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We use homodyne detection to monitor the radiative decay of a superconducting qubit. According
to the classical theory of conditional probabilities, the excited state population differs from an
exponential decay law if it is conditioned upon a later projective qubit measurement. Quantum
trajectory theory accounts for the expectation values of general observables, and we use experimental
data to show how a homodyne detection signal is conditioned upon both the initial state and
the finally projected state of a decaying qubit. We observe, in particular, how anomalous weak
values occur in continuous weak measurement for certain pre- and post-selected states. Subject to
homodyne detection, the density matrix evolves in a stochastic manner, but it is restricted to a
specific surface in the Bloch sphere. We show that a similar restriction applies to the information
associated with the post-selection, and thus bounds the predictions of the theory.

I. INTRODUCTION

Exponential decay is a fundamental process in classi-
cal and quantum physics [1} 2]. While the fraction of a
large ensemble of systems surviving decay with a rate v
until any given time t is represented by an exponential
law, exp(—~t), if the radiative decay of a single system is
monitored as a function of time, its actual state evolves
in a conditional manner and differs in general from the
exponential behavior [3H5]. In a similar way to how the
state of a quantum system evolves in time subject to in-
formation retrieval from measurements, our probabilistic
description of a system at a given time in the past is also
influenced by information retrieved after that time. To
illustrate this, consider how the exponential decay law is
modified if we observe the time evolution of a single quan-
tum (or classical) system for which we know the state
at a given final time 7. If an initially excited two-level
system, decaying with a rate <, is observed to be still
in its excited state at time T, a previous measurement
could not possibly have found the system in its ground
state, i.e., the exponential decay is replaced by a con-
stant unit excitation probability as illustrated in Fig.
If, on the other hand, the system is found in the ground
state at the finite time 7', with what probability would
one have found it in the excited state before T7 This
is a simple exercise in conditional probabilities [6]: Let
P(a,t; g, T) denote the joint probability that the initially
excited system is in state |a) = |e) or |g) at time ¢ and
in the ground state at time 7. These joint probabilities
can be written in terms of the conditional probabilities,
P(e,t;9,T) = P(e,t)P(g,Tle,t) = e (1 — e 7T71),
and P(g,t;9,T) = P(g,t)P(g,Tlg,t) = (1 —e77) x L.
The excited state probability at time ¢, conditioned on
the initial excited and final ground state at time 7T, is
thus given by the ratio,
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Figure 1.  Modification of exponential decay with known,
classical final states. (a), We consider a two-level system de-
caying with a rate v. (b), If the system is initialized in the
excited state |e) at ¢ = 0 the probability to find the system
in the excited state unconditioned on any later information
is given by P(e,t) = exp(—yt). However, later knowledge of
the state at a final time T alters the excited state probability.
The red curve shows P(e,t|le,T) and the blue curve shows
P(e,t|g,T) for T = 1/~.

which, as shown in Fig. I}, interpolates smoothly between
unity at ¢ = 0 and zero at ¢t = T. Equation reflects
the predictions we can make about the system state, i.e.,
the measurement at time 7" does not impose a physical
interaction with the system at time ¢; it merely updates
our (present) knowledge about it.

In this article we consider measurements by homodyne
detection of the field emitted by a quantum system pre-
pared in an initial state and eventually measured in a
given final state. Measurements on quantum systems
subject to pre- and post-selection have been subject to
theoretical and experimental analysis [THIT], 13HI5] and
can be generally described with the Past Quantum State
(PQS) formalism [I6]. Here we use this formalism to
analyze the outcome of homodyne detection of the sig-
nal emitted during spontaneous decay by a qubit system,
conditioned on both its initial preparation and on a later
projective detection, and we show how anomalous weak
values in the continuous measurement signal emerge for



certain pre- and post-selected states. We then exam-
ine how the initial and final states, together with the
continuous measurement record, combine to describe the
probability distribution of different qubit observables at
any given time: Supplementing the stochastic evolution
of the quantum system conditioned on the measurement
record obtained before a given time ¢ with the informa-
tion accumulated after time ¢, we observe that the PQS
predictions are at any time confined to certain regions in
the Bloch vector picture.

This article is organized as follows. In Sec. [[I} we first
describe the experimental setup and present the past
quantum state theory. We then compare our experi-
mental signal arising from homodyne detection of the
radiation emitted by the qubit, conditioned on its ini-
tial preparation and final projective measurement, to the
predictions of PQS theory. In Sec. [T, we assess the
back-action on the quantum emitter due to homodyne
detection of the radiated field, and we determine effective
Bloch vector components yielding predictions for projec-
tive qubit measurements. Sec. [[V] concludes the article.

