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In this paper we propose a scheme to model the phonon analog of optical elements, including a
polarizing beam splitter, a half–wave plate, and a quarter–wave plate, as well as an implementation
of CNOT and Pauli gates, by using two atoms confined in a 2D plane. The internal states of the
atoms are taken to be Rydberg circular states. Using this model we can manipulate the motional
state of the atom, with possible applications in optomechanical integrated circuits for quantum
information processing and quantum simulation. Towards this aim, we consider two trapped atoms
and let only one of them interact simultaneously with two circularly polarized Laguerre–Gaussian
beams.

I. INTRODUCTION

Phonons can play a similar role to photons in quantum
optics and quantum information processing. They can be
used to encode information as qubits because of their ap-
pealing properties such as low–propagation speed, which
provides us with new schemes for processing quantum in-
formation, and their short wavelength, which allows us to
access regimes of atomic physics that cannot be reached
in photonic systems [1]. Numerous researchers are trying
to find ways of using phonons for quantum information
and computation and, more importantly, finding ways for
manipulating the quantum information that is carried by
these phonons [2, 3, 4, 5, 6, 7].
Cold and trapped atoms are good candidates that

provide the possibility of using of phonons (vibrational
motion of the trapped atoms) in quantum information
and quantum optics. This system has attracted more
attention because of their appealing properties such
as long lifetimes (single atoms can remain trapped for
hours or days), long coherence times (ranging from
milliseconds to seconds), natural reproducibility [8],
high controllability and large nonlinearity, which orig-
inate from quantization of the motion [9]. Moreover,
integrated quantum atom chips have become the focus
of current research in atomtronics, which promises
the miniaturization (and therefore scaling) of optical
quantum circuits [10]. One important thing is to show
how we can manipulate motional states of the atoms,
especially on quantum circuits. To achieve this aim,
we have to implement arbitrarily quantum gates on
motional states of the atoms. On the other hand, as
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Bennett, et al., showed in 1995, any unitary operation
can be decomposed into a sequence of single–qubit
rotations and two–qubit CNOT gates [11]. Thus, by
implementation of only these gates, we can realize
arbitrary complex gates. The polarizing beam splitter
(PBS), half–wave plate (HWP), and quarter–wave plate
(QWP) perform operations of the two-qubit CNOT
and single–qubit rotations gates. Wave plates and PBS
operations on a trapped atom chip have not been imple-
mented before, but they are needed for the realization of
universal quantum gates. This work is an effort in that
regard.

Here, we propose a scheme for modeling the phonon
analog of optical elements including PBS, HWP, and
QWP in such a way that the vibrational motion along the
x– and y– axes play the role of the horizontal and ver-
tical polarization, respectively. To this end, we consider
two atoms trapped in the x–y plane, which the inter-
nal states of the atoms are taken to be Rydberg circular
states. Two counter–propagating circularly polarized La-
guerre–Gaussian (LG) beams illuminate selectively only
one of the atoms. We show that external degrees of free-
dom of the atoms can be decoupled from the internal
degree of the first atom by preparing the initial internal
state of the first atom in (|e〉+ |g〉)/

√
2 or (|e〉+i|g〉)/

√
2,

and adjusting the frequency of the beams and trap. In
this way we can model the PBS, HWP and QWP for the
external degree of freedom of the atoms. One of inter-
esting feature of our scheme is the exploitation of orbital
angular momentum (OAM) modes of light. Actually in
our model the OAM modes lead to a nonlinearity, which
is needed for realizing the above–mentioned phonon ana-
log of optical elements.
In this study we proceed as follows. In section

II, we first determine evolution operators of polariza-
tion–sensitive analog optical elements, including a PBS,
a HWP, and a QWP. In section III, we develop a method
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for the realization of the PBS, HWP and QWP for
phonons. In other words, we engineer a Hamiltonian cor-
responding to the PBS, HWP, and QWP, by using two
atoms trapped in a two dimensional plane, where one
of them interacts with two classical, circularly polarized
LG beams. In section IV, we investigate the realization
of Pauli single–qubit gates and a two–qubit CNOT gate
with the trapped atom. Finally, we summarize our re-
sults and conclude with section V.

