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We present a method for accelerating adiabatic protocols for systems involving a coupling to a
continuum, one that cancels both non-adiabatic errors as well as errors due to dissipation. We focus
on applications to a generic quantum state transfer problem, where the goal is to transfer a state
between a single level or mode, and a propagating temporal mode in a waveguide or transmission
line. Our approach enables perfect adiabatic transfer protocols in this setup, despite a finite protocol
speed and a finite waveguide coupling. Our approach even works in highly constrained settings,
where there is only a single time-dependent control field available.

Introduction– Adiabatic quantum evolution provides
an efficient and robust way to implement a variety of im-
portant quantum operations including state transfer [1–
7], state preparation [8–11], and even quantum logic
gates [12–14]. While such protocols are robust against
timing errors, they are necessarily slow, making them
vulnerable to dissipation or fluctuations. There is thus
considerable interest in finding ways to accelerate adia-
batic protocols, such that fast evolution is possible with-
out significant non-adiabatic errors [15–19]. These tech-
niques are generally referred to as “shortcuts to adia-
baticity” (STA), and involve modifying control fields to
suppress the net effect of non-adiabatic errors [20–25].
Recent experiments have successfully implemented ver-
sions of these strategies [26–30].

A key drawback of the transitionless driving strategy
and its higher order variants [20–25] is that they require
the exact diagonalization of a time-dependent Hamilto-
nian, making them unwieldy for systems with many de-
grees of freedom. They are thus unsuitable for an impor-
tant class of quantum state transfer problems, where the
goal is to transfer an initial state in a localized system
having discrete energy levels to a propagating state in
a continuum such as a waveguide or a transmission line
(see, e.g., [31–33]).

In this paper we present a general method for apply-
ing STA to the above class of problems. The method is
based on first deriving an effective non-Hermitian Hamil-
tonian, and then constructing dressed-states and modi-
fied control sequences that suppress both non-adiabatic
errors (due to finite protocol speed) and “dissipative” er-
rors (due to the coupling to the continuum). We apply
our technique to two ubiquitous quantum state trans-
fer problems based on STIRAP (stimulated Raman adi-
abatic passage) [2]. Such protocols have been discussed in
systems ranging from atomic cavity QED setups [31, 32]
to optomechanics [34]. Remarkably, we show that our
method works even in the highly constrained protocol
introduced by Duan et al. [32], where there is only a
single time-dependent control field in the Hamiltonian.

Our work represents a substantial advance over previ-
ous work using STA to accelerate adiabatic state transfer
[20–25], as these works did not include a coupling to a
continuum. It also differs significantly from studies ex-
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Figure 1. (a) Three level Λ system with time-dependent
couplings G1(t), G2(t). The level |C〉 is coupled (rate κ) to
a waveguide. The goal is to perform a STIRAP-style state
transfer to adiabatically transfer state |A〉 to a propagat-
ing mode in the waveguide. (b) System of three bosonic
modes coupled in a Λ configuration, as can be realized in
optomechanics [42] â1 and â2 are photonic modes, b̂ is a me-
chanical mode, Gj(t) represent many-photon optomechanical
couplings. In the single-excitation subspace, this system is
completely equivalent to (a). The correspondence also holds
for a general initial state due to the linearity of the dynam-
ics [43]. (c) Realization of (a) using the setup introduced in
Refs. [31, 32], where a three-level system is placed in a cavity
(the cavity mode annihilation operator is denoted by â), which
is in turn coupled to a waveguide. Here, there is only a single
time-dependent control field [G2(t) = g is time-independent].

ploring STIRAP-style state transfer to a continuum [35–
38], as these did not consider any kind of STA correction.
Refs. [39–41] applied STA techniques to phenomenolog-
ical non-Hermitian Hamiltonians, but in a very differ-
ent context from the work presented here. In particu-
lar, Ref. [39] requires both the diagonalization of a non-
hermitian Hamiltonian, and the use of non-Hermitian
control fields. In contrast, the approach that we develop
in this paper leads to simple modifications of the orig-
inal pulse sequence, without requiring additional non-
Hermitian controls which would be very challenging to
experimentally implement.