II. PREDICTION AND RETRODICTION OF
THE HOMODYNE SIGNAL FROM A DECAYING
TWO-LEVEL EMITTER

Our experiment is realized in a hybrid two-level system
which behaves as a quantum emitter that when initially
prepared in the excited state |e) radiates at its resonant
frequency wp/2m = 6.541 GHz. The emitter is comprised
of a transmon qubit embedded in a 3D aluminum cavity
[17, 18] connected to a 50 § transmission line. The in-
teraction between the emitter and the transmission line
is described by a Hamiltonian Hj,g o afo_ + ao4, where
a'(a) is the creation (annihilation) operator for a photon
in the transmission line, and o4 (o_) is the pseudo-spin
raising (lowering) operator. The strength of this interac-
tion is given by the Purcell enhanced [I9] radiative decay
rate v = 1.628 us~! into the transmission line. We use a
near-quantum-limited Josephson parametric amplifier to
perform homodyne detection of the fluorescence from the
excited |e) to ground state |g) transition. The homodyne
measurement signal is proportional to the amplitude of a
specific field quadrature, a'e’® 4+ ae~*?, and by virtue of
the interaction Hamiltonian is a measurement of the cor-
responding emitter dipole o_e’® + o e, By adjusting
the homodyne phase ¢ = 0, the resulting homodyne sig-
nal conveys information about the o, dipole observable
of the qubit [3].

Using a classical drive, we may prepare the emitter in
an arbitrary initial superposition state. As the qubit de-
cays, the master equation for the density matrix yields
the mean dipole and, hence, predicts the mean value of
the time dependent emitted signal, as measured by homo-
dyne detection. If we also know the outcome of a later,
projective measurement on the system, the expected out-
come of the homodyne measurement changes and is given

by the past quantum state theory, which generalizes our
introductory classical analysis of joint probabilities to
quantum systems.

In quantum mechanics, a general measurement is de-
scribed by POVMs, i.e., a set of operators M, satisfying
>, M M, = 1. If the system at time ¢ is described by
the density matrix p;, the probability for outcome m is
P(m) = Tr(M,,p; M), which coincides with Born’s rule
in the case of projective measurements.

The POVM operators associated with a homodyne flu-
orescence detection signal V', obtained with a detector
efficiency ), are given by [20] [21]

1
1 T —v? ~dt
My = a1 — — _ _
v <27r7dt> ¢ ( 9 7 +vme V>7
(2)
and satisfy [ M{, MydV = 1. The probability for the
measurement to yield a value V is

P(V) = Te(My pi M)

1 2
= Nz exp <2’Ydt> (14 nv{oz)V) 3)

o1 o < (V- ﬁ’y(aa)dt)z)
W 2mydt P 2~ydt ’

leading to the expected average value, V =
JVP(V)dV = /iy (0,) dt, with characteristic Gaussian
fluctuations.

If the outcome of later measurements on the system
are available, they contribute to our knowledge about
the system at time ¢ and the resulting modification of the
outcome probabilities for the earlier measurement can be
written [16]:

Tr(M,,p; M} E
P(mat)_ r( P - t)

= , (4)
S Tr(M,p, MYE;)

where the positive, Hermitian effect matriz E; depends
on the information accumulated from time t to a final
time T'.

Equation (4] reduces to the classical example offered in
the Introduction (Eq. (1)) when the M,, are taken to be
the projection operators on the excited and ground states
of the emitter, while for homodyne detection, it yields the
probability for the measurement signal V' conditioned on
both prior and posterior measurements,

Tr(My p M| Ey)

Py(V,1) = 2
f dV’T‘I‘(MV/ptMV,Et)

()

The density matrix of a decaying quantum sys-
tem obeys the master equation dp; = ~dtD[o_]p; =
vdto_pio4 — ydt{oro_, p;} with the time dependent
solution expressed in terms of the matrix elements of py,

ee __ ,ee,—t
pi¢ =pce”

pie = pife 3t (6)
it =1 gt



Similarly, the matrix F solves the adjoint equation dF; =
YdtD[o_]E; = ydtoy Eyo— — 3vydt{o o, E;}, where we
apply the convention, dE; = E;_ 4 — Fy, because we shall
solve the equation backwards in time. Equation @ does
not conserve the trace, but this is not a formal problem,
since Eqgs. are explicitly renormalized. The (back-
wards) evolution of E; from time T yields the solution,

Etgg — Eé{g
E{* =Ee 3T, (7)

Bt = B+ (B — Bf)e 00,

where Er is the projection operator on the state of the
final heralding measurement (post-selection). In the ab-
sence of post-selection, Er is the identity matrix, and
@ also yields the identity matrix for all earlier times. In
this case P,(m,t), Eqgs. reduce to the usual Born
rule for quantum expectation values.