II. EVOLUTION OPERATORS OF

POLARIZING OPTICAL ELEMENTS

A. Polarizing Beam Splitter

A PBS can be used for translation of spatial qubits into
polarization qubits and is described by four degrees of
freedom. Two of them are related to the spatial modes,
and the other two are related to the polarization. In
this optical element the horizontally polarized light is
always transmitted, while the vertically polarized light
is always reflected (Fig.1.). Namely, the transmission
coefficient for the horizontal mode tH it is one and for
the vertical mode tV it is zero, and reflection coefficient
for the horizontal mode, rH it is zero, and for vertical
mode rV it is one.

FIG. 1. (color online) Schematic diagram of PBS which trans-
mits the horizontal polarization and reflects the vertical po-
larization.

So the operation of the PBS may be described by fol-
lowing matrix [12],







tH irH 0 0
irH tH 0 0
0 0 tV irV
0 0 irV tV






, (1)

which shows that the PBS can be described by a matrix
that is similar to the matrix of a CNOT gate[12]. Thus,
mode transformations of a PBS may be described in the

following form (Fig.2),

âH → ĉH = âH , (2)

b̂H → d̂H = b̂H , (3)

âV → ĉV = ib̂V , (4)

b̂V → d̂V = iâV , (5)

where â and b̂ denote the input modes of the PBS and d̂

FIG. 2. (color online) A schematic diagram of operation of
the PBS.

and ĉ denote the output modes of the PBS. In the follow-
ing we will determine the unitary operator corresponding
to the PBS. A general two-mode Hamiltonian, which can
describe the creation of a photon in mode a and the an-
nihilation of a photon in mode b, and vice versa, may be
written as [13],

Hζ,ϕ = ~ζeiϕâ†b̂+ ~ζe−iϕâb̂†, (6)

Under influence of this Hamiltonian the mode operators
transformations are

e
i

~
Htâe

−i

~
Ht = cos(ζt)â− ieiϕsin(ζt)b̂,

e
i

~
Htb̂e

−i

~
Ht = cos(ζt)b̂− ie−iϕsin(ζt)â.

(7)

If we set ζt = π/2 and ϕ = 0, the unitary operator
corresponding to this Hamiltonian will be,

U = e−iπ
2
(â†b̂+âb̂†), (8)

which leads to the following transformations,

â → −ib̂, (9)

b̂ → −iâ. (10)

Therefore, the unitary operator corresponding to the
PBS can be written as,

U = e−iπ
2
(â†

V
b̂V +âV b̂

†
V
). (11)

This evolution operator leads to the following transfor-
mations,

âH → âH , (12)

b̂H → b̂H , (13)

âV → −ib̂V , (14)

b̂V → −iâV , (15)

which are similar to the PBS transformations regardless
of a minus sign in the third and forth transformations
(which has no effect in our desired main result).
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B. Wave Plates

Another important optical instrument is the wave
plate. A wave plate is an optical device that alters the
polarization state of a light wave traveling through it.
Two common types of wave plates are the HWP and
QWP. For linearly polarized light, the HWP rotates
the polarization vector through an angle 2θ, where
θ is the angle, which the optical axis of the material
makes with the horizontal axis. For elliptically polarized
light, the HWP inverts the light’s handedness [13]. The
QWP converts linearly polarized light into circularly
polarized light and vice versa. A QWP can be used to
produce elliptical polarization as well. In the following
the unitary operators corresponding to these two optical
elements is computed.

1. Half–Wave Plate

The mode transformations of a HWP have the follow-
ing form [13],

âH → cos(2θ)âH − isin(2θ)âV , (16)

âV → −isin(2θ)âH + cos(2θ)âV . (17)

In the Bloch sphere, this corresponds to a rotation
around the x–axis. The unitary operator corresponding
to the HWP transformation can be written as follows,

U = e2iθ(â
†

V
âH+âV â

†

H
). (18)

A rotation over an angle θ of the HWP results in a po-
larization rotation over an angle 2θ (Fig.3).

FIG. 3. (color online) The operation of a HWP on a linearly
polarized field. Axes parallel and perpendicular to the optical
axis of the HWP are indicated by F and S, respectively. A
spatial rotation over an angle θ of the wave plate induces a
polarization rotation over an angle 2θ.

