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Abstract. In the absence of external excitation, light trapped within a dielectric medium generally decays by 
leaking out, and also by getting absorbed within the medium. We analyze the leaky modes of solid dielectric 
spheres by examining solutions of Maxwell’s equations for simple homogeneous, isotropic, linearly dispersive 
media that admit of complex-valued oscillation frequencies. We show that, under appropriate circumstances, 
these leaky modes constitute a complete set into which an initial electromagnetic field distribution inside a 
dielectric sphere can be expanded. We provide the outline of a completeness proof, and also present results of 
numerical calculations that illustrate the close relationship between the leaky modes and the resonances of 
solid dielectric spherical cavities. 

1. Introduction. A well-polished, solid, smooth, homogeneous, and transparent glass sphere is a 
good example of material bodies which, when continually illuminated, admit and accommodate 
some of the incident light, eventually reaching a steady state where the rate of the incoming light 
equals that of the outgoing. By properly adjusting the frequency of the incident light, one can 
excite resonances, thus arriving at conditions under which the optical intensity inside the 
dielectric host exceeds, often by a large factor, that of the incident light beam [1,2]. If now the 
incident beam is suddenly terminated, the light trapped within the host medium begins to leak 
out, and, eventually, that portion of the electromagnetic (EM) energy which is not absorbed by 
the host, returns to the surrounding environment. 

The so-called leaky modes of a dielectric body are characterized by a unique set of complex-
valued frequencies ߱௤ ൌ ߱௤ᇱ ൅ i߱௤ᇳ, where the index ݍ is used here to enumerate the modes [3-
7]. The imaginary part ߱௤ᇳ of each such frequency signifies the decay rate of the leaky mode, and 
(aside from a numerical coefficient) the corresponding quality-factor is given by ܳ ൌ |߱௤ᇱ ߱௤ᇳ⁄ |. 

The leaky modes of dielectric waveguides and cavities have been studied for many years, 
and a considerable volume of results pertaining to these modes exists in the literature. In addition 
to their applications in computational photonics and electromagnetics [8,9], such states of the 
EM field also pose questions of fundamental interest. Specifically, the problem of completeness 
and the general mathematical properties of these so-called “quasi-normal modes” have been 
broadly investigated. Of particular relevance to the present paper are the results reported in [5], 
which show that the leaky modes of a dielectric cavity can serve as a basis to represent arbitrary 
functions but only inside the cavity. In [6] it was shown that the set of leaky modes remains 
complete in the aforementioned sense even when the host medium exhibits losses as well as 
some chromatic dispersion limited to finite frequencies. Considering that the inclusion of 
chromatic dispersion and optical loss complicates the problem considerably, most of the 
pertinent mathematical analysis to date has been limited to one-dimensional systems, with 
rigorous results usually associated with cases in which chromatic dispersion and/or optical loss 
have been absent [10,11]. 

A specific application of leaky modes is the evaluation of the Purcell spontaneous emission 
enhancement factor when a dipole oscillator is coupled to a nearby cavity or a plasmonic 
resonator. Recent publications [12,13] have shown that the Purcell factor can be estimated from 
one (or a few) leaky modes, thus showcasing the need for delving into its detailed derivation, 
which exploits the expansion of Green’s tensor in terms of the leaky modes. The completeness of 
the leaky modes is assumed in the aforementioned papers, and references are given to the 
published literature where completeness has been discussed. In the present paper we emphasize 
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that completeness should not be assumed but must be proven, that the expansion of an initial 
field distribution into a superposition of leaky modes is not trivial but involves subtleties due to 
the unusual behavior of the leaky modes in the vicinity of the singularities of the refractive 
index, and that the expansion coefficients obtained without proper accounting for such 
singularities could be wrong, resulting in a non-convergent series expansion. We will see how 
the leaky modes accumulate near one of the singular points of the refractive index. 
Consequently, if and when the excitation frequency happens to be close to the pole(s) of the 
refractive index, the assumption that one (or at most a few) leaky modes are sufficient to expand 
a given field distribution would become questionable. 

One of the goals of the present paper is to generalize the previous results in several ways. In 
particular, we study dielectric spheres with chromatic dispersion and loss properties in the 
framework of a Lorentz oscillator model, which also properly accounts for the behavior at high 
frequencies. This is an issue of fundamental importance, because high-frequency asymptotics in 
fact determine the conditions under which a set of leaky modes can be considered complete. As 
the frequency increases, the refractive index approaches unity and, for all practical purposes, 
high-frequency propagating waves cease to experience the presence of the cavity. While this is 
an important feature that was not part of the analysis in [6], one could reasonably argue that, in 
the absence of confinement for high-frequency EM waves, leaky modes could only provide 
approximations but not true resonant-mode expansions for arbitrary functions. Yet another 
difficulty arising from the dispersive properties of the medium is that the Lorentz oscillator 
model of the refractive index introduces branch-cuts into the analytic structure of the leaky-mode 
expansion. While the role of this singularity has been related to the over-completeness of the 
resonant states [14], the existence of branch-cuts can potentially invalidate arguments supporting 
completeness. We address these questions rigorously, and demonstrate the convergence of the 
leaky-mode expansion inside the cavity when a realistic high-frequency wave behavior is 
properly taken into consideration. In doing so, we also show that the leaky-mode expansion can 
be constructed in a way that eliminates the potential problem caused by the branch-cuts 
associated with the refractive index. 

