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We investigate the fundamental limits in precision allowed by quantum mechanics from Landau-
Zener transitions, concerning Hamiltonian parameters. While the Landau-Zener transition proba-
bilities depend sensitively on the system parameters, much more precision may be obtained using
the acquired phase, quantified by the quantum Fisher information. This information scales with a
power of the elapsed time for the quantum case, whereas it is time-independent if the transition
probabilities alone are used. We add coherent control to the system, and increase the permitted
maximum precision in this time-dependent quantum system. The case of multiple passes before
measurement, “Landau-Zener-Stueckelberg interferometry”, is considered, and we demonstrate that
proper quantum control can cause the quantum Fisher information about the oscillation frequency
to scale as T 4, where T is the elapsed time. This results are foundational for frequency standards
and quantum clocks.

The Landau-Zener (LZ) transition is a classic example
of exactly solvable, time-dependent quantum mechanics,
whereby an effective two-level quantum system prepared
in its ground state may either stay in the ground state, or
transition to the excited state, depending on the speed of
the energy separation of the levels [1–4]. LZ transitions
have been extended to parabolic level crossing [5], finite
time duration with various approximation regimes [6],
multi-level transitions such as those encountered in cavity
and circuit QED [7, 8], and have also been studied in
the presence of noise [9–11, 39, 40]. In the context of
quantum information, the LZ transition has been used
as a qubit readout mechanism and for quantum control
[12–14].

The LZ transition has been used as a way of estimating
Hamiltonian parameters, such as the level splitting en-
ergy, or the speed of the transition through the avoided
level crossing [15–17]. Going beyond the LZ transition
probabilities, it is also possible to make multiple, coher-
ent sweeps of the avoided level crossing to accumulate
a phase, also known as Landau-Zener-Stueckelberg inter-
ferometry [18–23]; the acquired phase depends sensitively
on the system parameters. The field of quantum metrol-
ogy is concerned with the optimal precision quantum
physics permits in the estimation of parameters [24, 25].
Recent interest in this field has moved beyond simple
multiplicative parameters of the Hamiltonian and begun
to examine general parameters [26], as well as the role
of physical dynamics in the estimation process [27, 28],
which may require coherent control to optimize the ac-
quired information [29, 30].

The purpose of this paper is to apply the methods of
quantum metrology to the LZ transition, and quantify
the estimation precision of parameters in the LZ transi-
tion available by the various techniques aforementioned.
We shall focus on the quantum Fisher information for
the parameters of interest, as it determines the lower

bound of the variance of the parameter estimates over
all possible estimation strategies and all possible quan-
tum measurements on the systems, giving the ultimate
limits of precision allowed by quantum mechanics in the
asymptotic data limit. We find that because of the time-
dependent nature of the problem, with a proper control
Hamiltonian applied, the time-scaling of the quantum
Fisher information can be significantly improved, which
demonstrates a fundamental metrological advantage of
coherent quantum control on the level-crossing physics
of the LZ transition.

The LZ Hamiltonian is given by

H(t) =
vt

2
σz +

∆

2
σx, (1)

where v is the speed of the sweep assumed to be positive
here, and ∆ is the level splitting at the transition time t =
0. Denote |0〉,|1〉 as eigenvectors of σz corresponding to
eigenvalues ±1 and the solution to the Schrödinger equa-
tion, i∂t|ψ〉 = H(t)|ψ〉 as |ψ(t)〉 = C0(t) |0〉 + C1(t) |1〉,
which gives two coupled differential equations for C0,1(t).
We start for simplicity in the ground state |1〉 at an
initial time t = −T0 far away from the avoided level
crossing time t = 0, i.e., T0 � τ ≡ max{ ∆

2v ,
1√
v
}.

