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I. INTRODUCTION

This article continues the series of publications [1–5] about
exact results in the MLZ theory [6]. This theory deals with
explicitly time-dependent Schrödinger equations of the form

i
d

dt
ψ = Ĥ(t)ψ, Ĥ = B̂t+ Â, (1)

where Â and B̂ are Hermitian time-independent N × N ma-
trices. An MLZ model is called solvable if one can deter-
mine the scattering matrix Ŝ or transition probability matrix
P̂ , Pnm ≡ |Snm|2, for evolution from infinite negative to in-
finite positive time values. Recent discovery of integrability
conditions [2] has led to numerous fully solvable models of
this type. Complexity of these models varies from the elemen-
tary two-state case [7, 8] and few-state models [2] to systems
of spins and fermions with nonlinear interactions and combi-
natorially large phase space [3, 4].

There are two reasons making the MLZ theory attractive.
First, scattering matrices in solvable MLZ models are ob-
tained explicitly in terms of the known special functions. This
is in contrast to time-independent systems that are considered
solvable by the algebraic Bethe ansatz. For finite size mod-
els, Bethe ansatz generally produces only implicit solutions
that depend on parameters satisfying complex nonlinear alge-
braic equations [9, 10], which in turn are often almost as hard
to study numerically as to diagonalize the full Hamiltonian
by generic algorithms. For this reason, there are still debates
about what are the criteria for calling a finite size quantum
model integrable [11]. Within the MLZ theory, the notion of
quantum integrability acquires conventional meaning of com-
pletely analytical description of the scattering process.

FIG. 1. (a) Diabatic level diagram of some arbitrary model of type
(1). (b) This diagram for a model with all levels crossing in one point.

Second, MLZ theory opens unusual opportunities for stud-
ies of mesoscopically complex quantum systems without ap-
proximations. Many solved MLZ models describe situations
that have previously been discussed in experimental context,
for example, they describe interacting spin systems in linearly
time-dependent magnetic fields [12]. The same models have
been used previously to explain experiments with molecular
nanomagnets [13], although analytical solutions of these mod-
els had not been known. Similarly, the DTCM [3], which be-
longs to the class (1), had been extensively studied by vari-
ety of approximate and numerical methods before its solution
was found [14]. Originally, this model attracted attention due
to applications to experiments with molecular Bose conden-
sates [15]. More generally, multistate Landau-Zener transi-
tions appear in numerous modern fields of research, includ-
ing quantum coherence [16], dynamic phase transitions [17],
Landau-Zener interferometry [18], metrology [19], quantum
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control [20], superconductors [21], ultracold atoms [22], and
quantum dots [23].

In MLZ theory, eigenvalues of matrix B̂t are called diabatic
levels. It is usually convenient to visualize parameters of the
Hamiltonian by plotting diabatic levels in a time-energy di-
agram, as shown in Fig. 1(a). Models in which all diabatic
levels are crossing at one point, as shown in Fig. 1(b), are ob-
tained by setting diagonal elements of Â to zero. Such mod-
els are particularly important in MLZ theory because they are
used as elementary blocks to construct more complex solvable
systems using integrability conditions [24]. Unfortunately,
these conditions do not apply to cases with all crossings hap-
pening at a single point. Therefore, such models need specific
research on their own.

In this article, we present several findings that reveal sym-
metries and some of the reasons for integrability in MLZ the-
ory. We also develop methods and mathematical concepts that
should be handy in future studies of this topic. The structure
of our article is as follows. In section II we collect known
solvable MLZ models featuring all levels crossing in one
point, and then discuss their bipartite property. In section III
we point to another symmetry of solvable systems, and then
use these symmetries to design purely algebraic derivation of
transition probabilities in the bowtie and five-state DTCM.
Section IV discusses Stokes phenomenon in MLZ systems.
We show that bipartite property leads to a new class of solv-
able models with applications to physics of molecular Bose
condensates. We summarize our findings in section V.

II. BIPARTITE MODELS

When all levels are crossing at a single point, it is conve-
nient to illustrate parameters of the Hamiltonian as a connec-
tivity graph, which is different from the diabatic level diagram
in Fig. 1. Let us think about the diabatic states as the nodes of
the connectivity graph. If direct coupling between two such
states, i.e., the corresponding off-diagonal element of the ma-
trix Â, is nonzero, we will connect corresponding nodes with a
link. One can then mark links by corresponding couplings and
nodes by corresponding level slopes, as shown in Fig. 2(a).
This figure contains all information about the Hamiltonian:

Ĥ(t) =

 β1t xg1 g2 0
xg1 βt 0 −yg2
g2 0 −β2t g1
0 −yg2 g1 −β1t

 , (2)

where g1, g2, x, y, β, β1, β2 are constant parameters. It is
known that this model is solvable [24] under condition

x =

√
β1 − β
β1 − β2

, y =

√
β1 + β

β1 + β2
. (3)

Interestingly, the procedure that leads to solution of this model
remains mathematically unjustified, although numerous care-
ful numerical checks have always confirmed its validity. Only
at special choice of parameters, shown in Fig. 2(b), has this
solution been proved both analytically and exactly [5].

FIG. 2. Connectivity graph of the Hamiltonian (2): (a) general case
(b) at values of parameters x = y = 1 and β = β2.

FIG. 3. Connectivity graphs of (a) bowtie model, (b) LZ-chain
model, (c) composite model generated by populating four-state
bowtie model with two noninteracting fermions with couplings de-
fined in (7). (d) Five-state bipartite model with couplings and solu-
tion discussed in appendix B.

Let us now show, in Fig. 3, connectivity graphs of other
known solvable models. Figure 3(a) corresponds to the bowtie
model [27], in which an arbitrary number of crossing lev-
els are coupled directly to only one of them. Corresponding
Schrödinger equation for amplitudes an, n = 0, 1, . . . , N − 1
reads

iȧ0 = β0ta0 +

N−1∑
k=1

gkak; iȧk = βkt+ gka0, k 6= 0. (4)

Figure 3(b) corresponds to the LZ-chain model [5], in
which each state is coupled only to states with nearby indexes.
Diabatic state amplitudes of this model evolve according to
equations

iȧn = βntan + gnan+1 + gn−1an−1, n = 1, . . . , N, (5)

where we assume that g0 = gN = 0.
Not all models of the form (5) have scattering matrices that

are known. The most general solvable LZ-chain model is the
DTCM. This model has equidistant level slopes, βn = βn,
and couplings given by,

gn = g
√
NB + n

√
S(S + 1)− (S − n+ 1)(S − n). (6)

where g and NB > −1 are constant parameters, and 2S +
1 = N . In the limit NB → ∞ but g2NB = const, this
model describes a quantum spin of size Ŝ in a linearly time-
dependent field.

General solution of the DTCM is currently known only in
the form of an algorithm that allows derivation of transition
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probabilities in any invariant sector of this model recursively
from solutions for lower dimensional sectors [3]. Complexity
of this procedure is growing very quickly. Therefore, only
special cases are well understood, such as the four-state sector
(S = 3/2), and the case of arbitrary S but specific initial
conditions at t = −∞: with either |an|2 = δn1 or |an|2 =
δnN .

Any solvable MLZ model can be used to construct more
complex ones by “populating” the original model with nonin-
teracting fermions or bosons [1, 17, 26]. An example of such a
composite model is shown in Fig. 3(c). Its Hamiltonian reads

Ĥ =


β1t 0 0 g13 g12 0
0 β2t 0 g23 0 −g12
0 0 β3t 0 −g23 −g13
g13 g23 0 −β3t 0 0
g12 0 −g23 0 −β2t 0
0 −g12 −g13 0 0 −β1t

 . (7)

We provide details of its solution in appendix A.
Finally, Fig. 3(d) shows the connectivity graph of the pre-

viously unknown five-state model whose solution we present
in appendix B. This model was found and solved by consider-
ing a special case of a more general five-state system that can
be solved using integrability conditions, as it was done for the
four-state model (2) in [24]. There is no doubt that this class of
models can be extended to higher dimensions, although their
solutions quickly become very complex.

Let us now observe the most obvious common property of
graphs in Figs. 2 and 3: all of the known solvable models are
represented by bipartite graphs, i.e. graphs whose nodes can
be partitioned into two groups so that nodes of the same group
are connected only to nodes of the other group. It is natural
to expect then that new solvable MLZ systems can be found
among similar bipartite systems.

