
and redefining the rotation axes for subsequent X and Y
gates, we can effectively implement an arbitrary Z-gate.
The additional Z−φ gate at the end is due to the fact that
we are in the qubit frame of reference and so the phase
offset φ must be carried through for all subsequent gates.
For example, if we follow our original sequence with a Yθ

gate with the phase offset applied the gate sequence is

e−i θ2 (cos[
π
2 +φ]σ̂X+sin[π2 +φ]σ̂Y )

·Z−φ ·Xθ · Zφ ·Xθ, (13)

= Z−φ · Yθ · Zφ · Z−φ ·Xθ · Zφ ·Xθ, (14)

= Z−φ · Yθ ·Xθ · Zφ ·Xθ. (15)

The inverse Z-gate remains, but does not change the mea-
surement outcomes which are measured along Z.
Given that we can easily create Z-gates, we now show

that any arbitrary SU(2) gate can be constructed by
combining Z-gates with two Xπ/2 gates. In general, any
SU(2) gate can be written in the form,

U(θ, φ, λ) =

[

cos(θ/2) −ieiλ sin(θ/2)
−ieiφ sin(θ/2) ei(λ+φ) cos(θ/2)

]

(16)

which is conveniently represented (up to a global phase)
as,

U(θ, φ, λ) = Zφ ·Xθ · Zλ. (17)

By using the identity,

Xθ = Z−π/2 ·Xπ/2 · Zπ−θ ·Xπ/2 · Z−π/2, (18)

we show that any SU(2) gate is

U(θ, φ, λ) = Zφ−π/2 ·Xπ/2 · Zπ−θ ·Xπ/2 · Zλ−π/2. (19)

We express some common gates in this notation in Ta-
ble I. The ability to efficiently create arbitrary SU(2)
gates using Z-gates is essential for performing universal
quantum algorithms.

TABLE I. Common SU(2) gates expressed with Z gates.

Gate θ φ λ

I 0 0 0

Xπ π 0 0

Yπ π π/2 -π/2

Zπ 0 π/2 π/2

Xπ/2 π/2 0 0

Yπ/2 π/2 π/2 -π/2

S 0 π/4 π/4

H π/2 π/2 π/2

Xπ/4 π/4 0 0

T 0 π/8 π/8

II. RANDOMIZED BENCHMARKING OF THE

Z-GATE

To demonstrate how the VZ-gate can improve algo-
rithms we perform randomized benchmarking [13] (RB)
using a fixed-frequency superconducting transmon qubit
of frequency ω/2π = 5.0353 GHz, anharmonicity α/2π =
−235.5 MHz, and typical coherences T1 = 54(1) µs,
Tφ = 135(4) µs. This qubit is part of a two-qubit de-
vice detailed in Ref. [10]; for the work here we consider it
as a single independent qubit (the other qubit frequency
is 5.924 GHz). A RB circuit consists of m random Clif-
ford gates with a final inverting gate so that the full cir-
cuit implements the identity operator. These Clifford
gates are constructed from single qubit gate primitives
which, at minimum, are π

2 pulses along two independent
axes. Here we compare two sets of basis pulses — the
XYπ

2
and HZ sets. The XYπ

2
set consists of the finite-

duration gates {Xπ/2, X−π/2, Yπ/2, Y−π/2} whereas the
HZ set consists of one finite duration gate combined with
VZ-gates {H, I = Z0, S = Z π

2
, S† = Z−π

2
, Zπ} where

H = Z π
2
· Xπ

2
· Z π

2
is the Hadamard gate. On average,

2.25 gates from the XYπ
2
set and 2.4583 gates from the

HZ set are required to construct a Clifford. However,
for the HZ set only one of those gates per Clifford is the
finite-duration Hadamard gate. Since we expect the VZ-
gates to be near perfect, the HZ set should have lower
error per Clifford. For this experiment each of these fi-
nite duration gates is implemented as a DRAG pulse —
a pulse with a Gaussian envelope along the main rota-
tion axis and a pulse with a derivative Gaussian envelope
along the orthogonal rotation axis. The Gaussian pulse
is defined as,