System– While our approach can be applied to a
wide variety of adiabatic protocols [see e.g. Fig. 1(b),(c)
and [43]], for concreteness we focus on the generic state
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transfer problem depicted in Fig. 1(a), where three dis-
crete levels A,B and C are coupled in a Λ-system con-
figuration, with the C state additionally coupled to a
waveguide. The goal is to convert an initial state |A〉
to a propagating mode in the waveguide. The system
has two time-dependent couplings G1(t), G2(t), and is

described by the Hamiltonian Ĥ = Ĥ0(t) + Ĥint + Ĥwg,
with (~ = 1):

Ĥ0(t) =G1(t) |A〉〈B|+G2(t) |C〉〈B|+ h.c.,

Ĥint =

√
κ

2π

∫ ωmax/2

−ωmax/2

dω
[
|C〉〈Dω|+ |Dω〉〈C|

]
,

Ĥwg =

∫ ωmax/2

−ωmax/2

dω ω |Dω〉〈Dω| . (1)

The states in the continuum are defined as |Dω〉 =
ĉ†(ω) |vac〉 where ĉ(ω) is the photon annihilation oper-
ator of a mode at frequency ω in the waveguide, obeying
the commutation relation [ĉ(ω), ĉ†(ω′)] = δ(ω − ω′), and
|vac〉 is the vacuum of the whole system. We consider a
waveguide with a finite bandwidth ωmax, and also that
the amplitude of the interaction between the state |C〉
and the waveguide states |Dω〉 is frequency independent
[κ(ω) = κ , ∀ |ω| ≤ ωmax/2]. As is standard, we will con-
sider the Markovian regime throughout this work, where
the waveguide bandwidth is much larger than any other
frequency scale in the problem. As such, we can take
ωmax →∞.

The above model corresponds to the basic setup de-
scribed in Ref. [31, 32]; we will consider both the case
where G1(t) and G2(t) are independently tuneable, and
the more constrained situation where only G1(t) is tune-
able. Note that our results will also immediately apply to
the model where the discrete levels A,B,C are replaced
by bosonic modes, as is the situation in optomechanical
state transfer problems [5–7]. In this case, our protocol
can be used to transfer an arbitrary A-mode state to the
state of a propagating wavepacket in the continuum [43].

The starting point for our accelerated adiabatic proto-
cols is the basic STIRAP approach for moving population
from A to C in the case where κ = 0 [2]. This protocol

uses the fact that Ĥ0(t) has two instantaneous eigenstates
|±(t)〉 of energy ±G0(t) (the bright states [43]) and a
zero-energy instantaneous eigenstate (the dark state)

|dk(t)〉 = cos θ(t) |A〉 − sin θ(t) |C〉 , (2)

where we have parameterized the control fields asG1(t) =
G0(t) sin θ(t) and G2(t) = G0(t) cos θ(t). The “dark
state” has zero overlap with |B〉. Standard STIRAP
[2] works by evolving θ(t) continuously from 0 to π/2,
such that |dk(t)〉 changes continuously from being |A〉
at the initial time, to being |C〉 at the final time. If this
is done slowly enough compared to the gap G0(t) sep-
arating |dk(t)〉 from the “bright” adiabatic eigenstates
|±(t)〉, the system will remain in |dk(t)〉 at all times,
thus effecting the desired transfer.

For κ non-zero, we could again imagine a STIRAP-like
protocol, where the dark state changes adiabatically from
being localized in A to C. As C is now coupled to the
waveguide, in the ideal case the excitation will be trans-
ferred to a propagating waveguide excitation. This dark
state approach for stationary to itinerant state transfer
has been discussed in numerous works [31, 32, 34].

Accelerated STIRAP with dissipation– While the above
approach has many advantages, any finite speed will lead
to non-adiabatic errors which disrupt this transfer. Ref-
erence [25] presented a dressed-state approach for miti-
gating this problem in the case where κ = 0. In our case,
the coupling to the waveguide will create additional er-
rors. We show here how these can also be mitigated
using a dressed-state approach. We start by writing the
solution to the Schrödinger equation (in the original lab
frame) in the form

|ψ(t)〉 =uA(t) |A〉+ uB(t) |B〉+ uC(t) |C〉

+

∫ +∞

−∞
dω uWG(ω, t) |Dω〉 . (3)

One can next solve the linear equations of motion for
the waveguide mode amplitudes uWG(ω, t) [43], and use
these to simplify the equations for the remaining ampli-
tudes. By assuming that there are no excitations in the
waveguide at the initial time ti, one finds that the equa-
tions of motion of the remaining amplitudes correspond
to a Schrödinger equation for the effective non-Hermitian
Hamiltonian Ĥ1(t) = Ĥ0(t)− i(κ/2) |C〉〈C|. This Hamil-
tonian possesses a special structure: its Hermitian part
[Ĥ0(t)] possesses a set of adiabatic eigenstates (the dark
and bright states), whose existence will allows us to con-
struct and correct a useful state transfer protocol. While
this structure is of course not generic to an arbitrary
problem with a continuum, it is sufficiently general to
apply to many situations of interest.