In what follows, we will refer to all MLZ models with a
bipartite connectivity graph and with all diabatic level cross-
ings at a single point in the diabatic level diagram as simply
bipartite models. So, let us explore this property and its effect
on the scattering matrix.

As there are two interacting groups of states,G1 andG2, we
give the index 1 to the smaller group of nodes and the index
2 to the bigger group in the connectivity graph (or arbitrarily
if these groups have equal numbers of elements), and then
introduce operator Θ̂, which is represented by a diagonal N ×
N matrix with

Θkk = (−1)fk , Θij = 0, i 6= j. (8)

Here and in what follows, fk is the index (either 1 or 2) of the
group to which the k-th diabatic state belongs. It is straight-
forward to verify that Hamiltonians of bipartite MLZ models
satisfy the following identity:

Θ̂Ĥ(−t)Θ̂ = −Ĥ(t), (9)

from which it follows also that

Θ̂e−iĤ(−t)dtΘ̂ = eiĤ(t)dt. (10)

Consider the formal expression for the evolution matrix

Û(T,−T ) = lim
dt→0

T/dt∏
n=−T/dt

e−iĤ(tn)dt, (11)

where tn = ndt and n is increasing in the product from the
right to the left. We can then insert resolution of identity 1̂ =

Θ̂Θ̂ after each factor of the product in (11) to obtain that

Θ̂Û(T,−T )Θ̂ =

T/dt∏
n=−T/dt

Θ̂e−iĤ(tn)dtΘ̂ = (12)

=

T/dt∏
n=−T/dt

eiĤ(−tn)dt = Û†(T,−T ).

Using definition of the scattering matrix [5], Ŝ =
lim
T→∞

U(T,−T ), and writing (12) in components, we find re-

lation between scattering matrix elements and between corre-
sponding transition probabilities:

Snm = (−1)fn+fmS∗mn, Pnm = Pmn. (13)

Thus, the transition probability matrix of any bipartite model
is symmetric. Moreover, diagonal elements Snn of the scat-
tering matrix are purely real.

Symmetries (13) have been known in bowtie and LZ-chain
models [5, 27]. However, algebraic derivation along (9)-(12)
can reveal a new and less obvious than (13) constraint: let us
take the trace of the evolution operator times Θ̂. Using the
fact that under the trace we can perform cyclic permutations,
we can rewrite

Tr
[
Û(T,−T )Θ̂

]
= Tr

[
Û(0,−T )Θ̂Û(T, 0)

]
. (14)

Identity (10) then leads to simplifications:

e−iĤ(T )dtΘ̂eiĤ(−T )dt = e−iĤ(T )dtΘ̂e−iĤ(−T )dtΘ̂Θ̂ =

= e−iĤ(T )dteiĤ(T )dtΘ̂ = Θ̂.

We can repeat this step until we get rid of all exponential fac-
tors. The result is a new identity for the scattering matrix ele-
ments:

Tr
[
ŜΘ̂
]

= Tr
[
Θ̂
]
, (15)

or in components:∑
n∈G2

Snn −
∑
m∈G1

Smm = N − 2M, (16)

where G1 and G2 are, respectively, the first and the second
groups of diabatic states; N is the size of the Hilbert space
and M is the number of diabatic states in the first group.

Although constraint (16) is linear in scattering matrix ele-
ments it leads to a nonlinear constraint on transition proba-
bilities. For example, for sufficiently small couplings we can
rewrite (16) as∑

n∈G2

√
Pnn −

∑
m∈G1

√
Pmm = N − 2M. (17)
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At larger couplings, we already should care about signs of
scattering matrix elements, so that generally we can only say
that either Snn =

√
Pnn or Snn = −

√
Pnn. The fact that

simple symmetries, such as Eq. (9), can lead to nonlinear con-
straints on transition probabilities, such as Eq. (17), is the first
important finding of this article.

We conclude this section by pointing to one more conse-
quence of symmetry (13). It is known that elements of the
scattering matrix of any MLZ model satisfy the so-called hi-

erarchy constraints (HCs) [5]. Let us assume that indexes of
diabatic states are chosen so that β1 > β2 > . . . > βN . Then
the two lowest order HCs read:

S11 = e
−π

N∑
k=2

|Ak1|2/(β1−βk)
, (18)

Det

(
S11 S12

S21 S22

)
= e
−π

N∑
k=3

(
|Ak1|

2

(β1−βk)
+
|Ak2|

2

(β2−βk)

)
, (19)

and generally:

Det


S11 S12 · · · S1M

S21 S22 · · · S2M

... · · ·
. . .

...
SM1 · · · · · · SMM

 = e
−π

N∑
k=M+1

M∑
r=1

|Akr|
2

(βr−βk)

, M = 1, . . . , N − 1. (20)

In an arbitrary MLZ model, the first constraint (18) can
be converted into expression for the probability to remain on
the same level if the system is initially on the level with the
extremal slope. The second constraint (19) already depends

on phases of amplitudes S22, S12, and S21, so Eq. (19) can-
not generally lead to a constraint that is written only in terms
of transition probabilities. However, for bipartite models we
know that S22 is real, and from (13) we find

S11S22 − (−1)f1+f2 |S12|2 = e
−π
( ∑
k∈Ḡ(1)

|A1k|2/(β1−βk)+
∑

k∈Ḡ(2)

|A2k|2/(β2−βk)
)
, (21)

where Ḡ(k) means the set of elements of the group of states connected to the node k directly. Using that |S12|2 ≡ P12 and (18),
we find relation between probabilities P22 and P12:

e
−2π

∑
k∈Ḡ(1)

|A1k|2/(β1−βk)
P22 =

(−1)f1+f2P12 + e
−π
( ∑
k∈Ḡ(1)

|A1k|2/(β1−βk)+
∑

k∈Ḡ(2)

|A2k|2/(β2−βk)
)

2

. (22)

Finally, we note that HCs can be reformulated so that they
start not with the highest but rather with the lowest slope
level. Such HCs lead to equations analogous to (18)-(22),
in which indexes 1, 2, . . . , N are replaced by, respectively,
N,N − 1, . . . , 1. This is followed then by change of slope
signs, e.g., β1 − β2 → βN−1 − βN , e.t.c.. So, in any bipartite
model, not only survival probabilities for two extremal lev-
els are known but also there are two equations of the form
(22) that impose coupling-dependent relation between P12

and P22, as well as between PN,N−1 and PN−1,N−1.

III. PURE GAUGE PHASE ANSATZ

The class of bipartite models is considerably larger than the
class of solved models shown in Figs. 2 and 3. What else is
special to solvable cases?

It has been noticed previously [2, 24, 25] that many MLZ

models can be solved by a semiclassical ansatz in which direct
transition to another level brings a simple phase i to the tran-
sition amplitude. This suggests the following ansatz to satisfy
constraints (13):

Smn = αmni
fn+fmei(φm−φn), (23)

where φm are phases that may depend on parameters of the
model, possibly nontrivially, and where αmn are real param-
eters. We will think of αmn as elements of a new matrix
α̂. This ansatz reduces the number of unknown phases from
N(N − 1)/2 to just N . Symmetry (23) can be verified an-
alytically in several cases: the bowtie model, the models in
Figs. 2(b) and 3(c), and the model of arbitrary spin in a lin-
early time-dependent magnetic field, because their scattering
matrices are known [26–28].