ΩG(t) =

{

Ω0
e−t2/2σ2

−e−T2/2σ2

1−e−T2/2σ2 , t ≤ T

0 , else
(20)

where T is the pulse length which is set to T = 4σ. For
these experiments T = 13.33 ns and σ = 3.33 ns with
a 6.7 ns buffer between pulses (ωSSB/2π = −120 MHz).
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The total DRAG pulse is then

Ω(t) =

{

ΩG(t) , γ = 0

βΩ̇G(t) , γ = π
2

, (21)

where the DRAG parameter β is calibrated to optimize
pulse fidelity by cancelling Stark shift errors due to off-
resonance driving of higher transmon levels. In theory,
the value of β which optimizes fidelity is 1/2α [9], how-
ever, in practice the experimentally optimized value of
β is different since the DRAG pulse also compensates
phase errors from other sources. DRAG pulses can also
minimize population leakage to these higher levels, but
the value of β for which the pulse minimizes leakage is
not generically the value for which the pulse maximizes
fidelity. This point will be discussed in more detail in
§ IV and is also addressed in Ref. [14].
Sample RB data is shown in Fig. 2. For the XYπ

2
set,

averaging over 5 runs of 20 seeds each, we get an error
per Clifford (EPC) of 5.6(1)×10−4 and an error per gate
in the set (EPG) of 2.48(5)×10−4. For the HZ set, av-
eraging over 10 runs, the EPC is 3.0(1)×10−4 and the
EPG is 1.22(4)×10−4. The lower EPC of the HZ set
is evident from the data in Fig. 2, and confirms our ex-
pectation that the VZ-gates are significantly better than
finite-length X and Y gates. To quantify the error of
the VZ-gates we perform interleaved RB [15] of the S
gate; sample data is shown in Fig. 2. Averaging over 5
runs we get an error of -1.7(1.0)×10−5 with systematic
errors bounds of [0,6×10−4]. This is consistent with the
VZ-gate having zero error and, therefore, being a perfect
gate.
The RB data demonstrate the advantage of utilizing

the VZ-gates in quantum algorithms. In essence, each
of the curves is implementing the same RB algorithm,
i.e., generate a sequence of m random Cliffords that
constructs the identity operator. By utilizing VZ-gates
we are able to implement the algorithm with higher
fidelity. Therefore, VZ-gates can lower error rates in
many algorithms by optimizing the circuit to mazimize
the number of Z-gates.

III. CORRECTING ERRORS WITH VZ-GATES

Beyond their direct use in quantum circuits, VZ-gates
can correct for certain pulse errors that occur during
physical one and two-qubit gates without introducing
new errors. For example, a VZ-gate can correct a phase
error, i.e. an unwanted Z-gate, by applying the inverse
Z-gate. VZ-gates can also correct most off-resonance-
rotation (ORR) errors. The unitary operator due to an
ORR along the X axis is,

U1 = e−it[Ω2 σ̂X+∆σ̂Z], (22)

U1 = e−i
ΩRt

2 [cos(λ)σ̂X+sin(λ)σ̂Z ], (23)

FIG. 2. (Color Online) RB curves for the two basis sets dis-
cussed in the main text: XY π

2
(red circles) and HZ (blue

squares). Interleaved RB for the S gate using the HZ set
(green triangles). Each point is the average of 20 random
seeds run in 5 separate experiments and fit to the standard
RB exponential decay curve Arm+B where m is the number
of Clifford gates and the average error per Clifford is 1

2
(1−r).

The average error per gate is 1

2
(1 − r1/Ng) where Ng is the

number of gates in the basis set required to implement a Clif-
ford [13].

where tan(λ) = ∆
Ω and ΩR =

√
Ω2 +∆2. If the goal is

to implement the gate Xθ, then the question is whether
there is a Z correction that can be applied to Eqn. 23,
i.e., is there a ξ and ΩR such that

Xθ = Zξ · U1(ΩRt, λ) · Zξ? (24)

If we expand Eqn. (24) then we get the following rela-
tions,

sin

(

ΩRt

2

)

=
sin

(

θ
2

)

cos(λ)
, (25)

tan(ξ) = sin(λ) tan

(

ΩRt

2

)