Sweeping through the Landau-Zener transition to a time
t = T � τ , which is also far away from the transition re-
gion (see Fig. 1 inset) gives (detailed calculations for this
and subsequent results are provided in the Supplemental
Material [31])

C0(T ) =

√
2πiγ

Γ(1 + ν)
e−πγ/2−2iφ, C1(T ) = e−πγ , (2)

where we define φ ≡ (vT 2 + π)/4 + γ/2 ln(vT 2); γ ≡
∆2/(4v) and Γ represents the gamma function. The ab-
solute square of C0,1(T ) recovers the celebrated (time-
independent) LZ probabilities [2] to find the system in
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the (new) excited or ground states,

P1 = 1− P0 =
∣∣C1(T )

∣∣2 = e−2πγ . (3)

Estimation using the LZ probabilities.—The simplest
estimation scheme is to make a single pass starting from
the ground state |1〉, and measure the system to be in the
new excited or ground state, with the probabilities given
in (3). Since the probabilities depend very sensitively on
the system parameters ∆ or v, we may use the measure-
ment result to obtain an estimator ∆̂ or v̂, respectively.
The mean square error of the estimation is bounded from
below by the inverse of the Classical Fisher information
(CFI), which is referred to as the Cramér-Rao bound
[32]. For a parameters g = ∆, v the CFI is given by

Fg =
∑
ξ

1
p(ξ|g) [∂p(ξ|g)∂g ]2, where ξ = 0, 1 labels the two

states. At time t = T , one obtains from Eq. (3)

F∆(T ) =
16π2γ2

(e2πγ − 1)∆2
, Fv(T ) =

4π2γ2

(e2πγ − 1)v2
. (4)

Repeating the experiment N times from the same ini-
tial state will boost the information by a factor of N .
When N is large, the Cramer-Rao bound can be satu-
rated asymptotically by a maximum likelihood estimator
[31, 32] and hence the Fisher information quantifies the
ultimate precision limit of parameter estimation. The
Fisher information Eq. (4) about either parameter limits
to zero for either a diabatic transition γ � 1, or an adi-
abatic transition γ � 1. This is simply because in those
extreme limits, the LZ probabilities become either 0 or
1, with little variation. Therefore, the estimation strat-
egy is most sensitive in the intermediate range. For γ of
order 1, the uncertainty of both parameters is of order of
the parameter, which for tiny tunnel couplings can give
rise to precise estimates with many measurements [15].

Estimation using any final quantum measurement.—
We can generalize the above situation by rather than
making a final measurement at time T in the |0〉, |1〉
basis, to measure in another basis (or equivalently, stop-
ping the LZ sweep and applying a single qubit unitary).
The maximum Classical Fisher Information over all pos-
sible generalized quantum measurements on a state |ψg〉
is defined as the Quantum Fisher Information (QFI) [33–
35], Ig = 4(〈∂gψg

∣∣∂gψg〉 − | 〈ψg∣∣∂gψg〉 |2). It has been
shown [35] that the optimal projective measurements as-
sociated with the QFI are formed by the eigenvectors of
the symmetric logarithm derivative Lg, defined as Lg =
2∂gρg = 2 (|∂gψg〉 〈ψg|+ |ψg〉 〈∂gψg|). As shown in [31],
for a pure quantum state |ψg〉 =

√
P0 |0〉 +

√
P1e

iφg |1〉,
where P0 and P1 are real and independent of g, the QFI
is Ig = 4P0P1 (∂gφg)

2
. So we can see from this ex-

pression, the decoherence will destroy the relative phase
as well as the population of one of the two levels, de-
grading the QFI dramatically. Since we consider here
the fundamental precision limit allowed by quantum me-
chanics, we assume the unitary dynamics for the sys-
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FIG. 1. The main figure is the QFIs/CFIs for estimating ∆
versus time plotted in logarithmic graph(base 10). I∆ or F∆

denote the QFI or CFI without control while Ic∆ denotes the
QFI with control. Best case Fisher information progressively
increases by moving from classical estimation, to quantum
estimation, to coherently controlled quantum estimation. The
value of parameters in the LZ Hamiltonian are v = 1, ∆ = 1,
and τ = 1. The system starts to evolve at −T0 = −100τ . For
cases with control Hamiltonians, we choose the initial state
to be 1√

2
[|+x〉 − |−x〉] = |1〉. The black marker is the result

calculated from Eq. (4). The inset represents a single LZ
transition.

tem’s evolution and ignore system-environment interac-
tions throughout the paper. The QFI gives better preci-
sion since it is able to take advantage of the phase that is
rapidly accumulating during the LZ sweep, ϕ(T ) ∝ vT 2,
as predicted by Stueckelberg [3]. Still starting from
the ground state at t = −T0, as one can observe from
Eq. (2,3), the state at time T can be rewritten as:
|ψ(T )〉 =