However, in the DTCM and the general case of the model
(2), only transition probabilities have been found so far, while
phases of scattering matrix elements remain unknown. So, we



5

FIG. 4. Numerically obtained ratio of imaginary and real parts of the
product c4(T ) = U12(T,−T )U24(T,−T )U43(T,−T )U31(T,−T )
as function of T in model (2). Simulation algorithm is explained in
Ref. [3]. Parameters: β = 0.1, b2 = 0.65, b1 = 1.25, g1 = 0.37,
g2 = 0.5; x, y satisfy condition (3). Discrete dots are results of
numerical simulations and the solid line is the guide for eyes. Note
the logarithmic scale of the time axis. The last point corresponds
to Tmax = 2038 and Im[c4(Tmax)]/Re[c4(Tmax)] = 2.9 × 10−4.
Analogous tests were performed for DTCM sectors with up toN = 6
and different values of parametersNB and g. Results showed similar
behavior of c3,4 (not shown), confirming validity of Eq. (23).

cannot verify (23) in them analytically. Instead, we tested for
applicability of the ansatz (23) numerically. Since phases φm
are unknown, we did it indirectly, namely, Eq. (23) predicts
that any cyclic product of amplitudes should not depend on
all phases φm. So, if we define

c3 ≡ S13S32S21, c4 ≡ S12S24S43S31. (24)

and set indexes so that 1, 3 ∈ G1 and 2, 4 ∈ G2, then

Im[c3] = Im[c4] = 0. (25)

We found that, indeed, scattering matrix elements in all previ-
ously solved bipartite models satisfy (25). There is difference
from Eq. (13), however, in that Eq. (23) generally does not
work if evolution operator Û(T,−T ) at finite T is substituted
instead of the scattering matrix. So, if we define c3(T ) and
c4(T ) by replacing elements of Ŝ by elements of Û(T,−T )
and plot the ratios r3,4 = Im (c3,4(T )) /Re (c3,4(T )) as func-
tions of T , we find that these ratios are initially noticeably
nonzero but decrease to zero at increasing T , as we show in
Fig. 4. Hence, the ansatz (25) works only asymptotically.
We found this behavior also in the bowtie and driven Tavis-
Cummings models. There are also exceptions, where (23)
holds for evolution operator c4(T ) at arbitrary T , e.g., in the
model in Fig. 2(b). We attribute this to presence of additional
symmetry in this model, which was discussed in [28].

It is expected that known solvable models do not exhaust
the solvable class of bipartite systems. If so, conditions (23)
are likely common or even determining this class. Their un-
derstanding may shed new light on the phenomenon of inte-
grability in MLZ theory and provide the way to generate new
solvable cases. Therefore, below we explore some of the con-
sequences of this symmetry.

FIG. 5. Numerically obtained ratios r3,4 = Im(c3,4)/Re(c3,4) in
the model (26). Parameters: β4 = 0, β3 = 1, β2 = 2, β1 = 5.
g1 = g2 = 0.5. Numerical evolution is from −T to T , at T = 250.
Discrete dots are results of simulations and the solid lines are the
guide for eyes.

A. Numerical search for models with symmetry (23)

If MLZ-integrability is indeed related to the symmetry (23),
then conditions (25) provide a strategy to search for new solv-
able models. Consider for example a four-state LZ-chain:

Ĥ =

 β1t g1 0 0
g1 β2t g2 0
0 g2 β3t g3
0 0 g3 β4t

 . (26)

The most general known solvable model of the type (26) is the
four-state DTCM that has equally distant slopes βn = βn and
couplings constants specified by Eq. (6).

Let us consider some case of Eq (26) with a different, from
DTCM, choice of slopes and also with fixed values of two
out of the three couplings. We can then simulate evolution
with the Hamiltonian (26) and check the validity of (25) at
different values of the variable coupling. We show results of
such a test in Fig. 5. Although constant parameters are cho-
sen differently from the DTCM, this figure shows that there
is a coupling value g3 ≈ 0.47, at which imaginary parts of
both c3 and c4 change their signs simultaneously. So, at this
point, symmetry (23) is valid and the model is likely solvable
although its solution is currently not known.

Several similar tests correctly reproduced coupling values
in a few already solved models (not shown). We also found
that such points are rather common in bipartite models with
four interacting states. However, in models with higher di-
mensions, scanning of a single parameter is usually insuffi-
cient to observe such points. We also found that some sym-
metric choices of parameters, for example LZ-chains with
equal couplings and equidistant level slopes, do not gener-
ally satisfy (25) for N ≥ 4. So, our numerical investigation
suggests that there are numerous solvable but still unknown
bipartite models with asymmetric choices of parameters.
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B. Parametrization by orthogonal symmetric matrix

Let us now note thatN phases φn in (23) can be removed by
mere change of phases in definition of N diabatic states fol-
lowed by redefinition of phases of coupling constants. These
phases drop from all expressions for HCs because determi-
nants depend only on cyclic products such as in (24). There-
fore, each of N − 1 independent HCs leads to an equation on
elements of α̂, and consequently on transition probabilities.
This is in contrast to the general bipartite case in which only
four such constraints are allowed.

Second, from (13) it follows that α̂ has to be symmetric:

αmn = αnm, (27)

and from unitarity, ŜŜ† = 1̂, we find that α̂ is orthogonal.
Together, Eqs. (27) and (28) mean that

α̂2 = 1̂. (28)

An immediate consequence is that eigenvalues of α̂ are all
±1. Moreover, we can find multiplicities of such eigenvalues.
At zero couplings we have Snm = δnm and eigenvalues of α̂
coinciding with its diagonal elements:

αnn = (−1)fn , for Â = 0. (29)

Switching on couplings continuously cannot change discrete
eigenvalues. So, we find that the number of −1 eigenvalues
of α̂ equals the number M of nodes in the smaller group, G1.

Symmetric orthogonal matrix with M ≤ N/2 negative
eigenvalues can be parametrized with components of M or-
thonormal vectors:

α̂ = 1̂− 2

M∑
k=1

vk
Tvk. (30)

Indeed, vk is the eigenvector of α̂ with eigenvalue −1. All
real vectors orthogonal to v1 . . .vM belong to the space with
eigenvalues +1.

Vector v1 depends on N − 1 independent parameters (the
last one is fixed by requirement of its unit norm). Vector v2

depends on N − 2 unknown parameters because, in addition
to normalization, it must be orthogonal to vector v1. We can
continue this counting until we reach vM that depends on
N −M independent parameters. This corresponds totally to
M(2N −M − 1)/2 unknown parameters of the matrix α̂. On
the other hand, we have only N − 1 HCs that express com-
binations of these parameters via the elements of the model’s
Hamiltonian.

It is interesting to know whether knowledge of the sym-
metry (23) supplemented by HCs, and possibly the constraint
(16), is sufficient to derive all transition probabilities in some
models. For example, the bowtie model has M = 1. The
number of independent parameters in α̂ is then N − 1, which
is the same as the number of independent HCs. The next
in complexity case with M = 2 shows that HCs alone are
not sufficient to reconstruct all parameters of α̂. For exam-
ple, for N = 4 we have then five parameters for α̂ and
only three independent HCs. In the case of the driven Tavis-
Cummings model, however, we have additional information

because all transition probabilities from the extremal slope
levels are known when N is arbitrary [3]. In any case, HCs
are highly nonlinear, so it is not obvious that they can be dis-
entangled to reconstruct elements of the scattering matrix. In
the following two subsections we will show that in some cases
this can be done.

C. Algebraic solution of the bowtie model

Previously, solution of the bowtie model has been obtained
by methods of complex analysis. It is expected, however, that
there is a hidden algebraic reason behind any exact solution.
Below we claim that, in the bowtie model, the reason is in
combination of HCs (20) and the property (23).

For a general case of the bowtie model, it is convenient to
choose state indexes so that βi > βj if i > j, and the special
level has the slope β0. So, we allow negative integer indexes.
Let there bem diabatic level slopes lower than β0 and n higher
slopes (m+n+1 = N ). Nonzero elements of the Hamiltonian
are:

Hj0 = H0j = gj , Hjj = βjt, j = −m, . . . , n. (31)

According to (30), matrix α̂ can be expressed via only one
real vector

v = (v−m, . . . , v−1, v0, v1, . . . , vn),

with a constraint
∑
j v

2
j = 1. Moreover, it is easy to verify

that transition probabilities in this case must depend only on
combinations 2v2k, which we are going to determine now.

Let us consider the first m equations of HCs (20) for the
Hamiltonian (31). In the left hand sides, they will have the
determinant

Det(1− 2wwT ), (32)

where, for (j +m+ 1)-st hierarchy equation, vector w is ob-
tained by keeping only components of v up to j-th index (note
that j < 0). A determinant written as (32) can be simplified
using Sylvester’s identity [30]:

Det(În + R̂Q̂) = Det(Îm + Q̂R̂),

where R̂ is m × n and Q̂ is n × m matrices. Applying this
formula to (32) we find

Det(1̂− 2wwT ) = (1− 2wTw) = 1− 2
∑
k≤j

v2k. (33)

Thus, first m HCs can be written as

1− 2
∑
k≤j

v2k =
∏
k≤j

pk, for −m ≤ j < 0, (34)

where we defined

pj = e−πg
2
j/|β0−βj |, j 6= 0. (35)

Solving Eqs. (34) recursively starting from j = −m we find

2v2j = (1− pj)
∏
k<j

pk, for j < 0. (36)
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FIG. 6. Transition probabilities from the third level to all diabatic
states of the five-state DTCM at different values of the coupling.
Solid curves are predictions of Eqs. (49)-(53) and discrete points are
results of numerically calculated absolute value squared elements of
the evolution matrix, P3→n = |Un3(T,−T )|2, at T = 2000 and
NB = 0. The time step for simulations is dt = 0.00001. Details of
the numerical algorithm can be found in [3].