From Egs. @, 7), we can express the retrodicted
mean value V,(t) = [V P,(V,t)dV of the homodyne sig-
nal to first order in the infinitesimal time interval dt by
the matrix elements of p; and FEy,

V() = 2/mydt Re[EY?py? + piE}*]
P Tr(piE4)

(®)

We shall compare Eq. (8]) with the experimental homo-
dyne detection signal averaged over many experiments,
for different choices of the initial state py and final pro-
jection Frp.

We first examine the experimental average homo-
dyne signal that is obtained without post-selection V =
Viv{oz)dt. We prepare the emitter in a state |0) =
cos & |g) + sin g |e) by a rotation pulse RZ, and obtain
the average homodyne signal 1% right after the prepara-
tion pulse by integrating 60 ns of recorded homodyne
signal as depicted in Fig. Bc. In Fig. 2k, we display our
experimental results V, testing the predicted average sig-
nal V for different . V oscillates as a function of # and
reaches a maximum (minimum) at 6 = 5 (0 = —% ) as
expected [3]. The experimental and theoretical curves
are in good agreement and show that the average homo-
dyne signal |V| without post-selection never exceeds the
maximum value /7ydt (dashed horizontal lines).

To confirm the theory prediction for the mean signal
with post-selection, Vp, we conduct the experimental se-
quence illustrated in Fig. 2. We first initialize the qubit
in state |#), then record 0.5 us of homodyne signal and

finally post-select the state [0 — 7). The average, post-

selected signal V}, is obtained by averaging 60 ns of homo-
dyne signal right after the initial state preparation pulse
from the experimental runs which successfully pre-select
state |¢) and post-select state |0 — 7). After correcting
for the post-selection fidelity (see Appendix @[) the ex-
perimental results V,, are in good agreement with the

theory prediction Vp, calculated from Eqs. @ with
po = 10) (0] and Er = |0 — 5)(0 — T|. Furthermore,
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Figure 2. Average homodyne signal. (a), The fluorescence
from a two-level emitter radiating at frequency wo can be
monitored using homodyne detection. (b), Bloch represen-
tation of the pre-selection of the qubit state |¢;) = |0) and
post-selection in |1s) = |6 — §). (c), The experimental se-
quence prepares the emitter in a state |#) and we display the
average homodyne signal. The solid line with solid dots is the
measured average homodyne signal. The dashed line with
hollow dots is the theory predicted mean value V. More than
5 x 10® experimental repetitions are used for each V, leading
to a statistical uncertainty of order 4 x 107*. (d), The ex-
perimental sequence prepares the emitter in the state |0) and
post-selects it in the state [# — ) and we display the average
homodyne signal based on p; and E;. The solid line with solid
dots is the measured average homodyne signal with pre- and
post-selection. The dashed line with hollow dots is the the-
ory predicted mean value V,, as calculated in Eq. . More
than 3 x 10* experimental repetitions are used for each ‘N/p,
leading to a statistical uncertainty of order 5.7 x 1073, The
error bars indicate the standard deviation associated with the
drift in the experimental setup from three repetitions of the
experiment.

we observe anomalous weak values [9] where |V},| exceeds
\/Mydt. This is due to the low overlap between the pre-
and post-selected states when 6 = {—m, T, %”, 7} as dis-
played in Fig. 2. Note that ideally we could obtain the
average V), by post-selecting state |§ — %) immediately
after the 60 ns signal integration, but transient behavior
associated with the rotations and readout affects the ho-
modyne signal. Therefore, as indicated in Fig. 2, we
wait for 0.5 us before making the post-selection measure-

ment.

IIT. EVOLUTION DYNAMICS SUBJECT TO
HOMODYNE DETECTION

In our experiment, the emitter state is continuously
monitored with the homodyne signal which is sensi-
tive to the o, component of the two-level system. If
we, rather than averaging over many experiments as
we have in the previous section, consider a single run
of the experiment, the state of the system evolves in
time as a quantum trajectory which can be inferred from



the record of the detected homodyne signal. Homo-
dyne detection with efficiency 7 gives rise to a signal
V = /iy Trlo,pi]dt + /7dW; with a stochastic Wiener
increment dW; with zero mean and variance dt [22], and
the density matrix of the emitter solves the stochastic
master equation (SME) [20],

dpy = ydtDlo_]pe + /1 (V — /' Tr[opi)dt) H[U—]PE7)
9

where the term proportional to H|[o_]p; = o_pi+pioL —
Tr[(o- + o4)pi]pe is added to the unobserved master
equation to account for the stochastic measurement back-
action. The trajectory followed by a monitored quantum
emitter is well described by the stochastic master equa-
tion @, and quantum trajectories for the density matrix
pt have been studied, e.g., in [3, B, 12, 23H25].