√
P0|0〉+

√
P1e

iϕ(T )|1〉, where the relative phase

is ϕ(T ) = vT 2

2 + γ ln(vT 2) + argΓ(1− γ) + π
4 . When T is

sufficiently large, one can approximate the QFIs by keep-
ing only the contributions due to highest order of T in
the relative phase and neglecting the contributions from
the transition probabilities,

I∆(T ) ∼ ∆2

v2
P0P1

[
ln
(
vT 2

)]2
, Iv(T ) ∼ P0P1T

4. (5)

The above prefactor P0P1 attains its maximum 1/4 when
the transition probabilities are equal. Both of the QFIs
exceed the CFIs, with Iv scaling as T 4 because the ac-
quired phase difference accelerates as T 2. In general, we
may further boost the QFIs by starting the system in a
coherent superposition of |0〉 and |1〉, however, while this
affects the prefactor of the QFIs, it does not change the
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time scaling. The two vectors forming the optimal pro-
jectors, either for estimation of ∆ or v are an equal super-
position of |0〉 and |1〉 with a relative phase of ±ieiϕ(T ).
The measurement basis can be adaptively shifted to max-
imize the acquired information [31].

Plots of the CFIs and QFIs are shown in Figs. (1,2) for
g = ∆, v respectively. Although the previous discussion
assumes a positive sweeping velocity starting from the
ground state, the discrete symmetries of the LZ Hamil-
tonian (1), relate this solution to the negative velocity
case and to starting in the ground state; all these cases
have the same CFIs or QFIs and the corresponding opti-
mal measurements [31].

The T 4 scaling in this example originates from the lin-
ear time growth of the Hamiltonian (1) and does not
require quantum control, different from the multiple-
transition case below and that in [30] where the Hamil-
tonians are bounded. Nevertheless, we show below that
proper quantum control can strengthen this T 4 scaling
by increasing the prefactor.

Adding coherent control to boost precision.—Recently,
Ref. [30] developed a comprehensive theory on quan-
tum metrology with a general time dependent Hamil-
tonian Hg(t) and coherent controls. There the authors
found that the QFI at time t is bounded by Icg(t) ≤
[
´ t
t0

(µmax(t′)− µmin(t′)) dt′]2, where the subscript c de-
notes the QFI with coherent controls; t0 is the initial
time of the evolution of the system; and µmax(t) and
µmin(t) are the maximum and minimum instantaneous
eigenvalues of ∂gHg(t). The equality can be saturated if
the initial state is prepared in an equal superposition of
the maximum eigenstate |µmax(t)〉 and minimum eigen-
state |µmin(t)〉 of ∂gHg(t), where the maximum (mini-
mum) eigenstate denotes the eigenstate corresponding to
the maximum (minimum) eigenvalue of ∂gHg, and an
Optimal Control Hamiltonian (OCH) is applied. In this
optimized regime, one can see that at any time t the
state is still in an equal superposition between |µmax(t)〉
and |µmin(t)〉, with an the relative phase of the form

exp[ig
´ t
t0

(µmax(t′)− µmin(t′)) dt′ + · · · ], where the rest
terms do not depend on the estimation parameter. This
relative phase gives us the physical intuition of the scaling
of the QFI with coherent controls discussed later. From
this relative phase, it is clear that if µmax(t′), µmin(t′)
do not cross with each other nor with other levels of
∂gHg in [t0, t], then the Fisher information is always in-
creasing with time and maximized. However, if µmax(t′)
or µmin(t′) cross with each other or other eigenvalues of
∂gHg at some points, then σx-like pulses are required at
these points to interchange the crossing state amplitudes
so that the Fisher information is maximally increasing
with time (see Fig. 3 for pictorial interpretation). At
the time of level crossings, we apply the Optimal Level
Crossing Hamiltonian (OLCH) denoted as HLC(t). Ex-
amples for this case are the estimation of the transition

velocity for single passage and transition frequency for
multiple passages. The σx-like pulses become π-pulses
for both examples.