Similarly, we can consider the HCs for n×n part in the right-
lower corner of the scattering matrix. They lead to n con-
straints:

2v2j = (1− pj)
∏
k>j

pk, for j > 0. (37)

The component v0 of the vector v is obtained by requiring the
unit norm of v:

2v20 =
∏
j>0

pj +
∏
j<0

pj . (38)

Substituting (34)-(38) into (30) we find the scattering ma-
trix up to N phases φk, which can be gauged away. Taking
the absolute value squared of components of this matrix we
obtain transition probabilities, which indeed coincide with the
ones known for the bowtie model. For example,

P0→0 = (1− 2v20)2 =

1−
∏
j>0

pj −
∏
j<0

pj

2

. (39)

Such a solution of the bowtie model is considerably simpler
than the original one in [27].

D. Driven Tavis-Cummings model

DTCM is a LZ-chain model with equidistant slopes βn =
βn and couplings given in (6). Alternatively, its Hamiltonian
describes interaction of a bosonic mode with an arbitrary size
spin:

Ĥ = tâ†â+ g
(
â†Ŝ− + âŜ+

)
, (40)

where we used the fact that we can always set β = 1 by rescal-
ing time, as discussed in [3]. Implicitly, the model (40) de-
pends on the additional parameter NB , which is the number

of bosons in the state with the fully up-polarized spin. It is
known how to derive transition probabilities in this model by
taking some limit of the known solution of a much more com-
plex model [3]. The latter, however, has combinatorially large
phase space, so this process quickly becomes too involved.
The exception is for conditions when the spin is initially fully
polarized either down or up, i.e., when we start on the level
with, respectively, highest or lowest slopes. Then, according
to [4], transition probabilities to other states are described by
q-deformed binomial distributions. For example, let us intro-
duce parameters

a ≡ e−2πg
2NB , x ≡ e−2πg

2

, pn ≡ axn,
qn ≡ 1− pn, N ≡ 2S + 1. (41)

We know then from [3] that

|S11|2 = p2S1 = (ax)2S , |SN,N |2 = p2S2S = (ax2S)2S ,

|S12|2 = q1(p2S−11 + (42)

+ p2S−21 p2 + p2S−31 p22 + ...+ p2S−12 ),

|SN,N−1|2 = q2S(p2S−12S + p2S−22S p2S−1 + (43)

+ p2S−32S p22S−1 + . . .+ p2S−12S−1),

|S1N |2 = q1q2 . . . q2S .

Let us rewrite these elements in terms of x and NB :

|S12|2 =
x(NB+1)(2S−1)(1− xNB+1)(1− x2S)

1− x
.

|SN,N−1|2 =
x(NB+2S−1)(2S−1)(1− xNB+2S)(1− x2S)

1− x
.

In what follows, to simplify expressions, we will consider
only the case with NB = 0. Then

|S12|2 = x2S−1(1− x2S),

|SN,N−1|2 = x(2S−1)
2

(1− x2S)2/(1− x), (44)

|S1N | = (1− x)(1− x2) . . . (1− x2S).

At NB = 0 we have couplings

g21 = g2(2S), g22 = 2g2(4S − 2), g23 = 18g2(S − 1),

g22S = g2(2S)2, g22S−1 = g22(2S − 1)2. (45)

Equations (21) and (44) allow us to derive S22 and SN−1,N−1
explicitly for any DTCM chain:

S22 = x3S−2 − xS−1(1− x2S), (46)

SN−1,N−1 = x1+2S(S−2)
(

1− (x2s − 1)2

1− x

)
. (47)

ForN = 4, i.e., S = 3/2, this is sufficient to reconstruct all
elements of the transition probability matrix using the fact that
this matrix is doubly stochastic and that for bipartite models it
is symmetric:
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P̂ (S=3/2) = (48)

 x3 x2(1− x3) x(1 + x)(1− x)2(1 + x+ x2) (1− x)3(1 + x)(1 + x+ x2)
x2(1− x3) x(x3 + x2 − 1)2 (x2 − 1)(x3 + x2 + x− 1)2 x(1 + x)(1− x3)2

x(1 + x)(1− x)2(1 + x+ x2) (x2 − 1)(x3 + x2 + x− 1)2 x(x(x3 + x2 + x− 1)− 1)2 x4(1− x)(1 + x+ x2)2

(1− x)3(1 + x)(1 + x+ x2) x(1 + x)(1− x3)2 x4(1− x)(1 + x+ x2)2 x9

 .

We checked that this solution coincides with the one derived
in [3].

Let us now look at previously unexplored case withN = 5,
i.e., S = 2. The following elements of the transition probabil-
ity matrix are known from [3]:

P11 = x4, P12 = P21 = x3(1− x4),

P13 = P31 = x2(1− x3)(1− x4),

P14 = P41 = x(1− x2)(1− x3)(1− x4), (49)
P15 = P51 = (1− x)(1− x2)(1− x3)(1− x4),

P25 = P52 = x(1− x2)(1− x3)(1− x4)(1 + x+ x2 + x3),

P35 = P53 = x4(1− x3)(1− x4)(1 + x2)(1 + x+ x2),

P45 = P54 = x9(1− x4)(1 + x+ x2 + x3), P55 = x16.

Using the 2nd order HCs, we have

S22 = x(−1 + x3 + x4), (50)

S44 = x2(−1− x− x2 + x3 + x4 + x5 + x6). (51)

The trace formula (16) gives

S11 − S22 + S33 − S44 + S55 = 1,

from where we find

S33 = 1− x− 2x2 − x3 + 2x5 + x6 + x7. (52)

The remaining three elements P23, P24, P34 can be again ob-
tained using the fact that summation of elements of each col-
umn or each row of the transition probability matrix is equal
to one. We found:

P23 = P32 = x− 2x3 − 3x4 − x5 + 4x6 + 5x7 + 3x8 − x9 − 3x10 − 2x11 − x12,
P24 = P42 = 1− 2x− 2x2 + x3 + 4x4 + 6x5 − 4x7 − 6x8 − 4x9 + x10 + 2x11 + 2x12 + x13, (53)
P34 = P43 = x+ 2x2 − 4x4 − 7x5 − 4x6 + 3x7 + 8x8 + 9x9 + 4x10 − x11 − 4x12 − 4x13 − 2x14 − x15.

Figure 6 shows perfect agreement of Eqs. (49)-(53) with re-
sults of numerical simulations.

The ansatz (23) was not needed to solve N = 4 and N = 5
sectors. Rather we used Eqs. (13), (16), and (21) that are
common to all bipartite models. For the higher dimensional
DTCM sector with N = 6, however, counting free parame-
ters shows that even with additional input about phases and
transition probabilities from fully polarized states, we cannot
reconstruct all elements of the transition probability matrix.
Apparently, unlike the bowtie model, simple discrete symme-
tries plus HCs are already not sufficient to obtain complete
analytical understanding of DTCM. So, it seems that validity
of the ansatz (23) is important but this is not the last piece of
the puzzle about the origin of LZ-integrability.

IV. STOKES PHENOMENON IN MLZ MODELS

A. General case

Evolution equation with an MLZ Hamiltonian corresponds
to a system of ordinary differential equations with a single
irregular point in a complex plane at t → ∞. It has been dis-

cussed previously [31–33] that since the MLZ Hamiltonian
has no singular points at finite complex time values, it is pos-
sible to deform the time-evolution contour so that it connects
real t→ ±∞ limits with a contour that goes along a semicir-
cle with radiusR→∞. Deformations of time contour in both
upper and lower halves of the complex plane are allowed.