We next transform to the adiabatic frame [via a

time-dependent unitary Ûad(t) =
∑
k=±,dk |k(t)〉〈k|], in

which the adiabatic eigenstates of Ĥ0(t) have no explicit
time-dependence. This involves diagonalizing the three-
dimensional Hamiltonian Ĥ0(t) (and not the full, infinite-

dimensional Hamiltonian Ĥ). In this frame, our effective
non-Hermitian Hamiltonian takes the form

Ĥ1,ad(t) =Û†ad(t)Ĥ1(t)Ûad(t)− iÛ†ad(t)
d

dt
Ûad(t)

=G0(t)
(
|+〉〈+| − |−〉〈−|

)
− iκ

2
sin2 θ(t) |dk〉〈dk|

− iκ
2

cos2 θ(t)
|+〉+ |−〉√

2

〈+|+ 〈−|√
2

− i
(
θ̇(t) +

κ

4
sin[2θ(t)]

) |+〉+ |−〉√
2

〈dk|

− i
(
−θ̇(t) +

κ

4
sin[2θ(t)]

)
|dk〉 〈+|+ 〈−|√

2
(4)

The diagonal terms in the second line describe the desired
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evolution: there is no mixing of the adiabatic eigenstates,
and the decay of the dark state corresponds to the desired
emission into the waveguide. The remaining off-diagonal
terms describe imperfections. In particular, both the dis-
sipation (κ 6= 0) and the finite protocol speed (θ̇ 6= 0)
cause a deleterious mixing of adiabatic eigenstates. This
implies that, while the deleterious non-adiabatic effects
can be arbitrarily reduced by slowing down the proto-
col, the deleterious effect of the dissipation will still be a
problem in this regime.

To design improved pulses that overcome these lim-
itations, we extend the dressed-state approach intro-
duced in Ref. [25]. One first constructs a “dressed” dark

state |d̃k(t)〉 ≡ V̂ (t) |dk〉 that coincides with the origi-
nal dressed state at the initial and final protocol time
[i.e. V̂ (ti) = V̂ (tf ) = 1]. V̂ (t) here is the unitary oper-
ator which defines the dressing (in the adiabatic frame).
Second, one modifies the control pulses G1(t), G2(t) such
that the dynamics never causes transitions between the
dressed dark state and the other two dressed adiabatic
eigenstates

∣∣±̃(t)
〉
≡ V̂ (t) |±〉. We describe this modifi-

cation of the control pulses by an added control Hamilto-
nian Ĥcor(t), such that the original Hamiltonian is mod-

ified as Ĥ0(t)→ Ĥ0(t) + Ĥcor(t) (in the lab frame).
Formally, the above “no transitions” requirement is

best formulated by writing the effective non-Hermitian
Hamiltonian Ĥ1,ad(t) in the frame where the dressed

states V̂ (t)|k〉 (k = +,−,dk) have no explicit time de-
pendence. This transformed Hamiltonian is given by

Ĥ1,dsb(t) =V̂ †(t)[Ĥ1,ad(t) + Û†ad(t)Ĥcor(t)Ûad(t)]V̂ (t)

− iV̂ †(t) d
dt
V̂ (t), (5)

The requirement that the dynamics does not cause tran-
sitions out of the dressed dark state then becomes

〈+̃| Ĥ1,dsb(t) |d̃k〉 = 〈−̃| Ĥ1,dsb(t) |d̃k〉 = 0. (6)

Note that as Ĥ1,dsb(t) is non-Hermitian, fulfilling the

above condition does not also imply 〈d̃k| Ĥ1,dsb(t) |±̃〉 =
0. This is not a concern, as our initial condition (i.e. we
start in the dark state) means that only the matrix ele-
ments in Eq. (6) are of relevance.

In order to implement the above strategy, we take a
dressing operator

V̂ (t) = exp

[
iµ(t)

(
|+〉 − |−〉√

2
〈dk|+ h.c

)]
. (7)

Here, µ(t) parameterizes the strength of the dressing at
time t. The fact that the dressing must turn off at the
initial and final times implies that µ(t) must tend to zero
at start and end of the protocol.