The homodyne signal V is scaled to have a variance
0% = ~dt, and by recording two histograms for V sepa-
rated by AV = 2,/mvdt, the quantum efficiency of our ex-
perimental setup is found to be n = 0.3 (see Appendix.
Note that this scaling yields a dimensionless signal V,
whereas under other conventions it has units of (time)%
[5, 26].

Similar to the density matrix p; being now conditioned
on the initial state and the homodyne detection record
until time ¢, the matrix F; at time ¢ is conditioned on the
homodyne signal recorded after ¢. It solves the adjoint
counterpart of the (SME) Eq. (9) backwards from the
final time T [16],

dE; = vdtD o _|Ey+/n (V — /iy Tr[o. E]dt) Hlo | E;.
(10)

A. Bloch representation of p; and E,

To graphically present the results, the density matrix
of a two-level quantum system may be represented by a
real Bloch vector (z,,y,,2,),

1
pr = 5(1+xp0m+yp0y+zp@)a (11)
where u, = Tr(oup:) for v = z,y,z. The stochastic

master equation @D describes how the evolution of a de-
caying qubit monitored by homodyne detection is con-
ditioned on the measurement signal. For perfect detec-
tion (n = 1), an initially pure state remains pure and
the Bloch vector explores the surface of the unit Bloch
sphere, while imperfect detection (0 < n < 1) leads to a
mixed state inside the Bloch sphere. In our experiments,
the system is prepared (and post-selected) in states with
vanishing (o), and as the homodyne detection effectively
probes the o, operator; the (conditional) y, component
of the Bloch vector remains zero at all times. The SME
is, hence, equivalent to the following coupled stochastic
equations for the x, and z, Bloch vector components,

0
dz, = —§xpdt +vn(l—z, — mz)(V —Vyx,dt),
dz, = v(1=z,)dt — \/n(1—2,)z,(V — /nyx,dt).

Similarly, we wish to introduce a Bloch sphere repre-
sentation to illustrate the conditional evolution of FEj.
While the role of E; in predicting measurement out-
comes does not require unit trace due to the normal-
ization factor in Eq. , the Bloch sphere representation
assumes a normalized state matrix. The term D'[o_]E,
in the SME Eq. is not trace preserving, but since
~vdtTe(DT [o_|E;) = ~dtTr(o,E;), we may introduce the
following normalized version of the SME,

dE; = vdtD'[o_|E; — ydtTr[o. Ey) B+

(13)
VN (V = iy Tr[o, Ey]dt) Hlo | By,
and an associated Bloch vector
1
E, = 5(1+$EU$+yEO'y+ZEO'Z), (14)

where ug = Tr(o,Ey) for u = z,y,2. Just like (12), we
can obtain a set of stochastic Bloch equations for E;,

+Vi(l+zg — 23)V, (15)
dzp = —y(zp+en—n(1+zp)r%)dt
—n(zg+1)xgV.

In Fig. Bh, we show schematically how we prepare the
emitter in the state |¢;), then digitize the detected homo-
dyne signal V(t), accumulated for a time interval of 1.68
ps and finally measure the emitter in the [¢y) state by
a high fidelity projective measurement. Using Egs. (12
115), we determine the conditional Bloch vectors for p;
and F; and in Fig. [3| we show the resulting trajectories
with the colors red, green, cyan, and blue, correspond-
ing to different time intervals [0.42n, 0.42(n + 1)] ps,
(n =0,1,2,3). Here the panels b-d represent different
choices for the initial and final states. The trajectories
for p;, shown in the first column in Fig. [Bp-d diffuse
through the Bloch sphere, but are confined to different
deterministic curves for different evolution times (blue
dashed lines in Fig. [3)) [3E]. In a similar way, the trajec-
tories for F; diffuse backwards in time through the Bloch
sphere from the post-selected state and they are also, for
different evolution times, confined to different determin-
istic curves. Analytic expressions for these curves are
provided in the following subsection.

The Bloch vector components of p; are the expectation
values of the Pauli operators, but can also be written as
the weighted mean value of their eigenvalues, e.g., (0,) =
pf% 1+ pse - (—=1) = 2pf? — 1. Since the Past Quantum
State answers the question: "What is the probability that
a measurement of an observable gave a certain outcome a
time t7", we can use Eq. to obtain such probabilities
for projection operators on the eigenstates of o, 0, and
0., and subsequently display the weighted eigenvalues as
Bloch vector components, e.g.,

<Uz>p (t) = Py(o, = +1,t) — Py(o, = —1,1). (16)
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Figure 3. Quantum trajectories for pre- and post-selected
states. (a), We prepare the qubit in state [i;), the qubit
evolves for 1.68 us and is post-selected in the state |¢f).
(b, ¢, d), Bloch vector representation of the solutions of the
stochastic master equations. The three columns show the
evolution of the Bloch vector x and z components of p;, E;
and of the (p:, F:) retrodiction. The black dashed lines in
the figures show the deterministic evolution in the absence of
homodyne detection, while the black solid lines represent a
single stochastically diffusing trajectory of the emitter. The
blue, dashed ellipses in the first and second columns illustrate
the deterministic curves to which the stochastically evolv-
ing Bloch sphere trajectories are confined at any given time.
These combine to yield a restriction of the area explored by
the retrodicted expectation values. The closed blue, dashed
curves in the third column mark the outer boundary of this
area.