The advantage of this deformation is that if the integration
contour always has |t| → ∞ then the diabatic levels are al-
ways well separated, and the eigenvectors of the Hamiltonian
always coincide with diabatic states. Adiabatic approximation
predicts the amplitudes of solutions

ψn(t) = e
−i
∫ t
t0
εn(t) dt +O(1/t), n = 1, . . . , N, (54)

where εn is the adiabatic energy of the n-th eigenstate of the
Hamiltonian. Moreover, one does not need to know exact ex-
pressions for eigenvalues and eigenvectors because only non-
vanishing in |t| → ∞ limit terms contribute substantially to
Eq. (54). Thus, eigenvectors coincide with diabatic states and,
for MLZ models with all levels crossing at one point, we can
approximate

εn(t) ≈ βnt+
∑
m 6=n

|gnm|2

(βn − βm)t
. (55)
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FIG. 7. Contour C in complex time plane with |t| → ∞. Stokes
lines L1-L4 (dashed green) mark directions of highest positive or
negative ramp rates of asymptotic solutions. Four anti-Stokes lines
correspond to negative and positive parts of real and imaginary time
axes. Four Stokes sectors are marked by I, II, III, and IV. Each of
them, by definition, encloses space with one and only one anti-Stokes
line. So, in principle, neighboring Stokes sectors overlap in the vicin-
ity of Stokes lines. Arrows show the choice of the positive direction
(counterclockwise) of time evolution along the contour C. Scatter-
ing matrix is obtained by following contour C in the lower half of
the complex plane and crossing two Stokes lines, L1 and L2, from
sector I to sector III.

For definiteness, we will assume that t0 in (54) is taken at
infinite negative real values.

Asymptotic functions (54), however, cannot describe the
complete solution along the contour that goes near the irreg-
ular point (at infinity in our case), which is the essence of
the Stokes phenomenon [34, 35]. For example, the true so-
lution must be a single-valued function of t but, upon inte-
grating along the full circle C, Eq. (54) acquires the factor:
ψn(te2πi) → e2πηnψn(t), n = 1, . . . , N , where we intro-
duced

η̂ = diag{η1, η1, . . . , ηN}, ηn =
∑
m6=n

|gnm|2

(βn − βm)
. (56)

So, the true solution ψn(t) cannot behave as in Eq. (54) ev-
erywhere along the contourC. Let us define anti-Stokes lines
[36] along which solutions (54) do not grow or decay expo-
nentially in the limit |t| → ∞. Stokes sectors are defined then
as parts of the complex plane that contain one and only one
anti-Stokes line, as we additionally explain in Fig. 7. It is an
established mathematical fact that it is always possible to find
a set ofN solutions with asymptotic behavior (54) everywhere
within such a sector [38].

The problem is that knowledge of the leading term of the
solution in one Stokes sector is not sufficient to find asymp-
totic behavior of the solution in the full neighboring sector.
What can be shown, however, is that such a continuation is de-
scribed by transition matrices associated with the Stokes lines
[36]. Along these lines, the functions (54) have the highest
or lowest rates of the amplitude growth when approaching the
singular point at infinity.

Figure 7 shows that there are four Stokes lines in MLZ
models given by t = Rei(−3π/4+(k−1)π/2), where R ∈
(0,+∞), and k = 1, 2, 3, 4, and there are four anti-Stokes
lines that are negative and positive parts of the real and imag-
inary axes. Thus, the covering of the complex plane by
Stokes sectors is relatively simple: there are only four of them,
marked by I − IV . Note that neighboring sectors overlap
along Stokes lines.

Let us now assume that at t = −∞ on the real time axis
the state vector is a sum of solutions (54) taken with some
amplitudes aIn. In sector-I this solution can be analytically
continued, and along the contour C with infinite radius we
have

ψ(t) =

N∑
n=1

aInψ
I
n(t), (57)

whereψIn(t) are solutions of the full Schrödinger equation that
have asymptotics (54) in the whole sector-I. Our goal is to find
the scattering matrix for evolution from t = −∞ to t = +∞
on the real time axis, which is essentially the same as to find
how the functionψ(t) defined in (57) behaves near the point of
crossing of the positive real axis with the contourC, which is
inside sector-III. To get there along the contour C, we should
first find solution in the intermediate sector-II.

Solutions with asymptotic behavior (54) that can be ana-
lytically continued throughout the whole sector-II have dif-
ferent subleading contributions from functions ψIn(t) at the
same time values in the region where the two sectors overlap.
Therefore, the vector amplitudes in overlapping sectors must
be related:

aII = Ŝ1a
I , (58)

and in sector-II, the state vector is given by

ψ(t) =

N∑
n=1

aIIn ψ
II
n (t), (59)

where ψIIn (t) are solutions of the Schrödinger equation that
have leading asymptotic values (54) everywhere inside sector-
II.

More generally, after the time-integration contour crosses a
k-th Stokes line, we can switch to the basis of states that have
leading behavior (54) everywhere inside (k+1)-st Stokes sec-
tor. Amplitudes in the previous and new bases become con-
nected by some transition matrix Ŝk. So, ψ(t) defined in (57)
can be rewritten as

ak+1 = Ŝk . . . Ŝ1a
I , (60)

ψ(t) =

N∑
n=1

a(k+1)
n ψ(k+1)

n (t), k = 1, 2, . . . .

In (60) and later we will identify indexes I, II, III, ... with
1, 2, 3, ....

Matrices Ŝk are nontrivial, i.e., there is no known general
way to write them in a closed form for an arbitrary ordinary
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differential equation with time-dependent coefficients, includ-
ing for high order equations that describe MLZ models. How-
ever, several properties of these matrices can be rigorously
proved.

First, from the fact that solutions ψkn(t) and ψ(k+1)
n (t) in the

neighboring sectors can be simultaneously analytically con-
tinued in the overlapping region between sectors k and (k+1),
it follows that matrix Ŝk is time independent. Second, since
such two solutions with the same leading exponents along the
Stokes line are different only by asymptotically subdominant
contributions in the overlapping region, diagonal components
of Ŝk are all units. Third, one can show [37] that inside the
k-th Stokes sector if one moves along the contourC then new
sub-leading exponents in solutionsψkn(t) appear sharply in the
vicinity of the k-th Stokes line. Therefore, further along this
contour, amplitudes of terms with smaller ramp rate along the
Stokes line will be influenced by amplitudes of terms with the
higher rates but not vice versa. Hence, matrices Ŝk have a
triangular form, i.e., they have all zero entries either above or
below the main diagonal when state indexes follow the order
of the level slopes. More rigorous proof of this fact can be
found in [38].

In our MLZ models, alongL1, we have leading asymptotics
of diabatic states

ψL1
n ∼ eβn|t|

2/2.

Since we assume that β1 > . . . > βN , we have that, along
L1, the state with index n dominates over states with higher
indexes n′ > n, so the corresponding transition matrix has the
following triangular form:

Ŝ1 =


1 0 0 · · · 0
x21 1 0 · · · 0
x31 x32 1 · · · 0

...
...

...
. . .

...
xN1 · · · · · · xN,N−1 1

 , (61)

with some constant parameters xij , i, j = 1, . . . , N . Along
Stokes line L2, basis states have opposite ramp rate order, i.e.,

ψL2
n ∼ e−βn|t|

2/2,

so the transition matrix is again triangular but has nonzero
elements in the upper angle:

Ŝ2 =


1 x12 x13 · · · x1N
0 1 x23 · · · x2N
...

...
. . .

...
...

0 · · · 0
. . . xN−1,N

0 · · · 0 0 1

 . (62)

Analogously, we have:

Ŝ3 =


1 0 0 · · · 0
y21 1 0 · · · 0
y31 y32 1 · · · 0

...
...

...
. . .

...
yN1 · · · · · · yN,N−1 1

 , (63)

Ŝ4 =


1 y12 y13 · · · y1N
0 1 y23 · · · y2N
...

...
. . .

...
...

0 · · · 0
. . . yN−1,N

0 · · · 0 0 1

 , (64)

with some parameters yij , i, j = 1, . . . , N .
Note also that if we go around the closed contour C,

we should obtain the original state, so ψ(t)t=−∞ =∑N
n=1 a

V
n ψ

V
n (t) =

∑N
n=1 a

I
nψ

I
n(t). Using Eq. (60) we find

1̂ = Ŝ4Ŝ3Ŝ2Ŝ1e
2πη̂, (65)

where the last factor on the right hand side follows from the
integral in (54) over the full cycle C.