2. Quarter–Wave Plate

The mode transformations of QWP when optical axis
of the material is in direction of the horizontal axis, have

the following form,

âH → e−iπ
4 âH , (19)

âV → e+iπ
4 âV . (20)

Moreover, the Hamiltonian corresponding to the general
single–mode transformation may be written as [13],

Ĥ = ~ϕâ†â. (21)

This Hamiltonian leads to the following Bogoliubov
transformation,

â → e−iϕâ. (22)

Thus the unitary operator, which describes a QWP is,

U = ei
π

4
[â†

V
âV −â

†
H
âH ]. (23)

In the following sections implementation of phonon
analog of the PBS, HWP, and QWP for motional state
of the two trapped atom would investigate.

III. REALIZATION OF PHONON ANALOGS OF

PBS, HWP AND, QWP FOR TWO TRAPPED

ATOMS

Besides energy and linear momentum, photons carry
spin–angular momentum (SAM) and orbital–angular mo-
mentum (OAM). SAM is associated with the polariza-
tion while OAM is associated with the transverse am-
plitude and phase profile of the beam. In this section,
we use these degrees of freedom (OAM and SAM) to
model phonon analogs of PBS, HWP, and QWP for the
phonons.
Let us consider two atoms trapped in an anisotropic

3D harmonic trap which is described by the potential
U(ri) = 1/2m(ω2

xi
(xi − x0i)

2 + ω2
yi
(yi − y0i)

2 + ω2
zz

2
i ),

where m is the mass of the atoms and x0i and y0i are
minimum potential of the trapped atom i. The ωxi

, ωyi

and ωzi are frequencies of the trap in direction of x, y
and z for the trapped atom i. We assume that the atoms
are tightly confined along the z–axis (ωz ≫ ωx,y) and ne-
glect the motion along this axis, and they oscillate around
(x0i , y0i) in the x–y plane. We can implement this kind
of the trap by generalizing the proposed trap in [14]. In
this paper it is introduced a blue detuned optical trap
by using Gaussian beams propagating in direction of z
and giving traps in the x–y plane for Rydberg atoms. Re-
garding that blue detuned traps provide the possibility of
simultaneous trapping of both ground and Rydberg ex-
cited states, so they are interesting for experiments using
Rydberg atoms. We refer the reader to Ref. [14]for fur-
ther details about the how trapping fields interact with
Rydberg excitation, temperature and so on.
We introduce new coordinates as (X̂ = (x̂1 + x̂2)/2,

Ŷ = (ŷ1 + ŷ2)/2) and (x̂ = (x̂2 − x̂1)/2, ŷ = (ŷ2 − ŷ1)/2),
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which shows the center of mass (CM) and breathing mode
operators, respectively. Now consider two classical LG
beams with the same amplitudes, polarizations (circular
polarization), and transverse profile, but with different
frequencies. Thus, the transverse electric field may be
written as,

E = Uℓ(ρ, φ)(êx + iêy)(e
−iω1t + e−iω2t) + h.c., (24)

where Uℓ(ρ, φ) is the transverse profile of LG beams
which at the beam waist w0, is given by,

Uℓ(ρ, φ) = εℓ(
ρ

w0
)|ℓ|exp(− ρ2

w2
0

+ iℓφ), (25)

where ρ and φ are the radial and angular polar coordi-
nates. The modes are characterized by an OAM equal
to ℓ~ along the propagation axis. We let only one of the
atoms, say the first atom, to be illuminated simultane-
ously by the two classical lasers (Fig.4). It is possible
experimentally, because firstly, we choose the potential
of the trap in such a way that the equilibrium position
of the two atoms are spatially separated and secondly,
we assumed the size of the CM mode wave function is
small in comparison to the radius of the LG beams. So if
the laser forms an appropriate angle with the plane that
atoms are trapped, it can illuminate selectively only one
of the atoms without illuminating the other one. For ex-
ample this can be achieved if we apply a beam with waist
size of 1.5 µm and a trap that can trap the atoms with
spaces between atoms in order of millimeter [15].

FIG. 4. (color online) Interaction of two LG lights with one
of the atoms confined in a transverse plane perpendicular to
the beams at the waist of the beams.