Similar equations apply for o, and o, measurements, and
using the Bloch vector representation of p; and E;, the
retrodicted expectation values of the three spin compo-
nents acquire the elegant form,

_ TptTE

<Um>p - 1 +xpr7
Yot YE

e S . (17)
_ ZptzE

<UZ>P - 1 +ZpZE.

These expressions are used together with the solutions of

Egs. to plot the trajectories of the retrodicted ex-
pectation values in the third columns in Fig. [3p-d. These
trajectories diffuse through the state space, and notably
assume values that are outside of the Bloch sphere. This
is as expected, since, e.g., the prediction for the out-
come of a measurement of the ground state population
at late times is unity with almost certainty, while post-
selection upon a final measurement of o, certifies that
an immediately foregoing measurement of o, would have
to yield the same result. Note that this is not at vari-
ance with Heisenberg’s uncertainty relation which con-
cerns only predictions of future measurements and does
not apply for the combined prediction and retrodiction of
observations. We emphasize that, while the mean values
and probabilities for the outcome of measurements along
any rotated spin direction simply follow from the pro-
jection of the Bloch vector along those directions, due to
the non-linear expressions in Eq. the same reasoning
does not apply for the vector plotted in the third columns
in Fig. Bp-d. Prediction of the spin measurement along
a 45 degree direction between the z and z axes, would
require a separate calculation, using the p; and E; Bloch
vector components along that direction.

B. Deterministic properties of p; and E,

In this section, we examine the character of the
stochastic trajectories in more detail. In Ref. [5] it is
derived how the stochastic evolution of a decaying qubit
subject to heterodyne detection is at all times confined to
the surface of a deterministic spheroid inside the Bloch
sphere. In the case of homodyne detection, only one
component of the pseudo-spin is probed, and the three
dimensional spheroid is replaced by a two dimensional
ellipse. In previous work, the deterministic properties of
this ellipse have been used for state preparation [3] and
analyzing the emergence of multiple most-likely paths in
the quantum trajectories [27]. Here we wish to extend
these results to the Bloch representation Eq. of the
matrix Fj.

For completeness, we first re-derive the expressions for
the ellipse pertaining to the density matrix. The quest
is to identify a function «(z,,z,) of the stochastically
evolving Bloch components, for which the equation of
motion is deterministic. We shall see that such a function
exists and that it indeed describes an ellipse in (z,,2,).
For a generic function, the equation of motion is derived
from the stochastic Bloch equations ,

Oa da
dOé = aixpd.ﬁp + aizpdzp
1 [0%a , 0%« 9 o
il e e 9 2%
2 | Tre) T g () ¥ 2 ez |

(18)

where the second order terms yield contributions from
the noise terms in Eq. of the same order in dt as the



first order deterministic terms. The evolution of a(x,, 2,)
is deterministic if all terms proportional to dW; in da
cancel. After applying Eq. in Eq. this require-
ment dictates the following form of a(z,, 2,),

2 x2
alz,,z,) = —— — —L—. (19)
e 1=z, (1-2%)?
This can be rewritten
a?(1—z, — 1/a)® + ozxi =1, (20)

which shows that the Bloch components of p; are at all
points in time restricted to an ellipse centred at (x,z) =
(0,1-1/a) and with major axis 1/y/cv (x,-direction) and
minor axis 1/« (z,-direction). Furthermore, applying
Eq. on the right hand side of Eq. yields an
ordinary differential equation for the time evolution of
the parametrizing function a(z,, z,),

do
— _ 21
=), (21)
with the solution
a(t) =1+ [a(t = 0) — nle™, (22)

where a(t = 0) follows from Eq. with the initial
Bloch components at time ¢t = 0 . For any pure initial
state a(t = 0) = 1, and the ellipse Eq. is the full
Bloch sphere. The time evolution of « for an initial pure
state is shown in Fig. [dh for different values of the de-
tection efficiency 7. a(t) increases, and hence the center
z-coordinate of ellipse increases with a rate v in accor-
dance with the decay of the qubit. As a signature of the
loss of information associated with non-perfect monitor-
ing, the axes of the ellipse reduce faster for smaller values
of the detector efficiency 77 and the qubit explores a range
of mixed states. At large times, both axes of the ellipse
diminish and the (pseudo-)spin is certain to be found in
the ground state.