B. Scattering matrix

Similarly to Eq. (65), the desired scattering matrix for tran-
sition from large negative to large positive real time values is
given by

Ŝ = Ŝ2Ŝ1e
πη̂. (66)

From Eq. (66), we find that the number of unknown param-
eters on the right hand side is lower than the number of en-
tries of the scattering matrix Ŝ. So, if the scattering matrix is
known, we can reconstruct Stokes matrices Ŝk. For example,
comparing the last columns and rows in both sides of Eq. (66)
we have

xNj = SNje
−πηj , xjN = SjNe

−πηN , (67)

where j = 1, . . . , N − 1. Comparing the next to the last
columns and rows and using (67) we can find parameters
xN−1,j and xj,N−1, and so on. At each step of such calcu-
lations we would have to solve only linear equations although
final dependence of parameters xij on Sij would be nonlin-
ear. So, the first feature of Stokes phenomenon in MLZ sys-
tems is that knowledge of the scattering matrix determines all
independent elements of the Stokes matrices. This is not typi-
cal for systems of ordinary differential equations, and follows
from relative simplicity of covering of the complex plane by
Stokes sectors in MLZ models.

The second interesting property follows from the fact that
the number of independent parameters xij is even lower than
the number of elements of the scattering matrix. There are
N remaining equations for diagonal elements of matrices in
both sides of Eq. (66). These equations produce nontrivial
constraints on scattering amplitudes, i.e., on the physically
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important characteristics. For example, the first pair of such
constraints reads

SNN = eπηN , (68)
SN−1,N−1 = eπηN−1 + SN−1,NSN,N−1e

−πηN .

Comparing Eqs. (68) and (20), we find that Eqs. (68) are noth-
ing but the HCs, which were derived for MLZ theory in [5] by
a different approach (expression for SNN has been known for
much longer time and is often called the Brundobler-Elser for-
mula [6]).

Although we merely reproduced already known Eq. (20),
its derivation in this section by exploring the Stokes phe-
nomenon has useful consequences. First, so far, our discus-
sion of transition matrices Ŝk has not used unitarity of evolu-
tion along the real time axis. Therefore, formulas such as (68)
are valid even if the Hamiltonian is not Hermitian. Second,
unlike the derivation in [5], it is now clear that there are no
other similar nontrivial constraints in MLZ theory, unless we
impose additional symmetries on the model.

C. Case of bipartite crossing at one point

Let us now consider the unitary evolution of a bipartite sys-
tem of levels crossing at one point. From (13) and (65)-(66)

we get

Θ̂ŜΘ̂e−πη̂ = Ŝ4Ŝ3. (69)

or

Ŝ = eπη̂Θ̂Ŝ4Ŝ3Θ̂. (70)

As we discussed in the previous subsection, there is a
unique way to relate matrices Ŝ3, Ŝ4 with Ŝ, and consequently
with Ŝ1 and Ŝ2. Comparing (70) with (66) we find

Ŝ3 = e−πη̂Θ̂Ŝ1Θ̂eπη̂, Ŝ4 = e−πη̂Θ̂Ŝ2Θ̂eπη̂, (71)

or in components

yij = (−1)fi+fjeπ(ηj−ηi)xij . (72)

As an example, let us look at the 3-state bowtie model with
β1 > β2 > 0:

i
d

dt
ψ = Ĥbt(t)ψ, Ĥbt =

 β1t 0 g1
0 β2t g2
g1 g2 0

 . (73)

Evolution with this Hamiltonian is described by the scattering
matrix [27, 29]

Ŝbt =

 s11 s12 s13
s∗12 s22 s23
−s∗13 −s∗23 s33

 =

 p1 −
√
p1(1− p1)(1− p2) i

√
(1− p1)(1 + p1p2)

−
√
p1(1− p1)(1− p2) 1− p1 + p1p2 i

√
p1(1− p2)(1 + p1p2)

i
√

(1− p1)(1 + p1p2) i
√
p1(1− p2)(1 + p1p2) p1p2

 , (74)

where we denoted

p1 ≡ e−
π|g1|

2

β1 , p2 ≡ e−
π|g2|

2

β2 . (75)

In the first equality in (74) we used the symmetry (13) of bi-
partite models, and in the second equality we wrote the known
explicit solution, in which we assumed that the gauge for dia-
batic states is chosen to remove nontrivial phases of scattering
amplitudes. Matrix η̂ has components

η̂ = diag

(
|g1|2

β1
,
|g2|2

β2
,−|g1|

2

β1
− |g2|

2

β2

)
. (76)

Substituting (74) and (76) into (66) we find equations for xij ,
which are straightforward to solve:

Ŝ1 =

 1 0 0
s∗12p1 + s23s

∗
13/p2 1 0

−s∗13p1 −s∗23p2 1

 , (77)

Ŝ2 =

 1 s12p2 + s13s
∗
23/p1 s13/(p1p2)

0 1 s23/(p1p2)
0 0 1

 , (78)

and from (71) we have

Ŝ3 =

 1 0 0
s∗12p2 + s23s

∗
13/p1 1 0

−s∗13/(p1p2) −s∗23/(p1p2) 1

 , (79)

Ŝ4 =

 1 s12p1 + s13s
∗
23/p2 −p1s13

0 1 −p2s23
0 0 1

 . (80)

D. Dual semi-infinite MLZ models

As an application of the above formalism, we will show
now that with any N -state bipartite model we can identify a
dual to it MLZ model that describes interactions of N − 1
semi-infinite Landau-Zener chains. If one of these models is
solvable then we automatically know solution of its dual one.

First, we note that the scattering matrix between oscillatory
non-decaying asymptotic functions is well defined in MLZ
models because both negative and positive pieces of the real
time axis coincide with anti-Stokes lines. What is also special
about MLZ models whose diabatic levels cross in one point is
that there is another, namely the imaginary time, axis with the
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same property. Therefore, we can similarly define the scatter-
ing matrix Ŝ′ for evolution from t = −i∞ to t = i∞ along
the imaginary time.

Consider evolution (1) along the imaginary time axis. It is
convenient then to return to real time by replacing t = iτ ,
where τ ∈ (−∞,+∞) is real. We find then

i
d

dτ
ψ = Ĥ ′(τ)ψ, Ĥ ′ ≡ −B̂τ + iÂ, (81)

where we again assume that B̂ = diag(β1, . . . , βN ) is non-
degenerate diagonal and Â is a Hermitian matrix with zero
diagonal elements.

Imagine that at τ → −∞ the state vector ψ(τ) is normal-
ized, |ψ(τ)τ→−∞| = 1, and that its oscillating part behaves as
ψ(τ)τ→−∞ ∼ eiβnt

2

. The element of the scattering matrix,
S′mn, is then defined to be the time-independent prefactor of
the amplitude of the solution term that oscillates as ∼ eiβmτ

2

at τ → +∞.
Let us assume that matrix Â describes bipartite couplings,

i.e., that diabatic states can be split into two groups, G1 and
G2, so that states of one group are coupled directly only to
states of the other group. Then, according to previous dis-
cussion in this section, we can determine transition matrices
through Stokes lines in terms of scattering matrices of the evo-
lution with MLZ Hamiltonian Ĥ = B̂t+ Â.

In terms of transition matrices, scattering matrix for evolu-
tion (81) is given by

Ŝ′ = eπη̂/2Ŝ3Ŝ2e
πη̂/2. (82)

To see this, we note that if t0 in (54) were chosen to be on the
negative imaginary axis, we would be able to repeat previous
arguments leading to the formula analogous to (66). However,
changing t0 to be real and negative results in additional fac-
tors: Ŝk → eπη̂/2Ŝke

−πη̂/2, which account for the difference
between (82) and (66).

Thus, we conclude that knowledge of the solution of some
bipartite MLZ model automatically results in knowledge of
the scattering matrix of the model (81). The latter, however,
describes non-Hermitian evolution, which is formally not an
MLZ model. Nevertheless, consider the following secondary
quantized quadratic Hamiltonian of N interacting bosonic
modes:

ĤB = −
∑
k∈G1

βktâ
†
kâk +

∑
s∈G2

βstb̂
†
sb̂s +

+
∑
k∈G1

∑
s∈G2

(
iAksâ

†
k b̂
†
s − iA∗ksâk b̂s

)
. (83)

This Hamiltonian is Hermitian, and in the Fock space of pop-
ulation states |n1, . . . , nN 〉 it has the form (1). Unitary evolu-
tion with ĤB conserves the difference between the total num-
ber of bosons between the two groups. So the phase space
splits into invariant subspaces that are different by the value of
this conserved number. States in each subspace can be marked
by N − 1 discrete indexes.