We also parameterize the added correction Hamilto-
nian via two function gx(t) and gz(t):

Ĥcor(t) =Ûad(t)
[
gx(t)

( |+〉 − |−〉√
2

〈dk|+ h.c.
)

+ gz(t)
(
|+〉〈+| − |−〉〈−|

)]
Û†ad(t), (8)

which leads modifications of the pulses G1(t) and G2(t)

G1,cor(t) = G1(t)− gx(t) cos θ(t) + gz(t) sin θ(t),

G2,cor(t) = G2(t) + gx(t) sin θ(t) + gz(t) cos θ(t). (9)

With these definitions in hand, we can now constrain the
dressing and modified control pulses so that they fulfil
Eq. (6), the condition which prevents transitions out of
the dressed dark state (either by non-adiabatic errors, or
by dissipation). One finds [43]:

gx(t) = −µ̇(t) +
κ

4
sin2[θ(t)] sin[2µ(t)] (10)

gz(t) =
1

tanµ(t)

(
θ̇(t) +

κ

4
sin[2θ(t)]

)
−G0(t), (11)

We thus have an infinite number of corrected protocols
that can yield a perfect fidelity despite non-zero κ and
θ̇: for any possible dressing function µ(t) that starts and
ends at zero, one simply needs to use modified control
pulses that satisfy Eqs. (10)-(11).

Accelerated protocol in the presence of dissipation– In
the case where both G1(t) and G2(t) are controllable,
one can find a simple correction by choosing the dressing
strength µ(t) so that the control-correction gz(t) = 0.
Using Eq. (11), we obtain easily:

µ(t) = arctan

[
θ̇(t) + (κ/4) sin[2θ(t)]

G0(t)

]
. (12)

Recall that for STIRAP, θ(t) varies from 0 to π/2 dur-
ing the protocol; hence, the above µ(t) is guaranteed to
vanish at the start and end of the protocol (as required)
as long as the original uncorrected protocol is sufficiently
smooth. With µ(t) determined, the needed modification
of the control pulses is given immediately by Eq. (10) and
Eqs. (9).

For κ = 0, the dressed states defined by this this choice
of µ(t) corresponds to the instantaneous eigenstates of

the adiabatic Hamiltonian Ĥ1,ad (the so-called supera-
diabatic states). The corresponding corrected pulse se-
quence then coincides with that described in [25, 29] and
is termed Superadiabatic Transitionless Driving (SATD).
With non-zero κ, we see that both the choice of dressed
states and control fields are modified [via the second term
in Eq. (12)]. This modification ensures that irrespective
of the size of κ, we can still have a perfect state transfer
from |A〉 to a propagating temporal mode in the waveg-
uide. We term this new correction scheme “SATD+κ”.

With the correction implemented, the dynamics is easy
to describe. One prepares the system in |A〉 at the
initial time ti, which coincides with the dressed dark

state, |A〉 = |d̃k(ti)〉. At t > ti, the correction en-
sures that the system only has amplitude to be in the

dressed dark state |d̃k(t)〉 or in the waveguide; the re-
maining dressed states

∣∣±̃(t)
〉

are never occupied. Defin-

ing ũdk(t) = 〈d̃k(t)|ψ(t)〉, one obtains

|ũdk(t)|2 = exp

[
−
∫ t

ti

dt′ κeff(t′)

]
, (13)
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where κeff(t′) = κ
2 sin2[θ(t′)] cos2[µ(t′)]. The physics is

thus that the dressed dark state simply leaks directly into
the waveguide at an effective instantaneous rate κeff(t).
The fidelity of the state transfer operation at time t, F (t),
can then be defined as the probability of having the initial
excitation in the waveguide, i.e.

F (t) =

∫
dω |uWG(ω, t)|2 = κ

∫ t

ti

dτ |uC(τ)|2, (14)

where in the last equality we made use of the expression
of uWG(ω, t) in the Markovian limit [43]. A full trans-
fer to the waveguide will thus necessarily require a total
protocol time ttot > 1/κ. There is however no additional
constraint on the size of the adiabatic gap G0(t) relative
either to protocol time or the size of the dissipation.

It is also interesting to ask about the temporal mode
shape f(t) of the state produced in the waveguide. This
is defined via the amplitude uWG(ω, t) [c.f. Eq. (3)] at the
end of the protocol, and is completely determined by the
time-dependent amplitude associated with |C〉, uC(t):

f(t) = lim
T→∞

∫ +∞

−∞

dω√
2π
e−iω(t−T )uWG(ω, T ) = −i

√
κuC(t).