, (26)

and so there is a valid correction for the ORR error when
sin( θ

2 )
cos(λ) ≤ 1. For example, if λ = 0.1, and the desired gate

is Xπ
2
then ξ ≈ 0.1 and ΩRt = π/2 + 0.12. Graphically,

an exagerrated ORR for Xπ/2 is illustrated on the Bloch
sphere in Fig. 3. Starting from |0〉 the rotation is off-axis
and so the final state is not along the Y axis. However,
a rotation angle exists so that the state still crosses the
XY plane and then a final VZ-gate corrects the angle
error. Physically there is no solution when the rotation is
sufficiently off-resonance such that it cannot pass through
the plane defined by the desired final state. For example,
a detuned π pulse cannot be compensated since a qubit
starting in state |0〉 does not complete the rotation to |1〉.
Correcting ORR errors is of practical importance for

weakly anharmonic transmon qubits. When resonantly
driving the |0〉 to |1〉 transition, the drive frequency is
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FIG. 3. (Color Online) (a) Bloch-sphere representation of an
attempted π

2
rotation around the X axis starting in the state

|0〉 on-resonance (red/light gray) and with a detuned drive
(blue/dark gray). For a suitably compensated rotation angle
the detuned drive ends up in the XY place, but with a finite
Z-rotation error. (b) Correcting the error using a VZ-gate,
i.e., axes rotation.

only slightly detuned from the higher level transitions
such as |1〉 to |2〉, and so there is a strong Stark effect
which shifts the frequency of the |1〉 state during the
drive. The strength of the Stark shift is inversely pro-
portional to the detuning, and thus ORR errors increase
for short gates because of Fourier broadening of the drive
frequency. The standard approach to correct these errors
is to utilize DRAG pulse shaping, Eqn. (21), as we did for
the RB data in § II. Here we show similar performance us-
ing Gaussian pulses with VZ-gates used to correct ORR
errors in the form given by Eqn. (24); we refer to the
combined pulse as Gaussian plus Z (GZ). In Fig. 4 we
plot the error per gate (EPG) from XYπ

2
RB for DRAG,

GZ and Gaussian pulses versus the sideband frequency of
the pulse. Interestingly, the EPG for the Gaussian pulse
is a strong function of the sideband frequency. This can
be understood to be the result of the internal filtering of
the AWG. In the rotating frame of the qubit the effect
of this filter on the pulse shape is similar to the DRAG
pulse shape. The value and sign of β is a function of
the sideband frequency and so for certain frequencies the
pulse shape exacerbates the ORR error. When we apply
the Z gate correction the calibrated phase compensates
for any passive DRAG shaping. From this data we con-
clude that GZ pulses are a viable alternative to DRAG
when optimizing pulse fidelity. GZ pulses are not sensi-
tive to the exact shape of the pulse and, as we will discuss
next, permit the utilization of pulse shaping to address
different errors such as leakage.

IV. LEAKAGE

In addition to unitary ORR errors, there is also pop-
ulation leakage to higher levels when driving transmon
qubits. This leakage is mainly caused by frequency com-
ponents in the drive at the transition frequency between
the |1〉 and |2〉 states, ω12 = ω01 + α. Pulse shaping,

FIG. 4. (Color Online) (a) EPG for the XY π
2

set (see main

text) for three different pulse implementations: Gaussian,
DRAG and Gaussian plus VZ-gate (GZ) as a function of the
sideband frequency. Dashed lines are theory fits assuming
the coherence numbers listed in the main text, LO leakage
of -65 dBm and an internal AWG filter approximately as a
Gaussian filter with a bandwidth of 300 MHz[16]. (b) Sample
RB curves for the different pulses for a sideband frequency of
180 MHZ. The DRAG and GZ pulses are coherence limited,
but the Gaussian pulse is completely dominated by unitary
errors.