Let us introduce the following vector of operators

φ̂ ≡



â1
...
âM
b̂†1
...

b̂†N−M


, (84)

and consider its evolution with the Hamiltonian (83) in the
Heisenberg picture:

i
d

dt
φ̂ = [φ̂, ĤB ]. (85)

This equation is equivalent to

i
d

dt
φ̂ = Ĥ ′φ̂, (86)

where Ĥ ′ has the same form as defined in Eq. (81). This ob-
servation means that if the scattering matrix Ŝ′ is known for
evolution equation (81), we automatically know asymptotic
values of operators in the Heisenberg picture of the model
(83). For example,

ân(+∞) =
∑
k∈G1

S′nkâk +
∑
s∈G2

S′nsb̂
†
s, (87)

where we identify âk and b̂†s with, respectively, âk(−∞) and
b̂†s(−∞). From such expressions we can find arbitrary cor-
relators of operators in the final state. For example, let us
assume that the initial state is characterized by well defined
numbers of bosons of each atomic type. The final population
of the bosonic mode n ∈ G1 is then given by

〈â†n(+∞)ân(+∞)〉 = (88)

=
∑
k∈G1

〈â†kâk〉|S
′
nk|2 +

∑
s∈G2

〈b̂sb̂†s〉|S′ns|2,

where the averaging is over the initial state at t → −∞, so
cross-correlators average to zero. Knowledge of such correla-
tors can be then used to derive transition probabilities between
any pair of diabatic states of the Hamiltonian (83), as it was
done in [14] for the simplest case with N = 2.

Summarizing, any bipartite MLZ model of the form (1),
has a dual counterpart with the Hamiltonian (83). The latter
is also an MLZ model but with the infinite number of inter-
acting states. Scattering matrices in dual models are related
by equations (66) and (82). Namely, assuming knowledge of
the scattering matrix in any one of these equations, we can de-
rive triangular matrices Ŝk, k = 1, 2, 3, 4 given by (61), (62)
and (63), and then obtain the scattering matrix from the other
equation.

E. Coherent conversions between molecular and atomic
condensates

Models of the type (83) have actually been encountered in
physics in relation to atomic condensate creation, which is in-
duced by applying a linearly time-dependent magnetic field,
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from a molecular condensate during the passage through the
Feshbach resonance [11, 14, 39]. The number of molecules in
the molecular condensate is assumed macroscopic so that this
number is absorbed in the definition of coupling constants in
the mean field approximation. Coupling terms in (83) corre-
spond then to quantum coherent chemical reaction channels:

[AB]→ Ak +Bs,

meaning that molecules [AB] can split into pairs of atoms A
and B. Single atoms may have internal states marked by in-
dexes k and s. When the external field is far from the reso-
nance, this reaction is suppressed. By sweeping the magnetic
field linearly throughout the resonance, we can control the
number of single atoms that we produce under condition that
this sweep is much faster than the lifetime of the molecular
condensate. Internal states can be different localized modes in
a trap that interact differently with the linearly time-dependent

external magnetic field. This leads to differences in slope pa-
rameters in (83). So far, only simplest cases without internal
states of the same atoms have been studied [11, 39]. Hence,
below we will use duality to explore the effect of competition
between different channels of this quantum coherent chemical
reaction.

For demonstration, we consider the case when the first
atomic field has no internal states interacting with the external
field while the second atom has two such states. The Hamil-
tonian of our model is

Ĥ
(3)
B = β1tb̂

†
1b̂1 + β2tb̂

†
2b̂2 + (89)

+
(
ig1â

†b̂†1 + ig2â
†b̂†2 + h.c

)
,

where we will assume that β1 > β2 > 0.
The corresponding dual model is the three-state bowtie

model, whose scattering matrix is given in (74) and transi-
tion Stokes matrices are given in Eqs. (77)-(80). Substituting
them in (82) we find

Ŝ′ =


p−11 p−11

√
(1−p1)(1−p2)

p2
ip−11

√
(1−p1)(1+p1p2)

p2

p−11

√
(1−p1)(1−p2)

p2
(p1p2)−1 − (1− p1)p−11 i(p1p2)−1

√
(1− p2)(1 + p1p2)

−ip−11

√
(1−p1)(1+p1p2)

p2
−i(p1p2)−1

√
(1− p2)(1 + p1p2) (p1p2)−1

 . (90)

Let us now look at the simplest and experimentally most relevant case when all atomic modes are initially unpopulated. Final
average numbers of atoms in each of the three atomic types then read:

〈â†(+∞)â(+∞)〉 = |S′31|2 + |S′32|2 = e2π(|g1|2/β1+|g2|2/β2) − 1,

〈b̂†1(+∞)b̂1(+∞)〉 = |S′13|2 = eπ(2|g1|2/β1+|g2|2/β2)
(

1− e−π|g1|2/β1

)(
1 + e−π(|g1|2/β1+|g2|2/β2)

)
, (91)

〈b̂†2(+∞)b̂2(+∞)〉 = |S′23|2 = e2π(|g1|2/β1+|g2|2/β2)
(

1− e−π|g2|2/β2

)(
1 + e−π(|g1|2/β1+|g2|2/β2)

)
.

These equations show that new reaction channels make mul-
tiplicative effect on the number of produced single atoms and
that relative importance of different reaction channels is ex-
ponentially sensitive to couplings and the chemical potential
crossing rates.

V. DISCUSSION

We considered the special but important subclass of MLZ
models with all diabatic levels crossing in one point. Our goal
was to broaden the scope of exact results by exploring specific
features that are common to all known solvable models. We
identified several such features.

First, it is the bipartite structure of all solvable models, i.e.,
all of them describe interactions between two groups of states,
such that direct couplings between diabatic states within the
same group are zero. We found that this simple symmetry
leads to Eqs. (13), (16), and (21) that are not encountered in
other MLZ models and constrain elements of the scattering

matrix considerably.

Our second finding is the additional symmetry (23), which
is rather the ansatz with phases of scattering amplitudes cho-
sen to be removable by gauge transformations. Both analytical
and numerical studies showed that this ansatz worked for all
known solvable models.

One consequence of the validity of this ansatz is that the
scattering matrix can be parametrized by a set of orthonor-
mal vectors with real entries. In known solvable models, the
latter are always polynomials of some parameter combina-
tions. So, we can speculate that this property relates MLZ-
integrability to the theory of orthogonal polynomials, whose
importance for mathematical physics has been well recog-
nized [40]. Moreover, all independent hierarchy constraints
(20), which generally tell very little about the transition prob-
ability matrix, now lead to direct constraints on it. In the
bowtie model, these constraints are sufficient to derive the
complete transition probability matrix. However, in the case
of the driven Tavis-Cummings model we achieved only lim-
ited success by solving two low-dimensional sectors. Hence,
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there should be other symmetries that are to be discovered in
order to understand the integrability of the DTCM.

Finally, we showed that the Stokes phenomenon in all MLZ
models has several simplifying properties that allow determi-
nation of all nontrivial Stokes multipliers from the scatter-
ing matrix. For bipartite models this leads to duality with a
new solvable class of MLZ systems. Models of this class de-
scribe interactions of molecular and atomic Bose condensates
in time-dependent fields.

Our results definitely do not exhaust all interesting proper-
ties of bipartite models. It seems to us that future progress will
be achieved by understanding how and why various discrete
and dynamic symmetries constrain Stokes multipliers in MLZ
systems. Achieving this goal will enable discoveries of new
classes of explicitly time-dependent solvable systems.

Appendix A: Composite solvable model with particle-hole
symmetry

First, we note that (7), is related to the Hamiltonian that
describes interaction of three fermionic modes:

Ĥf =

3∑
n=1

βntĉ
†
nĉn +

+
(
g12ĉ

†
1ĉ
†
2 + g13ĉ

†
1ĉ
†
3 + g23ĉ

†
2ĉ
†
3 + h.c.