(15)

Finally, the perfect fidelity possible with the corrected
protocol does come with a price: the use of a dressed
dark state means that at intermediate times, the level
|B〉 will have a non-zero occupancy given by

|uB(t)|2 = sin2[µ(t)] exp

[
−
∫ t

ti

dt′ κeff(t′)

]
. (16)

As the dressing strength µ(t) is proportional to θ̇(t) [see
Eq.(12)] , the faster the protocol speed, the greater the
population of |B〉 at intermediate times.

To demonstrate the utility of SATD+κ, we use it to
correct the optimal STIRAP pulses discussed by Vitanov
et al. in Ref. [44]. They are defined by G0(t) = G0

and θ(t) = π/[2(1 + e−νt)], and only turn on and off
asymptotically as t → ±∞. To mimic a realistic exper-
iment, we truncate the pulses to a finite time interval
−ti = tf ' 7.4/ν, which ensures G1(ti) = G2(tf ) =
10−3G0. Fig. 2(a) shows the asymptotic behavior of fi-
delity limt→∞ F (t) for this protocol versus the protocol
speed ν, with comparisons against both our SATD+κ
correction, and the κ = 0 correction. The SATD+κ cor-
rection yields several orders of magnitude improvement.
Note that the only reason it fails to be perfect is due to
constraining the pulses to a finite time interval. More-
over, even when we include incoherent decay on the in-
termediate level |B〉 [by adding a non-Hermitian term

−i(Γ/2) |B〉〈B| to Ĥ1(t)] at a rate Γ = 10−3G0 (dia-
monds), the SATD+κ correction still yields several or-
ders of magnitude improvement. Figs. 2(b) and (c) show
the form of the corrected pulse sequences, while the in-
set of (a) shows the final outgoing temporal mode when
using the SATD+κ correction.

(b) (c)

(a)

Figure 2. SATD+κ correction for STIRAP-style state transfer
to a waveguide based on the optimal STIRAP pulses described
in the text. We take κ to be equal to the adiabatic gap G0, a
regime in which dissipative errors are large. (a) Asymptotic
fidelity limt→∞ F (t) as a function of protocol speed ν for the
uncorrected STIRAP protocol (light blue top line), the SATD
protocol (green middle line) and the new SATD+κ protocol
(thick red bottom line). The incoherent decay rate of middle
|B〉 level is either Γ = 0 (solid curves) or Γ = 10−3κ (dia-
monds whose position correspond to that of the solid lines).
For Γ = 0, the fidelity error of the SATD+κ protocol is only
limited by our truncation of the pulses: initial and final time
have been chosen such that G1(ti) = G2(tf ) = 10−3G0. Inset:
Shape of the emitted temporal mode in the waveguide when
using the corrected pulse sequence [same labelling as in (b)].
(b),(c) Time-dependence of uncorrected and corrected pulse
amplitudes G1(t)/G0 and G2(t)/G0 during the protocol.

Accelerated STIRAP using a single control field– Adi-
abatic state transfer to a waveguide is also possible in sys-
tems where G2(t) = g is a fixed constant, and only G1(t)
is controllable [e.g. Fig. 1(b)] [31, 32]. The SATD+κ
approach for correcting errors is no longer viable, as
it requires both G1(t) and G2(t) to be time-dependent.
Nonetheless, by using an alternate form of dressing, we
can still obtain a perfectly corrected protocol in this more
constrained setting.

When G2 = g is constant, the uncorrected adiabatic
transfer protocol here involves slowly ramping G1(t) up
from zero until it is � g at a time t ∼ tmid, so that the
adiabatic dark state is just |C〉. One then waits for a time
∼ t0 > κ for the state to decay to the waveguide, and
then ramps G1(t) back down to zero [31, 32]. A simple
pulse shape that accomplishes this is (c.f. Fig. 3b):

G1(t) =
Gmax

2
(tanh[νt]− tanh[ν(t− t0)]) . (17)

The rate ν here sets both the rate of the initial ramp
and the time tmid, and t0 sets the delay between the turn
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on and turn off phases. This pulse would give a perfect
transfer in the limit Gmax � ν, κ, g.