i.e., DRAG, can effectively mitigate leakage when VZ
gates can be utilized to correct the unitary ORR er-
rors (see Ref [14] for similar work using DRAG and fre-
quency chirped pulses). Here we analyze leakage versus
pulse width for different pulse types: DRAG optimized
for fidelity, GZ, DRAG optimized for leakage with VZ-
gates to correct ORR errors (DRAGZ) and GZ with the
AWG outputs externally low-pass filtered (FILTZ). For
these leakage experiments we operate with a sideband fre-
quency of -120MHz, which has two advantages. For one,
leakage components at ωLO and ωLO − ωSSB due to non-
idealities in the mixer are detuned by at least |α+ωSSB|
from ω12. Second, by selecting a negative sideband we
can passively filter the AWG for signals at |α + ωSSB|
which could mix with ωLO to produce ω12. For the qubit
in these experiments |α + ωSSB|/2π = 355.5 MHz, so a
LP filter between 120 MHz and 355.5 MHz can effectively
filter leakage components and leave enough bandwidth
to drive short pulses. Specifically, we use Mini-Circuits
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FIG. 5. (Color Online) (a)Single-shot measurements of the
|0〉 (blue, left),|1〉 (red, top-right) and |2〉 (green, bottom-
right) states in the IQ plane (1000 shots). The colored regions
demonstrate the hard thresholding barriers used to bin mea-
surements. For the RB data we use the results from this cal-
ibration to construct a POVM and invert the hard-threshold
results to compensate for assignment errors. (b) Typical RB
measurement for leakage. The |2〉 state population is multi-
plied by 20 times for scale. (c) Leakage rate and |2〉 population
after 2901 Clifford gates (averaged over 20 seeds) versus the
DRAG parameter β (black). This |2〉 population is used to
calibrate β for the DRAGZ pulses (red/light gray).

VLF-180 (3dB frequency of 270 MHz), and by filtering
the AWG output we are effectively implementing a pas-
sive form of pulse shaping.

To measure leakage we perform standard RB sequences
and measure the |0〉, |1〉 and |2〉 populations simultane-
ously by hard thresholding single-shot readout signals as
shown in Fig. 5 (a). A sample RB curve for the 3 states
is shown in Fig. 5 (b). The EPG is measured in the
standard way by fitting the |0〉 state as described in the
caption to Fig. 2. To measure the leakage rate per gate
(LPG) we fit the |2〉 state RB data to the same type of RB
curve Arm + B and the LPG is given by the expression
p = (1 − r)B/Ng [17]. In general there is a correction to

the RB fit of the |0〉 data due to leakage, however, when
EPG≫LPG this correction is small [17]. A typical cal-
ibration curve for the DRAG parameter of the DRAGZ
pulses is shown in Fig. 5 (c). An efficient proxy for the
LPG is the averaged |2〉 population for a long Clifford
sequence.

The LPG and EPG versus pulse width for the four
pulse types is illustrated in Fig. 6. DRAG and GZ give
similar results with a general trend of lower LPG for
longer pulse widths as expected due to Fourier broaden-
ing. The exception to this trend is a pronounced minima
at 10 ns which is an artifact of the Gaussian truncation
such that there is a zero in the pulse spectrum at ω12; this
effect is captured accurately in the numerics. For pulses
shorter than 20ns the DRAGZ and FILTZ pulses demon-
strate nearly an order-of-magnitude lower LPG. For a
pulse length of 13.3 ns we measure the LPG (×10−6) for
the various pulse types: DRAGZ 3.1(6), FILTZ 1.4(4),
DRAG 13(1) and GZ 25(2). Overall, each of the pulses
obtains similar EPG (×10−4): DRAGZ 1.95(3), FILTZ
2.80(6), DRAG 2.24(3), GZ 2.75(6). These are all close
to the coherence limit of 1.8× 10−4. While the LPG sets
a lower bound on the EPG, significant gains in coher-
ence will be required to reach that bound. For pulses
greater than 20 ns the LPG rises; this is observed in
theory calculations which include thermal relaxation to
an effective system temperature of T = 46 mK. When
the system is at a finite temperature there is incoherent
population transfer between levels m and n such that in
equilibrium the ratio of populations is e−(En−Em)/kBT .
Therefore, finite-temperature heating sets a lower bound
on the leakage, which is also the conclusion of Ref. [14].
Understanding why the qubit is higher temperature than
the cryostat (10 − 15 mK) and how to reduce that tem-
perature is an active area of investigation.

Overall, replacing DRAG with GZ pulses does not af-
fect the EPG and instead it frees up DRAG pulse shap-
ing to specifically minimize leakage using DRAGZ pulses.
The lowest LPG is obtained with FILTZ, albeit with sim-
ilar performance to DRAGZ and with the caveat that it
only works for specific sideband frequencies. Ultimately,
leakage is not a limiting factor for single qubit gate per-
formance, however, leakage can have detrimental effects
on error correction protocols [18, 19].