The present paper contributes to the mathematics of open systems by providing an 
alternative completeness proof for leaky modes of solid, homogeneous, isotropic, dispersive 
dielectric spheres. We put forward a new approach to the completeness analysis that might find 
applications elsewhere in mathematical physics as well. The main tools of the trade in the 
existing literature on quasi-normal and resonant modes are invariably Green’s functions. In 
contrast to such conventional approaches, we present a method that relies solely on the analytic 
properties of the scattering states, thus avoiding any reliance on Green’s functions. Ours is a 
straightforward approach that simplifies the analysis of the leaky-mode expansion in comparison 
to conventional methods. Also possible are similar proofs of completeness for the leaky modes 
of parallel-plate dielectric slabs and infinitely-long dielectric cylinders, which we have recently 
reported in a conference proceedings paper [15]. 

An important question with regard to the completeness issue is the space of functions that 
can be expressed as a superposition of leaky modes. Interestingly, this is actually rarely 
addressed in the context of optical cavities. Note that our analysis is concerned with inherently 
lossy systems; in other words, not only is the system under investigation open, but also its EM 
energy content can be dissipated throughout the host medium. Thus, the problem being non-
Hermitian, one cannot rely on the completeness of the scattering states as a point of departure 
when attempting to prove that the set of leaky modes forms a basis for expansion. To address this 
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issue, we provide a constructive specification of the function space that is spanned by the leaky 
modes. It is specified as the space of EM fields excited within the optical cavity under external 
illumination. Assuming the external excitation has reached a steady state (after a sufficiently 
long time) when it is terminated, we proceed to show that the subsequent evolution of the EM 
field left inside the cavity can be represented by a convergent superposition of the leaky modes. 

Our approach provides a direct link between the various ways in which resonant modes can 
be detected and studied. In particular, the correspondence between resonance conditions, line 
shapes, and ܳ-factors of a spherical cavity can be readily explored. We present numerical results 
to illustrate certain general properties of spherical cavities. Last but not least, our results provide 
insight into features of resonant modes that are of practical interest. By comparing the properties 
of idealized spherical cavities with those made of realistic (i.e., lossy and dispersive) materials, 
we will show the way in which the losses inherent to the host material impose limits on the 
achievable ܳ-factors of solid dielectric spheres. 

In the following sections, we analyze the EM structure of the leaky modes of solid dielectric 
spheres, and examine the conditions under which certain initial field distributions can be 
decomposed into a superposition of leaky modes. We also present numerical results where the 
resonance conditions, line shapes, and quality-factors of a spherical cavity are computed; the 
correspondence between these and the leaky-mode frequencies is subsequently explored. 

We begin by describing in Sec. 2 the dispersive properties of linear, isotropic, homogeneous 
dielectric media whose electric permittivity and magnetic permeability each follow a single 
Lorentz oscillator model. Then, in Sec. 3, after a summary presentation of vector spherical 
harmonics, we demonstrate the completeness of the leaky modes of solid dielectric spheres for a 
special class of initial distributions residing within the spherical cavity. Numerical results 
showing the connection between the resonances of a dielectric sphere (when illuminated by a 
tunable source) and the corresponding leaky mode frequencies are presented in Sec. 4. Section 5 
provides a summary of the main results of the paper followed by a few concluding remarks. 

2. Refractive index model for a dispersive dielectric. The simplest dispersive dielectric is a 
medium whose electric and magnetic dipoles behave as independent Lorentz oscillators, each 
having their own resonance frequency ߱௥, plasma frequency ߱௣, and damping coefficient ߛ 
[16,17]. The electric and magnetic susceptibilities of the material will then be given by 

 ߯௘ሺ߱ሻ ൌ ఠ೛೐మఠೝ೐మ ି ఠమ ି ୧ఊ೐ఠ , (1a) 

 ߯௠ሺ߱ሻ ൌ ఠ೛೘మఠೝ೘మ ି ఠమ ି ୧ఊ೘ఠ . (1b) 

The corresponding refractive index, which is also a function of the frequency ߱, will then be 