The Hamiltonian of this system is given by,

Ĥ = Ĥ0 + Ĥint, (26)

where

Ĥ0 =
~ω0

2
σ̂z1 + ~νxâ

†
xâx + ~νyâ

†
yây

+ ~µxb̂
†
xb̂x + ~µy b̂

†
y b̂y,

(27)

and

Ĥint = −P̂1 ·E, (28)

where σ̂zi is the Pauli operator of the ith atom, ω0 is the
atomic frequency, µi(νi) is the frequency of the phonon in

direction i = x, y for the CM (breathing) mode and âi(b̂i)
is annihilation operator of the CM (breathing) mode in

direction i. P̂1 is the dipole moment of the first atom
which is given by

P̂1 =
1

2
e[(x̂1+iŷ1)(ex−iey)+(x̂1−iŷ1)(ex+iey)], (29)

where ex and ey are the unit vectors along x– and y–axis.
We assume the atoms to be in Rydberg circular electronic
states. Because of the fact that circular states have the
maximum value of the magnetic quantum number, m =
l = n − 1, we represent |n = m + 1, l = m,m〉 with |m〉
for simplicity and we denote two levels of the our atom
with |m〉 and |m + 1〉. Thus, the dipole moment in the
internal circular atomic basis can be written as,

P̂1 =
1

2
Pm[(ex + iey)σ̂m1

+ (ex − iey)σ̂
†
m1

]

=
1

2
Pm[(σ̂m1

+ σ̂†
m1

)ex + i(σ̂m1
− σ̂†

m1
)ey],

(30)

where

e〈m|(x̂1−iŷ1)|m+1〉 = e〈m+1|(x̂1+iŷ1)|m〉 = Pm. (31)

and

σ̂m1
= |m〉〈m+ 1|, σ̂†

m1
= |m+ 1〉〈m|. (32)

Here, σ̂m1
and σ̂†

m1
are Pauli operators of the first atom.

By assuming that the size of the CM mode wave function
R0 is small compared with the radius of the LG beams
w0, and given the fact that the CM motion is quantized,
the transverse profile of the electric field at the beam
waist and in the place of the first atom, for ℓ ∈ 0, ±1,
±2, ..., can be written as [16],

Uℓ(ρ̂, φ̂) = εℓ(
ρ̂

w0
)|ℓ|exp(ilφ̂) =

εℓ

w
|ℓ|
0

(x̂1 ± iŷ1)
|ℓ|

=
εℓ

w
|ℓ|
0

((X̂ − x̂)± i(Ŷ − ŷ))|ℓ|

= εℓ[(ηxc
(â†x + âx)− ηxb

(b̂†x + b̂x))

± i(ηyc
(â†y + ây)− ηyb

(b̂†y + b̂y))]
|ℓ|

(33)

where ηxc
=

√

~/mµxw2
0 , ηyc

=
√

~/mµyw2
0, ηxb

=
√

~/mνxw2
0 , ηyb

=
√

~/mνyw2
0 .

The interaction Hamiltonian of this system for ℓ ∈ 0, ±1,
±2, ..., is given by,

Ĥint = −~

2
Ωm,ℓ[(ηxc

(â†x + âx)− ηxb
(b̂†x + b̂x))

±i(ηyc
(â†y + ây)− ηyb

(b̂†y + b̂y))]
|ℓ|

×σ̂†
m1

(e−iω1t + e−iω2t) + h.c.,

(34)
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where Ωm,ℓ = 2Pmεℓ/~, which is assumed to be equal for
the two standing–wave lasers. We select two lasers with
the following frequencies,

ω1 = νy − µy + ω0, ω2 = −(νy − µy) + ω0. (35)

Under this condition, the Hamiltonian in interaction pic-
ture for ℓ = 2 (Fig.5), in the rotating–wave approxima-
tion, will be,

Ĥint = ∓~Ωm,2ηyc
ηyb

(â†y b̂y + ây b̂
†
y)(σ̂

†
m1

+ σ̂m1
). (36)

The evolution operator corresponding to this Hamilto-

FIG. 5. (color online) Interaction of two LG beams with the
same amplitudes, transverse profile, polarization (from the
point of view of the atom) with an atom trapped in two di-
mensions.

nian is,

U = exp[±iΩm,2ηyc
ηyb

t(â†y b̂y + ây b̂
†
y)(σ̂

†
m1

+ σ̂m1
)]. (37)

By preparing the initial internal state of the first atom
in (|e〉 + |g〉)/

√
2, the internal and external degrees of

freedoms would be decoupled. So dynamical evolution of
the motional states of the atoms is decoupled from the
dynamical evolution of internal states of the first atom.
Moreover, the motional part of the evolution operator is
similar to the evolution operator of the PBS, if we set
Ωm,2ηyc