To derive a similar result for E;, we define a generic
function f(x g, zg) of the Bloch components in Eq. ,
and we seek a form of this function evolving in a deter-
ministic manner. The equation of motion for S(xg, zg)
follows from the stochastic Bloch equations in a way
equivalent to that for a(z,, z,) in Eq. , and the re-
quirement that all terms proportional to V' cancel yields

_ 2 x% .
zp+1 (ZE+1)2

BzE, 2E) = (23)

Rewriting and noting that S < —1 reveals that f

parametrizes an ellipse in (zg, 2g),

1= B%(zp+1+1/B)? — B(ak +yE), (24)

centered at (z,z) = (0,—(1 + 1/8)) and with major
axis 1/v/—p (xpg-direction) and minor axis 1/8 (zg-
direction).
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Figure 4. Time evolution of functions parametrizing deter-
minstic ellipses. (a), Time evolution given by Eq. of the
function «(x,, z,) parametrizing the deterministic ellipse (20)
in the Bloch sphere on which a decaying spin subject to ho-
modyne detection is confined. (b), Time evolution Eq.
of the function B(zg,zg) for a similar ellipse pertain-
ing to the effect matrix and assuming post-selection at time
T = 4y~ in a pure state.

In addition, one finds that the time evolution of
B(zg, zg) fulfills the differential equation,

s
I =y(—-B+n-2), (25)

which must be solved backwards in time from the final
value at the time of post-selection S(t = T). This gives
the following evolution for S(zg, zg),

Bt) =n—2+[B(T) —n+2e"T. (26)

Equation provides the value of 3(t = T) from the
Bloch components of the post-selected state. For any
pure state S(t = T) = —1 and the ellipse is the full
Bloch sphere. Without post-selection Bz = 1/2 so S(t =
T) = —2 and the final ellipse is smaller and includes
the origin (z,2z) = (0,0). The time evolution of /5 for
a final post-selection in a pure state at time T = 4y~!
is shown in Fig. [@p for different values of the detection
efficiency 7. Similarly to the case of the density matrix,
lower efficiency causes a faster (backwards) decay of the
ellipse towards that corresponding to a fully mixed effect
matrix.

The retrodicted expectation values of the spin compo-
nents at any point in time during an experiment follows
in Eq. from the Bloch components of the density and
effect matrices at that point in time. Combining the re-
striction of p; and E; to deterministic curves in the Bloch
sphere plot, the retrodiction for o, and o, measurements
becomes confined to time dependent (z, z) domains. For
different realizations of the homodyne signals, the retro-
dicted outcomes of measurements of the two spin compo-
nents explore this area, as illustrated in the third columns

in Fig. Bp-d.



IV. CONCLUSION

We have applied the Past Quantum State formalism
to a quantum emitter continuously monitored by homo-
dyne detection. Our analysis shows how post-selection
leads to a modification of the prediction for the emitter
state in a simple way that can be understood with a clas-
sical analysis of joint probabilities. The Past Quantum
State formalism makes predictions for the average homo-
dyne signal given specific pre- and post-selected states.
We have experimentally confirmed these predictions and
furthermore observed anomalous weak values in the ho-
modyne signal as is expected for pre- and post-selected
states with small overlap. These weak values have been
shown to offer metrological advantages under some cir-
cumstances [28430]. By employing quantum trajectory
theory, we have studied the conditioned evolution of the
emitter state in the Bloch vector representation and pre-
sented trajectories for the predicted and retrodicted state
evolution. These trajectories evolve stochastically, but
they are confined to deterministic regions in the Bloch
sphere.
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APPENDIX
Appendix A: Sample fabrication and parameters

The experimental set-up is similar to that of our
previous work [27]. The transmon circuit was fabri-
cated from double-angle-evaporated aluminum on a sil-
icon substrate and is characterized by charging energy
Ec/h = 300 MHz and Josephson energy FE;/h =19.73
GHz. The circuit was placed at the center of a 3D alu-
minum waveguide cavity with w. = 7.257 GHz (dimen-
sions 34.15 x 27.9 x 5.25 mm?) which was machined from
6061 aluminum. The near resonant interaction between
the qubit and the cavity is characterized by coupling rate
g/2m = 130 MHz and produces hybrid states. We use
the lowest energy transition wq/2m = 6.541 GHz as the
quantum emitter. The emitter coherence properties, T}
= 614 ns, 75 = 800 ns are measured using standard tech-
niques. The Josephson parametric amplifier consists of
a 1.5 pF capacitor shunted by a SQUID loop which is

(a) (b)
Preparation of [+x) -
I o
<
.......... “ B
Preparation of\j—x) §
RN &

signal V

Figure 5. Calibration of the homodyne signal. (a), Experi-
mental sequences to prepare the emitter in the |+x) and |—x)
state. (b), Histograms of the homodyne signal for the | 4+ )
state (red) and | — x) state (blue).

composed of two Josephson junctions with critical cur-
rent Iy = 1 pA. The amplifier is operated with small
threading the SQUID loop and produces 20 dB of gain
with an instantaneous 3-dB-bandwidth of 50 MHz.