In practice, optimal precision is achieved adaptively:
one begins with an initial coarse estimate, g0, about the
parameter. This is followed by applying a control Hamil-
tonian and making a measurement basis with the esti-
mate gc = g0, in order to obtain a next estimate, g1.
The procedure is iterated gj → gj+1 [29–31]. Applying
this theory of time-dependent quantum metrology to es-
timate ∆, we find ∂∆H = σx/2, with eigenvalues ±1/2.
Applying the above results for the QFI with respect to
∆, we find the upper bound

Ic∆, |Ψ〉c∆
(t) =

( ˆ t

−T
dt′
)2

= (t+ T )2, (6)

for any time t, and giving a maximum of 4T 2 at t =
T , provided the initial state is prepared in |Ψ〉c∆ =

(1/
√

2)[|+x〉 + eiβ |−x〉], where β is an arbitrary ini-
tial relative phase. The corresponding OCH Hc∆ =
−(vt/2)σz cancels the first term in Eq. (1), effectively
turning off the LZ sweep in σz. No OLCH is required
since ∂∆H and its eigenstates are time independent and
no level crossing occurs. Note that if v is unknown, we
should replace v in the OCH with an estimate vc that can
be updated based on further measurement data. Fig. 1
shows the comparison of the optimal case with the non-
control and non-optimal cases.

The estimation of v with control is more complicated
than ∆ since the maximum and minimum eigenvalues of
∂vH = tσz/2 have a crossing at t = 0. The QFIs for all
time can be written in a uniform expression

Icv, |Ψ〉cv (t) =
( ˆ t

−T

∣∣t′∣∣dt′)2

=
[t2 + sgn(t)T 2]2

4
, (7)

where the value of sgn(t) is −1 for t ≤ 0 and 1 for t > 0.
We prepare the initial state in |Ψ〉cv =

[
|0〉+ eiβ |1〉

]
/
√

2
with an arbitrary chosen relative phase β. The OCH for
estimating v is Hcv = −(∆/2)σx, which cancels the tun-
neling term. Since the maximum and minimum eigen-
states of ∂vH have a level crossing at t = 0, an OLCH
HLC is required to avoid the level crossing of ∂vH at
t = 0 [31]. This can be done simply by swapping the the
state amplitudes with a π-pulse at time t = 0. The com-
parison of the optimal case with other cases are plotted
in Fig. 2.

Optimal measurements.—In order to saturate the
bounds with optimal controls, it is necessary to con-
struct the optimal measurements. For estimating ∆, if
the OCH is applied and the system is initially prepared
in |Ψ〉c∆, the system will evolve under the Hamiltonian
H + Hc∆ = ∆

2 σx. The vectors forming the optimal pro-
jectors performed at the final time T , expressed in the
σx basis, are equal superposition of |+x〉 and |−x〉 with a
relative phase ±ie2i∆cT+β , where ∆c represents our prior
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FIG. 2. The main figure is the QFIs/CFIs for estimating v
versus time in a semi logarithmic plot (base 10). Iv or Fv de-
note the QFI or CFI without control while Icv denotes the QFI
with control. Starting the system in |+x〉 without control can
nearly perform as well as the optimally controlled metrology.
The parameter configurations are the same as FIG. 1. The
solid line is the case with optimal controls, whereHc = −∆

2
σx.

The black marker is the result calculated from Eq. (4). The
inset represents a single LZ transition.

knowledge of ∆. For estimating v with optimal controls
applied, the vectors forming the optimal measuring pro-
jectors performed at the final time T are equal superpo-
sition of |0〉 and |1〉 with a relative phase ±iei(vcT 2−β),
where vc represents our prior knowledge of v.

Optimal estimation with controlled LZ interferome-
try.—Rather than take a single pass though the avoided
level crossing, the concept of LZ interferometry is to make
many passes, acquiring a phase shift given by a multiple
of the phase shift acquired by a single cycle [18–20]. This
leads to interference fringes in the occupation probability,
known as “Stueckelberg oscillations” [36–38]. In contrast
to past work, we will see that simply letting the phase
accumulate does not give the optimal precision. Rather a
series of control operations should be applied to optimize
the information extraction and change the scaling law of
the Fisher information with duration. This situation al-
lows us to extend the time T of the experiment and gives
an explicitly bounded Hamiltonian, in contrast to a sin-
gle sweep, where the LZ Hamiltonian approximation (1)
would otherwise break down at long time.