)
. (A1)

We will assume that β1 > β2 > β3 > 0. For evolution
with Ĥf , Heisenberg equations for annihilation and creation
operators read:

i
d

dt
ĉn = βntĉn +

3∑
m=1;m6=n

(−1)ηnmgnmĉ
†
m,

i
d

dt
ĉ†n = −βntĉ†n −

3∑
m=1;m6=n

(−1)ηnmgnmĉm, (A2)

where ηnm = 1 if m < n and ηnm = 0 if m > n. Equations
(A2) for operators are the same as equations for amplitudes in
the model (7), so if we know the scattering matrix Ŝ for the
model (7) we can connect also values of operators at t = ±∞:

ĉ1(+∞)
ĉ2(+∞)
ĉ3(+∞)

ĉ†3(+∞)

ĉ†2(+∞)

ĉ†1(+∞)

 = Ŝ



ĉ1
ĉ2
ĉ3
ĉ†3
ĉ†2
ĉ†1

 , (A3)

where we identify ĉi ≡ ĉi(−∞), e.t.c.. Due to the particle-
hole symmetry, evolution equations (A2) satisfy conditions of

the No-Scattering theorem in [12], according to which ele-
ments of the scattering matrix Ŝ in (A3) along the second main
diagonal are all zero:

S16 = S25 = S34 = S43 = S52 = S61 = 0.
Next, consider evolution with the Hamiltonian (A1) in the

sector that contains the vacuum state. Other orthogonal states
in this sector include:

|12〉 ≡ ĉ†1ĉ
†
2|0〉, |13〉 ≡ ĉ†1ĉ

†
3|0〉, |23〉 ≡ ĉ†2ĉ

†
3|0〉. (A4)

In the basis (A4) the Hamiltonian (A1) reads:

Ĥbt
4 =

 0 g12 g13 g23
g12 (β1 + β2)t 0 0
g13 0 (β1 + β3)t 0
g23 0 0 (β2 + β3)t

 .

(A5)
It describes the four-state bowtie model, whose expression for
the transition probability matrix is known exactly [27]:

P̂ bt =

 (p1p2p3)2 pq1 pp1q2 pp1p2q3
pq1 p21 p1q1q2 p1p2q1q3
pp1q2 p1q1q2 (1− p1q2)2 p21p2q2q3
pp1p2q3 p1p2q1q3 p21p2q2q3 (1− p1p2q3)2

 ,

(A6)
where

p1 ≡ e−πg
2
12/(β1+β2), p2 ≡ e−πg

2
13/(β1+β3),

p3 ≡ e−πg
2
23/(β2+β3), qn = 1− pn. (A7)

We can now express transition probabilities in the model
(A5) via transition probabilities in the model (7). For exam-
ple, let initial state be |0〉 and we consider the probability to
find the fermion ĉ1 at the end of evolution:

〈n̂1〉 = 〈0|ĉ†1(+∞)ĉ1(+∞)|0〉 = |S14|2 + |S15|2. (A8)

On the other hand, this is the probability of that, in the four-
state bowtie model, the final state is either |12〉 or |13〉:

〈n̂1(+∞)〉 = P bt12,0 + P bt13,0, (A9)

where the upper index “bt” means that this is the element of
the transition probability matrix of the bowtie model (A5).
Similarly, we find

〈n̂2(+∞)〉 = P bt12,0 + P bt23,0 = |S24|2 + |S15|2, (A10)

〈n̂3(+∞)〉 = P bt13,0 + P bt23,0 = |S24|2 + |S14|2. (A11)

From Eqs. (A8)-(A11), we derive

|S14|2 = P bt13,0, |S15|2 = P bt12,0, |S24|2 = P bt23,0.(A12)

Considering other initial conditions, we can reconstruct all
other elements of the probability matrix in the six-state model
with the Hamiltonian (7):
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P̂ =


p21p

2
2 p21p2q2q3 p1p2q1q3 pp1q2 pq1 0

p21p2q2q3 p21(1− p2q3)2 p1q1q2 pp1p2q3 0 pq1
p1p2q1q3 p1q1q2 (p− p1)2 0 pp1p2q3 pp1q2
pp1q2 pp1p2q3 0 (p− p1)2 p1q1q2 p1p2q1q3
pq1 0 pp1p2q3 p1q1q2 p21(1− p2q3)2 p21p2q2q3
0 pq1 pp1q2 p1p2q1q3 p21p2q2q3 p21p

2
2

 . (A13)

Appendix B: Solvable five-state bipartite model

P1→1

P1→2

P1→3

P1→4

P1→5
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g

P
1
→
n

FIG. 8. Transition probabilities from the level 1 to all diabatic states
in the five-state model with the Hamiltonian (B1) and constraints
(B2) at τ3 = τ4 = τ5 = 1. Solid curves are predictions of Eq. (B4)
and discrete points are results of numerically calculated P1→n =
|Un1(T,−T )|2, at T = 100. The time step for simulations is dt =
0.01. The slopes are chosen as b = 1, b3 = 4, b4 = 2, b5 = −3,
and the couplings are chosen to depend on a single parameter g as
g13 = g

√
b3 − b, g14 = g

√
b4 − b, g15 =

√
2g
√
b− b5.

The general bipartite five-state model has the Hamiltonian

Ĥ =


bt 0 g13 g14 g15
0 −bt g23 g24 g25
g13 g23 b3t 0 0
g14 g24 0 b4t 0
g15 g25 0 0 b5t

 , (B1)

where we used the fact that one can fix slopes of any two levels
by gauge transformation and time-rescaling. To find parame-
ters at which this model is solvable, we follow the same steps
as in solution of the four-state model in Eq. (2), which was
developed in [24]. First, we add different constant parame-
ters to the diagonal of the Hamiltonian, so that the pattern of
diabatic level crossings looks like Fig. 1(a). Next, imposing
integrability conditions [24], we determine the constraints on
parameters that make this model solvable. We then apply the
semiclassical ansatz, as it is explained in [24] in order to de-
rive transition probabilities. Finally, we set constant parame-
ters at the main diagonal of the Hamiltonian to zero and obtain
the model of the type (B1) with parameters that correspond to
the already known transition probability matrix.

This whole procedure is straightforward but quite lengthy,
so we will only list the final results. We found that solv-
able models, up to redefinition of indexes, correspond to level
slopes b3 > b4 > b > 0 > −b > b5, and the couplings
satisfying the following constraints:

g213
b3 − b

+
g214
b4 − b

+
g215
b5 − b

= 0,

g2i = τig1i

√
bi + b

bi − b
, i = 3, 4, 5, (B2)

where τi is the sign of g2i/g1i which can be taken as either 1
or −1. Depending on the signs of τi’s, there are three phases
in this model that correspond to different forms of transition
probability matrices. Let

p3 = e
− 2πg2

13
|b−b3| , p4 = e

− 2πg2
14

|b−b4| ,

p5 = p3p4 = e
− 2πg2

15
|b−b5| , qk ≡ 1− pk. (B3)

For τ3 = τ4 = τ5 = 1, we found

P̂ =


p23p

2
4 q25 p3p4q3 p23p4q4 p3p4q5

q25 p23p
2
4 p3p4q3 p23p4q4 p3p4q5

p3p4q3 p3p4q3 p3 p3q3q4 q3q5
p23p4q4 p23p4q4 p3q3q4 (p4 + q3q4)2 p3q4q5
p3p4q5 p3p4q5 q3q5 p3q4q5 p23p

2
4

 ,

(B4)

for τ3 = τ4 = −τ5 = 1:

P̂ =


p23p

2
4 0 p3p4q3 p23p4q4 q5

0 p23p
2
4 q3 p3q4 p3p4q5

p3p4q3 q3 p23 p3q3q4 0
p23p4q4 p3q4 p3q3q4 (p4 + q3q4)2 0
q5 p3p4q5 0 0 p23p

2
4

 ,

(B5)

and for τ3 = −τ4 = −τ5 = 1:

P̂ =


(p3p4 − q3q4)2 p3q

2
4 p3q3 p4q4 p4q5

p3q
2
4 p23p

2
4 q3 p3p4q4 p3p4q5

p3q3 q3 p23 0 0
p4q4 p3p4q4 0 p24 q4q5
p4q5 p3p4q5 0 q4q5 p23p

2
4

 .

(B6)

Figure 8 compares some of these predictions to results of our
numerical simulations. The agreement is excellent.
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