 ݊ሺ߱ሻ ൌ ߝߤ√ ൌ ඥሺ1 ൅ ߯௠ሻሺ1 ൅ ߯௘ሻ ൌ ට1 ൅ ఠ೛೘మఠೝ೘మ ିఠమି୧ఊ೘ఠ ൈ ට1 ൅ ఠ೛೐మఠೝ೐మ ିఠమି୧ఊ೐ఠ 

 ൌ ටሺఠିΩభ೘ሻሺఠିΩమ೘ሻሺఠିΩయ೘ሻሺఠିΩర೘ሻ ൈ ටሺఠିΩభ೐ሻሺఠିΩమ೐ሻሺఠିΩయ೐ሻሺఠିΩర೐ሻ , (2a) 

where 
 Ωଵ,ଶ ൌ േඥ߱௥ଶ ൅ ߱௣ଶ െ ଶߛ¼ െ ½iߛ, (2b) 

 Ωଷ,ସ ൌ േඥ߱௥ଶ െ ଶߛ¼ െ ½iߛ. (2c) 
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Assuming that ߛ ا ߱௥, the poles and zeros of ߤሺ߱ሻ and ߝሺ߱ሻ will be located in the lower-
half of the complex ߱-plane, as shown in Fig.1. The dashed line-segments in the figure represent 
branch-cuts that are needed to uniquely specify each square-root function appearing on the right- 
hand side of Eq.(2a). For the sake of simplicity, one might further assume that the branch-cuts of √ߤ and those of √ߝ do not overlap, although, strictly speaking, this restriction is not necessary. 
Whenever ߱ crosses (i.e., moves from immediately above to immediately below) one of these 
four branch-cuts, the refractive index ݊ሺ߱ሻ is 
multiplied by െ1. Note also that, in the limit when |߱| ՜ ∞ (along any straight line originating at ߱ ൌ 0), the complex entities ߤሺ߱ሻ, ߝሺ߱ሻ, and the 
refractive index ݊ሺ߱ሻ will all approach 1.0, while 1 െ ݊ଶሺ߱ሻ approaches ሺ߱௣௠ଶ ൅ ߱௣௘ଶ ሻ ߱ଶ⁄ . 

Fig.1. Locations in the ߱-plane of the poles and zeros of ߝሺ߱ሻ, whose square root contributes to the refractive index ݊ሺ߱ሻ in accordance with Eq.(2). A similar set of poles and 
zeros, albeit at different locations in the ߱-plane, represents ߤሺ߱ሻ. The dashed lines connecting pairs of adjacent poles 
and zeros constitute branch-cuts for the function ݊ሺ߱ሻ. In 
accordance with the Cauchy-Goursat theorem [18], the 
integral of a meromorphic function, such as ݂ሺ߱ሻ, over a 
circle of radius ܴ௖ is 2ߨi times the sum of the residues of the 
function at the poles of ݂ሺ߱ሻ that reside within the circle. 

3. Leaky modes of a solid dielectric sphere. The vector spherical harmonics of the EM field 
within a homogeneous, isotropic, linear medium having permeability ߤబߤሺ߱ሻ and permittivity ߝబߝሺ߱ሻ are found by solving Maxwell’s equations in spherical coordinates [16,17]. The electric 
and magnetic field profiles for Transverse Electric (TE) and Transverse Magnetic (TM) modes 
of the EM field are found to be ݉ ൌ 0 TE mode ሺܧ௥ ൌ 0ሻ: 

,࢘ሺࡱ  ሻݐ ൌ ாబ௃ℓశ½ሺ௞௥ሻ√௞௥ ℓܲଵሺcos ሻߠ expሺെi߱ݐሻ࣐ෝ . (3) 

,࢘ሺࡴ  ሻݐ ൌ  ாబఓబఓሺఠሻ௥ఠ ቄ௃ℓశ½ሺ௞௥ሻ୧√௞௥ ሾcot ߠ ℓܲଵሺcos ሻߠ െ sin ߠ ሶܲℓଵሺcos  ො࢘ሻሿߠ

 െ ௞௥௃ሶℓశ½ሺ௞௥ሻା½௃ℓశ½ሺ௞௥ሻ୧√௞௥ ℓܲଵሺcos ෡ቅࣂሻߠ expሺെi߱ݐሻ. (4) ݉ ് 0 TE mode ሺܧ௥ ൌ 0ሻ: 

,࢘ሺࡱ  ሻݐ ൌ ଴ܧ ቂ௃ℓశ½ሺ௞௥ሻ√௞௥ ௉ℓ೘ሺୡ୭ୱ ఏሻୱ୧୬ ఏ ෡ࣂ ൅ ௃ℓశ½ሺ௞௥ሻ୧௠√௞௥ sin ߠ ሶܲℓ௠ሺcos ෝቃ࣐ሻߠ expሾiሺ݉߮ െ  ሻሿ. (5)ݐ߱