Our goal is to make the above protocol perfect even
when non-adiabatic and dissipative effects are important,
i.e. when ν/Gmax, κ/Gmax are finite. We start by insist-
ing that our correction does not modify the amplitude
G2(t) = g [i.e. G2,cor(t) = g], which implies [c.f. Eq. (9)]
gx(t) sin θ(t) + gz(t) cos θ(t) = 0. Using this constraint
in Eq. (10),(11) results in a differential equation for the
dressing amplitude µ(t),

µ̇(t) sin θ(t) sinµ(t) = θ̇(t) cos θ(t) cosµ(t)− g sinµ(t)

+
κ

2
sin θ(t) cosµ(t)

(
1− sin2 θ(t) cos2 µ(t)

)
. (18)

Finding a pulse that corrects for non-adiabatic and dis-
sipative errors thus requires solving Eq. (18) with the
boundary condition µ(ti) = 0. This however is not
enough: we also require that the dressing strength µ(t)
vanish in the middle of the protocol (i.e. t ∼ tmid), so
that the dressed dark state is just |C〉 and can decay
fully into the waveguide. A priori, there is no guarantee
that in general, the solution of Eq. (18) [with µ(ti) = 0]
fulfils this condition.

Serendipitously, for the uncorrected pulse sequence in
Eq. (17), we find via explicit numerical integration of
Eq. (18) that the dressing µ(t) does indeed almost com-
pletely turn off in the middle of the protocol as desired
[43]. We use Eqs. (18),(9) to find the corrected pulse
G1,cor(t) on the interval (−∞, t0/2) [43]. For t > t0/2,
the transfer is effectively complete, and it does not matter
how we turn off the pulse [i.e. there is no need to correct
G1(t)]. We thus have the pulse turn off exactly the same
way as the uncorrected pulse, i.e. G1,cor(t) = AG1(t)
(where the constant A is chosen to ensure continuity).

Fig. 3 shows corrected pulses and fidelity improve-
ments resulting from this approach. We use finite initial
and final times, chosen so that that G1(ti) = G1(tf ) =
10−3g, and also pick the delay time t0 = −2ti + 5/ν to
scale with 1/ν; the result is that the total pulse duration
scales inversely with the speed parameter ν. Fig. 3(a)
demonstrates an impressive six orders of magnitude sup-
pression of the fidelity error in regimes where both adia-
batic and dissipative errors contribute equally. Note that
for extremely fast pulses ν � κ, both corrected and un-
corrected protocols are limited by there not being enough
time for the state to decay to the waveguide. Fig. 3(b)
demonstrates that the correction to the pulses are ex-
tremely simple, corresponding to a simple “wiggle” being
added during the turn-on phase.

Finally, our correction also has the benefit of resulting
in extremely simple and smooth temporal mode shapes.
Fig. 3(c) shows the temporal mode shapes resulting from
the corrected protocol, while the inset shows the mode
shapes obtained in the original, uncorrected protocol.
The fast oscillations here (which are absent when one
uses the correction) would make subsequent “catch” op-

erations extremely difficult.

(b) (c)

(a)

Figure 3. STA correction for constrained STIRAP-style state
transfer, where G2(t) = g at all times. Corrections are based
on the adiabatic control pulse given in Eq. (17); we set g = 6κ,
and Gmax = 30κ. (a) Fidelity error at the end of the proto-
col as a function of protocol speed ν for the uncorrected and
corrected protocols. The correction yields ∼ 6 orders of mag-
nitude improvement for a wide range of protocol speeds. The
fidelity error of the corrected protocol is only limited by our
truncation of the control pulses (initial and final time have
been chosen such that G1(ti) = G1(tf ) = 10−3g), and the
finite amplitude Gmax of the pulse at intermediate time. (b)
Evolution of the control field G1(t) during the protocol, with-
out (solid line) and with (dashed and dash-dotted lines) cor-
rection; legend indicates value of protocol speed ν. (c) Shape
of the emitted temporal mode in the waveguide when using
the corrected pulse (the same quantity has been represented
in the inset for the non-corrected pulse); the curves are for
different values of ν [same labelling as in (b)].

Conclusions– We have presented a general strategy
for using STA techniques to accelerate adiabatic pro-
cesses for systems which include an infinite-dimensional
continuum. Focusing on the problem of adiabatic state
transfer between a discrete system and a waveguide,
our technique allows one to both accelerate standard
STIRAP-style adiabatic approaches and completely
counteract dissipative errors generated by the coupling
to the continuum. The application of this method on
two experimentally relevant situations shows an im-
provement of the fidelity by several orders of magnitude,
even when the intermediate level is subject to damping.
In the future, this technique could be generalized to
describe more general many-body systems, where part of
the system could be modelled as an effective continuum.

We acknowledge the support of the AFOSR MURI pro-
gram on quantum state transfer.
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