The Hamiltonian (1) is modified by replacing the co-
efficient of σz by an oscillating function of amplitude A
and frequency ω, vt → ε0 + A cosωt, describing peri-
odic LZ sweeps. We restart our clock from t = 0, be-

FIG. 3. The main figure is the QFIs for estimating ω ver-
sus time in semi-logarithmic graph (base 10). The subscript
c in the notation of QFI implies it corresponds to the case
with controls. As the control parameter approaches the true
value, the ideal T 4 scaling of the QFI for frequency is ob-
tained. The system starts to evolve at t = 0 and the
value of parameters are ε0 = 0, A = 1, ω = 1, ∆ = 0.1,
N = 60, T = Nπ

ω
=60π. The two cases with controls have

the same OCH Hc = − ε0
2
σz − ∆

2
σx, whereas the additional

control Hamiltonian is not optimal (yellow) and optimal (pur-
ple). The left inset shows the merit of the OLCHs: consider
two cases both initially prepared in (|0〉 + |1〉)/

√
2 = |+x〉

and both with OCHs applied; the one without OLCHs has√
Icω =

∣∣L − G∣∣; the other with OLCHs has
√
Icω = L + D,

where L, G, D represent the magnitudes of the light, interme-
diate and dark blue (grey) areas. The right inset represents
oscillatory avoided level crossings.

ginning away from the transition region. We can now
estimate four Hamiltonian parameters, but we focus on
the frequency ω as the most interesting. We consider
the weakly coupling and near resonance case, where the
rotating wave approximation can be applied. The max-
imum QFI at t = T over all possible initial pure states
of estimating ω for this case is given in [30], and scales

as T 2; max Iω(T ) = A2T 2/(A2 + 4 (∆− ω)
2
), plus os-

cillatory terms of sub-leading order. The dashed-dotted
line in Fig. 3 is for the case of strong coupling and off
resonance. By adding optimal controls, we can find
the closed form of the QFI of estimating ω for general
cases, regardless of the driven intensity and frequency.
We find the parametric derivative of the Hamiltonian is
∂ωH = −At sin(ωt)σz/2, which has eigenvectors |0〉, |1〉,
and eigenvalues µ∓ = ∓At sin(ωt)/2. An interesting fea-
ture arises in that there is a crossing of the eigenvalues of
∂ωH at the ends of the LZ sweeps, not at the crossing of
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the energy eigenvalues. Additional OLCHs must be ap-
plied at each of these time points to swap the amplitudes
of |0〉 and |1〉 in order to saturate the QFI bound. Since
the oscillation frequency is not precisely known, gener-
ally the controls are applied with an estimated value ωc,
which is then iteratively updated in successive trials [31].
The left inset of Fig. 3 schematically shows the function-
ality of the OLCHs: when OCH is applied, the square
root of the QFI is the integrated difference of the maxi-
mum and minimum eigenvalues of ∂ωH over time, which
in the absence of OLCHs is the magnitude of the dif-
ference of the light and intermediate blue (grey) areas,
whereas in presence of the OLCHs is the sum of light and
dark blue (grey) areas. With all optimal controls applied,
the QFI is

Icω,|Ψ〉cω =
(AπN2

ω2

)2

, (8)

where we have considered T = Nπ/ω, (N ∈ N) for sim-
plicity (the general solution is given in [31]) and the sys-
tem is initially prepared in |Ψ〉cω = 1√

2

(
|0〉+ eiβ |1〉

)
with an arbitrary initial relative phase β. We see that
the QFI scales as T 4, giving a scaling law improvement in
the estimation of ω. The optimal observable measured at
the final time T to achieve this precision is σY if we take
β = 0 [31]. The required OCH is Hc = −ε0σz/2−∆σx/2
applied in addition to the OLCHs. A comparison of the
optimal case with both the non-control and non-optimal
case is plotted in the main figure of Fig. 3.

Conclusions.— In summary, we quantified the ulti-
mate estimation precision for the parameters which the
Landau-Zener transition sensitively depends on, using
the quantum Fisher information. With proper adaptive
coherent quantum controls, the ultimate limits of esti-
mation precision can be achieved, and we demonstrated
a T 4 scaling of quantum Fisher information for the oscil-
lation frequency, which can be achieved adaptively [31].
We gave an explicit measurement prescription to unlock
the additional quantum advantages in the measurement
time resource. Our numerical simulations confirmed the
analytic results.
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