V. THE VZ-GATE IN MULTIQUBIT SYSTEMS

Employing VZ-gates in multiqubit systems depends on
the specific implementation of the two-qubit gate inter-
action. For example, consider a two-qubit Hamiltonian

with the interaction term σ̂
(1)
Z ⊗ σ̂

(2)
X ,

H/h̄ = −ω1

2
σ̂
(1)
Z − ω2

2
σ̂
(2)
Z + gσ̂

(1)
Z ⊗ σ̂

(2)
X . (27)
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FIG. 6. (Color Online) (a) Leakage per gate versus pulse
length for DRAG, GZ, DRAGZ and FILTZ. Lines are theory
curves assuming the coherences mentioned in the main text, a
temperature of 46 mK, LO leakage of -65 dBm and an AWG
filter bandwidth of 300 MHz (100 MHz for FILTZ). DRAGZ
points were only taken to a pulse length of 20 ns; beyond
this point calibration of the DRAG parameter (to minimize
leakage) was not reliable because the leakage signal was below
the noise floor. (b) EPG from the same measurement. The
black dashed line is a theory curve for a perfect DRAG pulse
(i.e. no mixer or AWG effects) and is representative of the
coherence limited error.

In the rotating frame of the single-qubit drives, Urot =

e
−i

(

ω1t+φ1
2 σ̂

(1)
Z +

ω2t+φ2
2 σ̂

(2)
Z

)

,

H̃/h̄ = gσ̂
(1)
Z ⊗

(

cos(ω2t+ φ2)σ̂
(2)
X

+sin(ω2t+ φ2)σ̂
(2)
Y

)

, (28)

and so the single-qubit drive phase is imprinted on the
two-qubit interaction if the interaction term is σ̂X or
σ̂Y . When we apply a VZ-gate, the phase update to
the single-qubit drive will affect subsequent two-qubit
interactions; how to manage this issue is dependent on
the specific implementation of that interaction.

For microwave-activated gates the phase update is
straightforward. Here we will give two examples for the
cross-resonance gate and the parametric iSWAP gate.
The cross-resonance (CR) gate (see e.g. Ref [11]) inter-

action is the example considered in Eqn. (27). To turn
on the CR interaction the ZX term is modulated at ω2

with a separate drive. The CR rotation angle is defined
with respect to the the phase φ2 as shown in Eqn. (28).
When a VZ-gate is applied to qubit 2 the phase of the
CR drive must be updated accordingly. For the iSWAP
gate (see e.g. Ref. [10]), an XX + Y Y term is activated
by modulating at the difference frequency ω1 − ω2. The
phase of this iSWAP drive is matched to the difference of
the single-qubit drive phases φ1−φ2. Therefore, the VZ-
gate phase is applied to the iSWAP drive with a different
sign for qubits 1 and 2.

For flux-tunable qubits, i.e., where the qubit frequen-
cies are dynamically tuned to go to an interaction reso-
nance, compatibility with the VZ-gate is more difficult.
In these systems there are time dependent single-qubit
σZ terms in Eqn. (28) which do not necessarily commute
with the interaction. Therefore VZ-gates before the inter-
action necessitate also updating the σZ dynamics. How-
ever, if the interaction is ZZ (see e.g. Refs [12, 20]), then
these single-qubit Z terms commute through and can be
compensated by a subsequent VZ-gate.

VI. CONCLUSIONS

In conclusion, we investigate a method to implement
a near-perfect Z-gate by controlling the phase of the
microwave drive used for X and Y rotations – the
virtual Z-gate (VZ-gate). This gate can improve the
fidelity of circuits with a large number of single-qubit
gates, can be used to efficiently correct typical gate
errors and be used to implement arbitrary SU(2) gates
given a calibrated Xπ/2 gate. In this work we used
VZ-gates to correct single-qubit rotation errors, but
the gate should have wide applicability for improving
two-qubit gates. In particular, as the number of qubits
increases, crosstalk Z-errors will be ubiquitous. The
VZ-gate is a low-overhead method for correcting these
type of errors. By using pulse shaping techniques to
minimize leakage and VZ gates to correct rotation errors
we demonstrated a hybrid pulse with leakage limited
by the qubit temperature and gate fidelity limited by
coherence. Further improvements in leakage are limited
by the qubit temperature.
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