ηyb
t = π/2. This condition can be achieved and

is compatible with experimental values found in the lit-
erature [17,18]. In more detail, the internal levels of the
atoms are taken to be Rydberg circular states. These
states are extremely long lived, with lifetimes that scale
as n5, which are of the order of 10−2 s for n = 30, and the
electric dipole moments are of the order of 10−27 Cm [17].
The Lamb-Dicke parameter can be of the order of 10−1

[18]. Therefore, a laser with an intensity of 1 Wm2, corre-
sponding to a power of 10−6 W, can satisfy the condition
Ωm,2ηyc

ηyb
t = π/2 for an interaction time 10−5 s. This

shows that, not only the condition Ωm,2ηyc
ηyb

t = π/2
can be achieved, but also the interaction can be carried
out before spontaneous emission can occur.
It is worth noting that the operators âx and ây play

the analog role of âH and âV , respectively. In other
words, the phonons vibrating in the direction of x (y)
axis play the role of the horizontal (vertical) component
of polarization. In more detail, an optical PBS reflects
vertical photons and transmits horizontal photons, while
under the effect of our analog PBS, the phonons of the

CM mode and breathing mode vibrating in the direction
of x–axis will remain in the same mode, but the phonons
of breathing mode vibrating in the direction of y–axis
will change to the CM mode phonons vibrating in the
direction of y–axis and vice versa.

In an other case, if we select two lasers with the fol-
lowing frequencies,

ω1 = µx − µy + ω0 ω2 = −(µx − µy) + ω0, (38)

the Hamiltonian in the interaction picture for ℓ = 2 will
be,

Ĥint = ∓i~Ωm,2ηyc
ηxc

(â†xây + âxâ
†
y)(σ̂

†
m1

− σ̂m1
). (39)

The evolution operator corresponding to this Hamilto-
nian is,

U = exp[±Ωm,2ηxc
ηyc

t(â†xây + âxâ
†
y)(σ̂

†
m1

− σ̂m1
)]. (40)

In this case, by preparing the initial internal state of the
first atom in (|e〉 + i|g〉)/

√
2, the internal and external

degrees of freedoms would be decoupled. So dynamical
evolution of the motional states of the atoms and dynam-
ical evolution of the internal states of the first atom are
decoupled. Moreover, the motional part of this evolution
operator is similar to the evolution operator of a HWP;
i.e. this interaction acts as a HWP for CM phonons. Ac-
tually this HWP rotates the direction of the vibration of
the CM phonon, by 2θ, where, θ = Ωm,2ηxc

ηyc
t/2, and

can be controlled by adjusting the Lamb-Dicke parame-
ters ηxc

and ηyc
, the coupling strength of the atom-light

interaction, and the time of the interaction. These fea-
tures provide good possibilities for manipulating the vi-
brational states of the atoms, which can find application
in quantum information processing and computing.
If we select two lasers with the following frequencies,

ω1 = νx − νy + ω0 ω2 = −(νx − νy) + ω0, (41)

The interaction will act as a HWP for the breathing
phonons.
In the case that we select two lasers with the following
frequencies,

ω1 = ω2 ≃ ω0, (42)

and suppose µi ≪ νi, the interaction Hamiltonian will
be,

Ĥint = −~Ωm,2[η
2
xc
â†xâx−η2yc

â†yây+(η2xc
−η2yc

)](σ̂†
m1

+σ̂m1
).

(43)
We can rewrite this Hamiltonian as,

Ĥint = −~Ωm,2[
η2xc

− η2yc

2
(â†xâx + â†yây)

+
η2xc

+ η2yc

2
(â†xâx − â†yây) + (η2xc

− η2yc
)](σ̂†

m1
+ σ̂m1

).

(44)
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The evolution operator corresponding to this Hamilto-
nian is,

U = exp[(η2xc
− η2yc

)(σ̂†
m1

+ σ̂m1
)]

× exp[iΩm,2

η2xc
− η2yc

2
t(â†xâx + â†yây)(σ̂

†
m1

+ σ̂m1
)]

× exp[iΩm,2

η2xc
+ η2yc

2
t(â†xâx − â†yây)(σ̂

†
m1

+ σ̂m1
)].