,࢘ሺࡴ  ሻݐ ൌ െ ாబఓబఓሺఠሻ௥ఠ ቄℓሺℓାଵሻ௃ℓశ½ሺ௞௥ሻ௠√௞௥ ℓܲ௠ሺcos ො࢘ሻߠ െ ௞௥௃ሶℓశ½ሺ௞௥ሻା½௃ℓశ½ሺ௞௥ሻ௠√௞௥ sin ߠ ሶܲℓ௠ሺcos  ෡ࣂሻߠ

 െ ௞௥௃ሶℓశ½ሺ௞௥ሻା½௃ℓశ½ሺ௞௥ሻ୧√௞௥ ௉ℓ೘ሺୡ୭ୱ ఏሻୱ୧୬ ఏ ෝቅ࣐ expሾiሺ݉߮ െ  ሻሿ. (6)ݐ߱

 
 

× × 

߱ᇱ
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݉ ൌ 0 TM mode ሺܪ௥ ൌ 0ሻ: 

,࢘ሺࡱ  ሻݐ ൌ െ ுబఌబఌሺఠሻ௥ఠ ቄ௃ℓశ½ሺ௞௥ሻ୧√௞௥ ൣcot ߠ ℓܲଵሺcos ሻߠ െ sin ߠ ሶܲℓଵሺcos   ො࢘ሻ൧ߠ
 െ ௞௥௃ሶℓశ½ሺ௞௥ሻା½௃ℓశ½ሺ௞௥ሻ୧√௞௥ ℓܲଵሺcos ෡ቅࣂሻߠ expሺെi߱ݐሻ. (7) 

,࢘ሺࡴ  ሻݐ ൌ ுబ௃ℓశ½ሺ௞௥ሻ√௞௥ ℓܲଵሺcos ሻߠ expሺെi߱ݐሻ ෝ࣐ . (8) ݉ ് 0 TM mode ሺܪ௥ ൌ 0ሻ: 

,࢘ሺࡱ  ሻݐ ൌ ுబఌబఌሺఠሻ௥ఠ ቄℓሺℓାଵሻ௃ℓశ½ሺ௞௥ሻ௠√௞௥ ℓܲ௠ሺcos ො࢘ሻߠ െ ௞௥௃ሶℓశ½ሺ௞௥ሻା½௃ℓశ½ሺ௞௥ሻ௠√௞௥ sin ߠ ሶܲℓ௠ሺcos  ෡ࣂሻߠ

 െ ௞௥௃ሶℓశ½ሺ௞௥ሻା½௃ℓశ½ሺ௞௥ሻ୧√௞௥ ௉ℓ೘ሺୡ୭ୱ ఏሻୱ୧୬ ఏ ෝቅ࣐ expሾiሺ݉߮ െ  ሻሿ. (9)ݐ߱

,࢘ሺࡴ  ሻݐ ൌ ଴ܪ ቂ௃ℓశ½ሺ௞௥ሻ√௞௥ ௉ℓ೘ሺୡ୭ୱ ఏሻୱ୧୬ ఏ ෡ࣂ ൅ ௃ℓశ½ሺ௞௥ሻ୧௠√௞௥ sin ߠ ሶܲℓ௠ሺcos ෝቃ࣐ሻߠ expሾiሺ݉߮ െ  ሻሿ. (10)ݐ߱

In the above equations, the Bessel function ܬఔሺݖሻ and its derivative with respect to ܬ ,ݖሶఔሺݖሻ, 
could be replaced by a Bessel function of the second kind, ఔܻሺݖሻ, and its derivative, ሶܻఔሺݖሻ, or by 
Hankel functions of type 1 or type 2, namely, ࣢ఔሺଵ,ଶሻሺݖሻ, and corresponding derivatives ࣢ሶ ఔሺଵ,ଶሻሺݖሻ.  

The (complex) field amplitudes are denoted by ܧ଴ and ܪ଴. In our spherical coordinate 
system, the point ࢘ is at a distance ݎ from the origin, its polar and azimuthal angles being ߠ and ߮. The oscillation frequency is ߱, and the wave-number ݇ is defined as ݇ሺ߱ሻ ൌ ݊ሺ߱ሻ݇଴, where ݇଴ ൌ ߱ ܿ⁄ , and ݊ሺ߱ሻ ൌ ඥߤሺ߱ሻߝሺ߱ሻ is the refractive index of the host medium. The integers ℓ ൒ 1, and ݉ (ranging from െℓ to ൅ℓ) specify the polar and azimuthal mode numbers. ℓܲ௠ሺߞሻ is 
an associated Legendre function, while ሶܲℓ௠ሺߞሻ is its derivative with respect to ