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Quantum illumination (QI) is an entanglement-enhanced sensing system whose performance ad-
vantage over a comparable classical system survives its usage in an entanglement-breaking scenario
plagued by loss and noise. In particular, QI’s error-probability exponent for discriminating between
equally-likely hypotheses of target absence or presence is 6 dB higher than that of the optimum clas-
sical system using the same transmitted power. This performance advantage, however, presumes
that the target return, when present, has known amplitude and phase, a situation that seldom
occurs in lidar applications. At lidar wavelengths, most target surfaces are sufficiently rough that
their returns are speckled, i.e., they have Rayleigh-distributed amplitudes and uniformly-distributed
phases. QI’s optical parametric amplifier receiver—which affords a 3 dB better-than-classical error-
probability exponent for a return with known amplitude and phase—fails to offer any performance
gain for Rayleigh-fading targets. We show that the sum-frequency generation receiver [Phys. Rev.
Lett. 118, 040801 (2017)]—whose error-probability exponent for a nonfading target achieves QI’s
full 6 dB advantage over optimum classical operation—outperforms the classical system for Rayleigh-
fading targets. In this case, QI’s advantage is subexponential: its error probability is lower than
the classical system’s by a factor of 1/ ln(Mκ̄NS/NB), when Mκ̄NS/NB � 1, with M � 1 being
the QI transmitter’s time-bandwidth product, NS � 1 its brightness, κ̄ the target return’s average
intensity, and NB the background light’s brightness.

Quantum illumination (QI) [1–9] uses entanglement
to outperform the optimum classical-illumination (CI)
system for detecting the presence of a weakly-reflecting
target that is embedded in a very noisy background,
despite that environment’s destroying the initial en-
tanglement [10]. With optimum quantum reception,
QI’s error-probability exponent—set by the quantum
Chernoff bound (QCB) [13]—is 6 dB higher [4] than
that of the optimum CI system, i.e., a coherent-state
transmitter and a homodyne receiver. Until recently,
the sole structured receiver for QI that outperformed
CI—Guha and Erkmen’s optical parametric amplifier
(OPA) receiver [6]—offered only a 3 dB increase in error-
probability exponent. In Ref. [14], we showed that
the sum-frequency generation (SFG) receiver’s error-
probability exponent reached QI’s QCB. Moreover, aug-
menting that receiver with feed-forward (FF) operations
yielded the FF-SFG receiver [14], whose performance,
for a low-brightness transmitter, matched QI’s Helstrom
limit for both the target-detection error probability and
the Neyman-Pearson criterion’s receiver operating char-
acteristic (ROC) [15].

Prior QI performance analyses [4, 6, 14, 15] have
all assumed that the target return has known ampli-
tude and phase, something that seldom occurs in lidar
applications. At lidar wavelengths, most target sur-
faces are sufficiently rough that their returns are speck-
led, i.e., they have Rayleigh-distributed amplitudes and
uniformly-distributed phases [16–19]. It is crucial, there-
fore, to show that QI maintains a target-detection perfor-
mance advantage over CI for a target return with random

∗ quntao@mit.edu

amplitude and phase.
In this paper, we compare QI and CI target detection

for Rayleigh-fading targets in the flat-fading limit, when
the complex-field envelope of the target return from a
single transmitted pulse suffers multiplication by a time-
independent Rayleigh-distributed random amplitude and
a time-independent uniformly-distributed random phase
shift. We show that QI with OPA reception fails to of-
fer any performance advantage over CI in this case. QI
with SFG reception does provide an advantage over CI:
when Mκ̄NS/NB � 1, its error probability is a factor of
1/ ln(Mκ̄NS/NB) lower than that of optimum CI, which
transmits a coherent state and uses heterodyne reception.
Here, M � 1 is the QI transmitter’s time-bandwidth
product, NS is its brightness, κ̄ is the target return’s av-
erage intensity, and NB is the background light’s bright-
ness.
QI target detection—. In QI, the transmitter illumi-

nates the region of interest with a single-spatial-mode,
T -s-long pulse of signal light produced by pulse carving
the continuous-wave output of a spontaneous paramet-
ric downconverter (SPDC). The SPDC source is taken to
have a W -Hz-bandwidth, flat-spectrum phase-matching
function with W � 1/T . The resulting signal pulse is
maximally entangled with a corresponding single-spatial-
mode, T -s-long pulse of idler light that the transmitter
retains for subsequent joint measurement with the light
returned from the region of interest. The M = TW � 1
signal-idler mode pairs that comprise the transmitted sig-
nal and retained idler pulses are thus in independent,
identically-distributed (iid), two-mode squeezed-vacuum
states with average photon number NS � 1 in each
signal and idler mode. Let {âSm , âIm} be the photon-
annihilation operators for the transmitter’sM signal and
idler modes, and {âRm} the photon-annihilation oper-
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ators of the M modes returned from the region of in-
terest. The target-detection hypothesis test is to deter-
mine whether h = 0 (target absent) or h = 1 (target
present) is true when: âRm = âBm , for h = 0, and âRm =√
κ eiφâSm+

√
1− κ âBm , for h = 1. Here: the {âBm} are

photon-annihilation operators for iid background-noise
modes that are in the thermal state with average photon
number NB � 1 when h = 0 and in the thermal state
with average photon number NB/(1−κ) when h = 1 [20];
κ > 0 is the target-return’s reflectivity; and φ is the
target-return’s phase.

Previous theoretical work on QI target detection [4,
6, 9, 14] has assumed known κ, φ = 0 [21], and lossless
idler storage. For equally-likely target absence or pres-
ence, QI with optimum quantum reception—realizable
with FF-SFG [14]—has error probability Pr(e)opt '
e−MκNS/NB/2, QI with OPA reception has error prob-
ability Pr(e)OPA ' e−MκNS/2NB/2, and optimum CI has
error probability Pr(e)CI ' e−MκNS/4NB/2.

Lidar targets are almost always speckle targets, viz.,√
κ and φ are statistically independent random variables

whose respective probability density functions (pdfs) are
f√κ(x) = 2xe−x

2/κ̄/κ̄, for x > 0, and fφ(y) = 1/2π,
for 0 ≤ y ≤ 2π, where κ̄ is the target return’s av-
erage intensity. These statistics invalidate all of the
error-probability expressions from the preceding para-
graph. Worse, as will soon be seen, they preclude any
QI receiver from obtaining a single-pulse error probability
that decreases exponentially with increasingMκ̄NS/NB .
For that demonstration we will employ the QCB, an
exponentially-tight upper bound on the error probability
of optimum quantum reception for multiple-copy quan-
tum state discrimination [13].
The QCB applied to QI with Rayleigh fading—. Con-

ditioned on knowledge of h,
√
κ, and φ, the {âRm , âIm}

mode pairs at the QI receiver are in the state ρ̂h(
√
κ, φ) =

⊗Mm=1ρ̂
(m)
h (
√
κ, φ), with ρ̂(m)

h (
√
κ, φ) being the two-mode,

zero-mean, Gaussian state whose Wigner covariance ma-
trix is

Λh = 1
4

[
(2NB + 1)I 2CpRh

2CpRh (2NS + 1)I

]
, (1)

where NB � 1 � NS has been used. In this covari-
ance matrix: I is the 2 × 2 identity matrix, and Rh =
Re
[
eiφ (Z− iX)

]
δh1, where δhk is the Kronecker delta

function, and Z and X are 2 × 2 Pauli matrices. It fol-
lows that the signature of target presence is the nonzero
phase-sensitive cross correlation, Cp =

√
κNS (NS + 1),

between the returned signal and the retained idler modes.
Erroneous target-detection decisions can be either

false-alarm errors, when target presence is declared but
no target is present, or miss errors, when target absence
is declared but a target is present. For a given target-
detection system, the conditional probabilities for these
errors to occur are the false-alarm probability PF , and
the miss probability PM = 1 − PD, where PD is the de-
tection probability, i.e., the probability that target pres-
ence is declared when a target is present. Almost all QI

target detection analyses [4, 6, 9, 14] have been Bayesian:
assign prior probabilities, {πh}, to h = 0 and h = 1, and
minimize the error probability, Pr(e) = π0PF + π1PM ,
typically for equiprobable hypotheses, π0 = π1 = 1/2.
Owing to the difficulty of accurately assigning priors to
target absence and presence, a better approach to op-
timizing target-detection performance is to apply the
Neyman-Pearson performance criterion: maximize PD
subject to a constraint on PF . Only recently has this
criterion been applied to QI target detection [15], and
that work assumed knowledge of the target return’s am-
plitude and phase. In this paper, we will consider both
performance criteria—minimizing Pr(e) and maximizing
PD for a given PF—for our Rayleigh-fading QI scenario.

In the Bayesian approach, the minimum error probabil-
ity for QI target detection is set by the Helstrom limit [22]
for discriminating between the unconditional h = 0 and
h = 1 states,

ˆ̄ρh =

ˆ
dx

ˆ
dy f√κ(x)fφ(y)ρ̂h(x, y). (2)

This limit’s calculation requires diagonalizing π1 ˆ̄ρ1 −
π0 ˆ̄ρ0, so it is intractable for QI with Rayleigh fading,
because ˆ̄ρ1 is not anM -fold product state. Nevertheless,
applying the QCB will yield an informative result.

Let Dπ0
(ρ̂0(x, y), ρ̂1(x, y)) denote the Hel-

strom limit for discriminating between ρ̂0(x, y)
and ρ̂1(x, y) that occur with priors π0

and π1, and let ξQCB(ρ̂0(x, y), ρ̂1(x, y)) ≡
− limM→∞ ln[Dπ0

(ρ̂0(x, y), ρ̂1(x, y))]/M be the QCB
on its error-probability exponent. Then, using the
Helstrom limit’s being concave in quantum states
(see Lemma 1 in the Appendix), we can show (see
Lemma 2 in the Appendix) that the Helstrom limit’s
error-probability exponent for QI target detection,
ξQI ≡ − limM→∞ ln[Dπ0

(ˆ̄ρ0, ˆ̄ρ1)]/M , vanishes, i.e.,
ξQI = 0, for all π0π1 6= 0. Having ξQI = 0 implies that
optimum quantum reception for QI target detection
with Rayleigh fading has an error probability that de-
creases subexponentially with the number of signal-idler
mode pairs that are employed. This subexponential
error-probability behavior applies to all QI receivers,
including the FF-SFG, SFG, and OPA receivers. Be-
cause OPA receivers are relatively easy to build [8]—as
opposed to the far more complicated SFG and FF-SFG
receivers [14]—one might hope that QI with OPA
reception would offer a performance advantage over
optimum CI for the Rayleigh-fading scenario. We next
show that such is not the case.
OPA reception for QI with Rayleigh fading—. It is dif-

ficult to get an analytic error-probability approximation
for QI with OPA reception in the Rayleigh-fading sce-
nario, so we will content ourselves with finding its SNR
and comparing that result to the SNR for the optimum
Rayleigh-fading CI system. The OPA receiver’s essence
is converting QI’s phase-sensitive cross-correlation signa-
ture of target presence to an average photon-number sig-
nature that can be sensed with direct detection. In par-
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ticular, the OPA receiver measures N̂ ≡
∑M
m=1 â

†
mâm,

where âm =
√
G âIm +

√
G− 1 â†Rm is the idler-port out-

put of a low-gain (max(NS/NB , NS/κN
2
B) � G − 1 ∼√

NS/NB � 1) OPA. Hence, we define its SNR to

be SNROPA ≡ [(
∑1
j=0(−1)j〈N̂〉j)/(

∑1
j=0

√
Varj(N̂))]2,

where 〈N̂〉j and Varj(N̂) for j = 0, 1 are the conditional
means and conditional variances of the N̂ measurement
given h = j.

For known κ and φ = 0, we get 〈N̂〉1 − 〈N̂〉0 ≈
2M
√
G(G− 1)κNS(NS + 1). Combining this result

with Varj(N̂) ≈ 〈N̂〉j for the N̂ measurement’s con-
ditional variances, gives SNROPA ≈ MκNS/NB when
NS � 1, κ � 1 is known, φ = 0, and NB � 1. In the
Rayleigh-fading case, the uniformly-distributed random
phase destroys the phase-sensitive cross-correlation sig-
nature in 〈N̂〉1, leading to 〈N̂〉1−〈N̂〉0 = M(G−1)κ̄NS ,
and it adds 2M2(G−1)κ̄NS to Var1(N̂), hence giving us

SNROPA ≈
M(G− 1)(κ̄NS)2/NB

(1 +
√

1 + 2Mκ̄NS/NB)2
, (3)

which is much smaller than Mκ̄NS/NB , the SNROPA for
a known κ = κ̄ and φ = 0 [23].

Optimum CI for Rayleigh fading does matched fil-
tering of its heterodyne detector’s output followed by
square-law envelope detection that yields an output, R,
which is exponentially distributed under both h = 0
and h = 1 [24]. The SNR for this system, SNRCI ≡
[(
∑1
j=0(−1)j〈R〉j)/(

∑1
j=0

√
Varj(R))]2, satisfies

SNCI = (Mκ̄NS/2NB)/ (1 +Mκ̄NS/2NB)
2
, (4)

which is orders of magnitude greater than SNROPA for
Rayleigh fading in the interesting Mκ̄NS/NB � 1 oper-
ating regime.
SFG Reception for QI with Rayleigh Fading—. The

SFG receiver [14] uses a succession of K SFG stages. At
the input to each such stage a beam splitter taps off a
small fraction of the light returned from the region of in-
terest to undergo SFG with the retained idler light. The
returned-light output from that SFG process is then re-
combined with the portion remaining from that stage’s
input beam-splitter and applied, along with the retained-
idler output, to the next stage. Photon-counting mea-
surements are performed on the SFG’s sum-frequency
output and on the auxiliary output from the return-
light beam splitter at the output of each SFG stage.
These measurements are used to decide on target ab-
sence or presence. Figure 1 shows a schematic represen-
tation of the SFG receiver’s kth stage, for more details
see Ref. [14].

For known κ and φ = 0, SFG reception’s error prob-
ability achieves the QCB. The FF-SFG receiver [14]
augments the SFG receiver with pre-SFG and post-
SFG squeezers, whose parameters are chosen in accor-
dance with a Bayesian update rule that is controlled
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â
(k+1)
Rm

b̂(k)

â
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to		
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Figure 1. Schematic representation of the sum-frequency gen-
eration (SFG) receiver’s kth stage, showing only the mth
mode pair, although all M mode pairs are processed simul-
taneously. The mth mode pair of the returned light (â(k)Rm

)
and the retained idler (â(k)Im

) at the input to the kth stage is
transformed into the corresponding mode pair at that stage’s
output by means of SFG. Photon-counting measurements are
made on the single-mode sum-frequency output (b̂(k)) and
the auxiliary output modes ({â(k)Em

: 1 ≤ m ≤ M}). The
SFG receiver’s decision as to target absence or presence is
based on the total of all the photon-counting measurements,
i.e., NT ≡

∑K
k=1(N

(k)
b + N

(k)
E ), where N (k)

b is the outcome
of the b̂(k)†b̂(k) measurement, and N (k)

E is the outcome of the∑M
m=1 â

(k)†
Em

â
(k)
Em

measurement.

by feed-forward information from the prior stages. FF-
SFG reception reaches the Helstrom limit for QI target
detection—in both the Bayesian and Neyman-Pearson
settings—for known κ and φ = 0 [14, 15]. Because its
feed-forward operations exploit φ = 0, FF-SFG reception
ceases to function effectively when φ is uniformly dis-
tributed. SFG reception, which eschews the use of feed-
forward, does cope with random amplitude and phase, as
we now show.

When h = 0, the SFG receiver’s total photon count—
i.e., NT ≡

∑K
k=1(N

(k)
b + N

(k)
E ) from Fig. 1—is the

sum of M iid Bose-Einstein random variables, and has
mean value N0 ' −NS ln(ε)/2 for NS � 1. When
h = 1, and conditioned on the values of κ and φ,
the statistics of the SFG receiver’s total photon count
equal those for direct detection of the coherent state
|
√

(1− ε)MκNS/NB e
iφ〉 embedded in a weak thermal-

noise background of average photon number N0 � 1.
In these expressions, ε � 1 is chosen to obtain good
performance, see [14] for details. When MκNS/NB �
N0, the thermal contribution to the h = 1 statistics
can be neglected. Then, averaging the h = 1 condi-
tional state over the

√
κ and φ statistics results in a

thermal state with average photon number N1 = (1 −
ε)Mκ̄NS/NB , implying that the SFG receiver has re-
duced Rayleigh-fading QI target detection to discriminat-
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ing between two thermal states, σ̂0 =
∑∞
n=0[Nn

0 /(N0 +

1)(n+1)] |n〉 〈n| and σ̂1 =
∑∞
n=0[Nn

1 /(N1+1)(n+1)] |n〉 〈n|,
using photon-counting measurements. SFG reception’s
minimum error-probability decision, h̃ = 0 or 1, is there-
fore h̃ = argmaxh πh

[
Nn
h /(Nh + 1)(n+1)

]
, where n is the

observed photon count.
The preceding rule can be implemented as a threshold

test: h̃ = 1 if and only if n > nt, where the threshold nt
satisfies π0N

nt
0 /(N0 + 1)(nt+1) ≥ π1N

nt
1 /(N1 + 1)(nt+1)

and π0N
nt+1
0 /(N0 + 1)(nt+2) < π1N

nt+1
1 /(N1 + 1)(nt+2).

SFG reception’s ROC—its PD versus PF behavior—can
now be obtained analytically. For integer nt, we have
P SFG
F = [N0/(N0 + 1)]nt+1 and P SFG

D = [N1/(N1 +
1)]nt+1. ROC points intermediate between those gen-
erated with integer thresholds are then obtained from
randomized tests [25].

The Bayesian approach’s error probability is easily
found once its decision rule’s threshold nt is determined.
Evaluating the false-alarm and detection probabilities for
that threshold value, SFG reception’s error probability
then follows from Pr(e)SFG = π0P

SFG
F + π1(1 − P SFG

D ).
For NS → 0 with ε� 1, we find that nt = 0 and hence

Pr(e)SFG ' Pr(e)NS→0
SFG ≡ π1/(1 +Mκ̄NS/NB). (5)

This result’s algebraic scaling with M is consistent with
our earlier finding that optimum quantum reception for
Rayleigh-fading QI target detection has an error prob-
ability that decreases subexponentially with increasing
M .
QI versus CI for Rayleigh Fading—. We are now

prepared to demonstrate that QI target detection with
SFG reception enjoys a significant performance advan-
tage over CI target detection in the Rayleigh-fading sce-
nario. We start with the Neyman-Pearson criterion, for
which we already have the ROC for QI with SFG recep-
tion. The ROC for CI target detection with a coherent-
state transmitter and heterodyne detection is [24] PCI

D =(
PCI
F

)1/(1+Mκ̄NS/NB)
. Figure 2 compares two QI and CI

ROCs. Similar to what was assumed in Refs. [4, 14], we
took κ̄ = 0.01, NB = 20, and ε = 0.01 for both compar-
isons. In one case we assumedNS = 10−4 andM = 108.5,
while in the other we chose NS = 10−2 and M = 106.5.
Figure 2 shows that QI target detection with SFG recep-
tion has a much higher detection probability than opti-
mum CI target detection at low false-alarm probabilities.

Turning now to the Bayesian approach, we again have
the QI result in hand, and we find optimum CI’s error
probability from Pr(e)CI = minPCI

F
[π0P

CI
F +π1(1−PCI

D )].
Figure 3 plots Pr(e)SFG and Pr(e)CI versus log10(M)
for equally-likely target absence or presence assuming
κ̄ = 0.01, NB = 20, and ε = 0.01 for NS = 10−4 and
NS = 10−2. Here we see that QI target detection with
SFG reception offers a significantly lower error proba-
bility than optimum CI target detection. Indeed, for

QI
CI
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Figure 2. QI and CI ROCs for Rayleigh-fading target detec-
tion with κ̄ = 0.01, NB = 20, and ε = 0.01. (a) NS = 10−4

and M = 108.5. (b) NS = 10−2 and M = 106.5.
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Figure 3. QI and CI error probabilities for Rayleigh-fading
target detection with π0 = π1 = 1/2, κ̄ = 0.01, NB = 20,
and ε = 0.01. (a) NS = 10−4. (b) NS = 10−2. The slope
discontinuity in Pr(e)SFG for NS = 10−2 is due to the its
receiver’s photon-number threshold increasing from nt = 0 to
nt = 1 at that point.

MNS � 1 we obtain the asymptotic result

Pr(e)CI '
π1 ln(Mκ̄NS/NB)

Mκ̄NS/NB
+O

(
1

MNS

)
, (6)

which is a factor of ln(Mκ̄NS/NB) higher than the cor-
responding result for Pr(e)NS→0

SFG when Mκ̄NS/NB � 1.
Moreover, Fig. 3a shows that NS = 10−4 is small enough
to ensure Pr(e)SFG ≈ Pr(e)NS→0

SFG for the parameter val-
ues employed therein. At high enough M values, how-
ever, the effect of background noise in the SFG process
becomes significant and Pr(e)SFG begins to deviate from
the ideal NS → 0 result. The onset of this deviation
occurs at lower M values when NS = 10−2, as seen in
Fig. 3b, because the background-noise effect on the SFG
process is proportional to NS [14]. Nevertheless, QI’s
advantage over CI persists. We also see that QI tar-
get detection’s robustness to noise is worse for Rayleigh
fading than what our previous results [14] showed for
known κ. This reduced robustness arises from noise hav-
ing greater impact on Rayleigh-fading error probability—
because κ � κ̄ can occur—as opposed to its effect in a
nonfading environment with κ = κ̄.
Conclusions—. QI target detection is remarkable be-

cause it uses entanglement to outperform CI despite envi-
ronmental loss and noise’s destroying that entanglement.
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Previously, both theory and experiment have demon-
strated QI’s having an advantage over CI, but only for
a target return with known amplitude and known phase.
Yet lidar targets are generally speckle targets, so their
target returns have Rayleigh-distributed amplitudes and
uniformly-distributed phases. We have shown that SFG
reception affords a target-detection performance advan-
tage over optimum CI for this scenario, but its magnitude
is much smaller than what QI provides for the nonfading
situation. Nevertheless, our result brings QI target de-
tection closer to practical application, although two ma-
jor problems remain to be solved: implementing near-
lossless idler-storage and near-unity efficiency SFG for
low-brightness, broadband light.

Two final points now deserve mention. First, although
we have limited our treatment to the Rayleigh-fading
scenario, the SFG receiver’s immunity to a uniformly-
distributed random phase means that it will also be ef-
fective against other fading distributions, e.g., the Rician
fading that models a target return with both specular and
diffuse components [24, 26]. Finally, because NB � 1
most naturally occurs at microwave, rather than optical,
wavelengths [9], SFG reception’s applicability to a variety
of flat-fading scenarios makes it relevant for microwave
as well as optical QI.

Q. Z. acknowledges support from the Claude E. Shan-
non Research Assistantship. Z. Z. and J. H. S. acknowl-
edge support from Air Force Office of Scientific Research
Grant No. FA9550-14-1-0052.
Appendix—. Here we prove the two lemmas that were

used earlier.
Lemma 1 (Concavity of the Helstrom limit) Con-
sider the problem of discriminating between states σ̂0 =´

dx fX(x)ρ̂0(x) and σ̂1 =
´

dx fX(x)ρ̂1(x), where
X is a random vector, that occur with prior proba-
bilities π0 and π1. The Helstrom limit for this bi-
nary state-discrimination task satisfies Dπ0

(σ̂0, σ̂1) ≥´
dx fX(x)Dπ0

(ρ̂0(x), ρ̂1(x)).