Appendix B: Calibration of homodyne signal

We conduct a simple experiment illustrated in Fig. Fp
to caliblzrate our measurement homodyne signal by apply-
ing a RZ (R, ?) pulse to prepare the emitter in | 4+ x) or
(|—x)). We collect 20 ns of homodyne signal immediately
after the state preparation. We scale the measurement
homodyne signal so that the variance o2 = ~dt, where
the time step dt = 20 ns. From 5x 10° experimental runs,
we obtain two histograms shown in Fig. fp with Gaus-
sian distributions centered at 4-,/fydt and separated by
AV = 2,/nvydt. Hence, the quantum efficiency of this
experiment setup n = 0.3.

Appendix C: High fidelity post-selection
measurements

Post-selection experiments often look for rare events,
and in experiments with modest measurement fidelity,
post-selection errors can easily contaminate the mea-
surement results. Here, we focus on maximizing the
post-selection fidelity at the expense of the the post-
selection efficiency. In our experiment, we realize high
fidelity post-selections by adjusting the readout power
to the extent that minimizes the error occurrence while
maintaining a modest success rate. In the language of
photo-detection we want to minimize the dark counts
(the post-selection errors) even at the expense of low
photo-detection efliciency. We define the post-selection
fidelity as the fraction of correct post-selections. We test
the post-selection error rate by preparing the qubit in
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Figure 6. Post-selection fidelity. (a), Histogram of the readout
when the emitter is in the ground state. The arrow indicates
the threshold value for the readout and the blue region indi-
cates the number of error detections. (b), When the emitter is
prepared in the excited state, more post-selections are success-
ful. The histograms in (a) and (b) can be used to determine
the post-selection error in our experiment. (c), Histogram of
readout when the emitter is prepared in the excited state and
post-selected in the |+z) state. (d), The post-selection fidelity
for each pair of pre- and post-selected states (|6), |6 — 7))

the ground state and then performing a readout measure-
ment. On average, by choosing an appropriate threshold
(arrows in Fig. @, we found 2 error occurrences out of
5000 runs of the experiment as shown in the blue re-
gion in Fig. [Bh. If we prepare the qubit in the excited
state, we have 314 occurrences from the same number of
runs with the same threshold. At this point, we know
the post-selection error rate is below 1%. To apply this
post-selection technique to other states, we simply apply
a qubit rotation before the readout.

While it is possible to reduce the post-selection error
rate below 1%, when post-selecting on rare events with
for example an expected occurrence of one in 106, these
post-selection errors will dominate the experimental re-
sults. This limits the types of post-selections that can be
reliably made, and we focus on post-selections where suc-
cesses rate (the ratio of number of successful runs to total
experiment runs), greatly outweighs the error rate. Fig.
[6d characterizes the post-selection fidelity for different
pre- and post-selected states. To test the post-selection
fidelity, we conduct the experimental sequence as illus-
trated in Fig. [6d; we first apply a rotation to prepare
the qubit in the state |6) in the z-z plane of the Bloch
sphere. After 0.5 us we then post-select the | — 7) state
by applying a corresponding rotation R;f and a projec-
tive measurement II1 .. The post-selection fidelity is the
ratio of correct post-selections to the total number of de-

tection events. The number of incorrect post-selections
is the product of the error rate and the number of trials.

Appendix D: Correction of the predicted mean value
V, due to post-selection fidelity

In the experiment, we prepare the emitter in the state
|6) = cos(%)|g> + sin(g)|e> at t = 0 and post-select state

o—% 0—%

|0 — %) = cos(—5%)|g) +sin(—52)|e) at t = T Ideally, we
have the density matrix p;—o(f) = |0)(f] and the effect
matrix Fy—7(0) = |0—75)(0—F|. In the experiment, how-
ever, the post-selection fidelity 7, is sub-unity as shown
in Fig. [6d. To account for this in the analysis, the effect
matrix Ep at time T for calculating V,, is corrected in

the following way,
oz oz
EF(0) = (1 —n,) cos? <W> + 1 cos? ( 5 2 )
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After taking the post-selection fidelity 7, into considera-
tion, the experimental and theoretical curves agree well
as displayed in Fig. [2ld of the main text.