(45)

As we see, if we prepare conditions under which
Ωm,2(η

2
xc

+ η2yc
)t/2 = π/4 (it can be achieved corre-

spond to experimental values that we mentioned ear-
lier), and initial internal state of the first atom pre-

pare in (|e〉 + |g〉)/
√
2, the system acts as a QWP on

the CM mode, irrespective the phase of exp[iΩm,2(η
2
xc

−
η2yc

)(â†xâx+â†yây)t/2]. (Note that the number of phonons,

N = â†xâx + â†yây is a constant of motion.) If µi ≫ νi
and Ωm,2(η

2
xb

+ η2yb
)t/2 = π/4 the interaction acts as a

QWP on the breathing phonons.
Therefore, only by adjusting the frequencies of the two
LG beams (with ℓ = 2), and the trap, one can prepare
conditions such that the interaction acts as a PBS, HWP,
and QWP for vibrational phonons.

IV. REALIZATION OF CNOT AND PAULI

GATES

As Bennett, et al., showed in 1995, any unitary oper-
ation can be decomposed into a sequence of single–qubit
rotations and two–qubit CNOT gates [11]. In this section
we show how one can realize quantum CNOT and Pauli
gates by using the interactions that we have investigated
here.
If we encode vibrating directions (x and y) of phonons
as states of the control qubit (|0〉c = |nx = 1, ny = 0〉
and |1〉c = |nx = 0, ny = 1〉) and the type of the
phonon mode (CM or breathing) as states of the tar-
get qubit (|0〉t = |nCM = 1, nb = 0〉 and |1〉t = |nCM =
0, nb = 1〉), the four two-qubit input states (|0, 0〉L =
|nc

x = 1, nb
x = 0, nc

y = 0, nb
y = 0〉, |0, 1〉L = |0, 1, 0, 0〉,

|1, 0〉L = |0, 0, 1, 0〉, |1, 1〉L = |0, 0, 0, 1〉) can be gener-
ated. In this case the PBS interaction Eq.(36) acts as a
CNOT gate on these qubits (Fig. 6). In the same way,
single–qubit gates such as Pauli X gate and Pauli Z gate
can be realized by using HWP and QWP interactions.
Now, let us consider the preparing of the initial states

and readout of the final state. To prepare the initial
state, we should cool down the atom to be prepared in
its motional ground state then by illuminating a photon
with desired transition frequency on the atom we can ex-
cite the motional states in the breathing motion or CM
motion in each of x or y directions. Regarding the read-
out processes, motional state of the trapped atom could
be measured in two steps: at first, the external state of
the atom should map into the internal state by using a

_

_

_

_

FIG. 6. (color online) a) Characterization of the two-qubit
logical states. (b) The effect of the PBS interaction (36) on
the input two-qubit states.

Jaynes-Cummings interaction, and then by performing a
measurement on the internal states, one can determine
the probability distribution of the motional state [19].
It should be noted that the decoherence processes can-
not restrict the operation of the above mentioned gate,
considerably. The most important decoherence effects in
our system are spontaneous emission of atoms, mechan-
ical damping and long-range Rydberg interaction. As
we mentioned before, the time scale of operation of the
CNOT and Pauli gates are smaller than the lifetime of
the considered Rydberg atoms. Thus, we can be sure that
during the interaction the spontaneous emission does not
occur. Moreover, mechanical damping is of the order of
several seconds, but we have estimated the duration of
our scheme to be of the order of microseconds, so the
mechanical damping can be neglected, too. On the other
hand, long-range dipole-dipole interaction between the
two Rydberg atoms can also be neglected, because it is
proportional to (1/r)6 and P 4, where are the distance
between the atoms and dipole moment of the atoms, re-
spectively. The dipole moment of the Rydberg atoms is
proportional to a0n

2, which a0 is Bohr radius and n is
principal quantum number. For our case the distance be-
tween the atoms is in order of millimeters and n = 30,
so dipole-dipole interaction is in order of 10−1Hz, which
when compared to coupling strength of the atom with
light (Ω ∼ 107HZ) is negligible [20].

V. CONCLUSION

In this paper we propose a scheme for modeling the
phonon analog of the optical elements including, PBS,
HWP, and QWP, as well as an implementation of CNOT
and Pauli gates, by using two trapped atoms, which
one of them interact with two circularly polarized LG
beams. This implementation can find application in
the manipulation of quantum states of the phonons for
realization of quantum information and the quantum
computing goals in integrated atom-optical circuits.
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