Proof. Let M̂0 and M̂1 = Î − M̂0 be the Helstrom-limit
positive operator-valued measurement for discriminating
between σ̂0 and σ̂1 when those states’ prior probabilities
are π0 and π1. Then we have that

Dπ0
(σ̂0, σ̂1) = π0tr(M̂1σ̂0) + π1tr(M̂0σ̂1)

=

ˆ
dx fX(x){π0tr[M̂1ρ̂0(x)] + π1tr[M̂0ρ̂1(x)]}

≥
ˆ

dx fX(x)Dπ0
(ρ̂0(x), ρ̂1(x)),

and the proof is complete.
Lemma 2 (Error-probability exponent for QI with
Rayleigh fading) For h = 0, 1, let ρ̂h(

√
κ, φ) =

⊗Mm=1ρ̂
(m)
h (
√
κ, φ), where ρ̂

(m)
h (
√
κ, φ) is the two-mode,

zero-mean, Gaussian state whose Wigner covariance ma-
trix is given by Eq. (1), and let ˆ̄ρh be the unconditional
density operators obtained by averaging ρ̂h(

√
κ, φ) over

Rayleigh and uniform probability density functions for√
κ and φ, respectively. Then, for all π0π1 6= 0 we have

ξQI ≡ − limM→∞ ln[Dπ0(ˆ̄ρ0, ˆ̄ρ1)]/M = 0.
Proof. Because κ ≤ 1 is required for a passive target,
i.e., one that only reflects, the Rayleigh pdf is really an
approximation to f√κ(x) = 2xe−x

2/κ̄/κ̄(1 − e−1/κ̄) for
0 ≤ x ≤ 1 that is very accurate in QI target detection’s
κ̄� 1 scenario. For proving Lemma 2, however, we need
to employ the truncated pdf, so that Lemma 1 and the
QCB’s exponential tightness for M -copy state discrimi-
nation gives us

Dπ0
(ˆ̄ρ0, ˆ̄ρ1)

≥
ˆ 1

0

dx

ˆ 2π

0

dy
2xe−x

2/κ̄

2πκ̄(1− e−1/κ̄)
Dπ0(ρ̂0(x, y), ρ̂1(x, y))

≥
ˆ 1

0

dx

ˆ 2π

0

dy
2xe−x

2/κ̄

2πκ̄(1− e−1/κ̄)

× Cx,y(M)e−MξQCB(ρ̂0(x,y),ρ̂1(x,y)),

where the subunity prefactor, Cx,y(M), is an algebraic
function of M . Specifically, for all 0 ≤ x ≤ 1 and 0 ≤
y ≤ 2π, we have limM→∞ ln[Cx,y(M)]/M = 0. It follows
that for every ε > 0 there is a finite Mε(x, y) such that
Cx,y(M) ≥ e−εMε(x,y) for all M > Mε(x, y).

Because Ω ≡ {0 ≤ x ≤ 1, 0 ≤ y ≤ 2π} is a compact
region, there is a finite M?

ε = max(x,y)∈ΩMε(x, y). So,
for all M > M?

ε we have

Dπ0
(ˆ̄ρ0, ˆ̄ρ1) ≥ e−εM

ˆ 1

0

dx

ˆ 2π

0

dy
2xe−x

2/κ̄

2πκ̄(1− e−1/κ̄)

× e−MξQCB(ρ̂0(x,y),ρ̂1(x,y))

But min(x,y)∈Ω ξQCB(ρ̂0(x, y), ρ̂1(x, y)) occurs at x = 0,
where ξQCB(ρ̂0(0, y), ρ̂1(0, y)) = 0, because ˆ̄ρ0 = ˆ̄ρ1

when the target return’s intensity vanishes. Thus, for
any 0 < ε′ < 1 we can define Ωε′ = {(

√
κ, φ) :

ξQCB(ρ̂0(x, y), ρ̂1(x, y)) ≤ ε′}, and then weaken our pre-
vious lower bound on the Helstrom limit to

Dπ0
(ˆ̄ρ0, ˆ̄ρ1) ≥ e−(ε+ε′)M Pr[(

√
κ, φ) ∈ Ωε′ ] > 0,

where the last inequality follows from π0π1 6= 0.
Applying this bound to the error-probability exponent

then leads to

ξQI(σ̂0, σ̂1) ≡ − lim
M→∞

ln[Dπ0
(ˆ̄ρ0, ˆ̄ρ1)]/M ≤ ε+ ε′

Because this upper bound holds for all ε, ε′ > 0, by con-
tinuity our proof is now complete.
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