Appendix E: Distribution of Bloch vector
components

In this appendix, we revisit the deterministic ellipses
and allowed areas of the Bloch components for the trajec-
tories introduced in Section [[ITBl While the deterministic
ellipses pose outer boundaries for the Bloch components
and retrodicted expectation values, they do not hold in-
formation on the actual distribution of trajectories re-
alised over many experimental runs.

In Fig. [7] we show results of 10000 Monte Carlo sim-
ulations of the SMEs @ and which allow sam-
pling of the time dependent distribution of trajectories
of the density and effect matrices of a monitored, decay-
ing (pseudo)-spin as well as of the effective retrodicted
Bloch vector components. As the p and F Bloch vector
trajectories are confined to quite localized segments along
the ellipses and they may be correlated with each other,
the distribution of retrodicted Bloch vectors is restricted
to more narrow regions than allowed by full deterministic
ellipses.

The dashed, black lines in Fig. [7] track the uncondi-
tional or ensemble averaged state, and it is seen that
the deterministic ellipses of the conditional Bloch com-
ponents of p and E does not include this state. This
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Figure 7. Monte Carlo sampled distribution of trajectories. The (pseudo)-spin is prepared in state |v¢;), evolves for T = 1.68
us and is post-selected in the state [¢f). (a, b, ¢), Shown as coloured dots is the distribution the Bloch components of p,
Ey and of the retrodicted expectation values ((0z), ,(0:),) sampled from 10000 Monte Carlo simulated trajectories with the
experimental parameters v = 1.628 us~! and i = 0.3. The colors of the dots represent the local density normalized to unity
maximum. The deterministic ellipses, Eqns. and restricting p: and E: respectively, are shown as dashed lines in
the upper panels. The corresponding deterministic area restricting ((oz) P (c2) p) is coloured orange in the lower panels. For
reference, the density and effect matrices and the retrodicted expectation values for an unmonitored system are tracked by
dotted lines. The three columns correspond to different times t1 = 0.15, t2 = 0.60 and t3 = 1.30 us.
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Figure 8.  Distribution of Bloch components at differ-
ent times. (a), Time axis showing that at times ¢t =

{0.42, 0.84, 1.26, 1.68} us, we calculate the distributions
of z and z components. (b, ¢, d), Distribution of Bloch com-
ponents z and z on a logarithmic scale based on p, E and
(p, E) respectively for pre- and post- selected states (|iy),
[1¢)) at different times depicted by corresponding colors in
Fig. [8h. More than 3 x 10* successful pre- and post-selected
runs out of 5 x 10% experimental repetitions were used to plot
the distributions.

leads to a discrepancy between the most likely state rep-
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resented by the bright, yellow areas in the color plots and
the average state. This feature of the density matrix of
a monitored quantum system is well-know, see e.g. [24].
Similar results apply for the conditional trajectories of
the effect matrix, and, as seen from Fig. [7b-c, when the
qubit is post-selected in |4z}, the most likely retrodicted
set of expectation values differ from the unconditional
retrodiction.

The experiments similarly allow an analysis of the dis-
tribution of trajectories. In Figure [§] we display sepa-
rate histograms of the x and z Bloch components of p,
E and of the (p, E) retrodicted expectation values, cor-
responding to the different pre- and post-selections that
were studied in Fig.[3] These distributions agree with the
theoretical simulations, and they confirm that the Bloch
vector coordinates are restricted to finite intervals, and
sometimes very well localized witin even tighter regions.

Both the simulations and the experiments provide dis-
tributions for the (p, E) trajectories that extend beyond
the Bloch sphere and, e.g., approach the x, z = £+1 corner
of the "Bloch square". We recall that the two coordinates
of the retrodicted Bloch vector provide the probabilities
of separate measurements of the z and the z pseudo spin
components of the qubit. Close to z,z = +1 we are
thus able to make a confident, joint prediction for the
outcome of a measurement of any of the two spin compo-
nents. While this is normally forbidden by Heisenberg’s
uncertainty relation, we recall that we are not predicting
the outcome of a future measurement, but rather retro-
dicting the outcome of a past one. If the state prior
to such a past measurement is close to a o, eigenstate
(e.g., the ground state long time after preparation of the
initial excited state), one could not have obtained the ex-
cited state in a o, measurement. At the same time, if a
subsequent final measurement yields o, = 1, one could
not possibly have measured o, = —1 just prior to that.
Hence, the majority of Bloch components based on the
(p, E) retrodiction may fall outside of the Bloch-sphere
as seen in the third column of Fig. [fp-c, and indicated
by the curves in the third column of Fig. [Re-d.
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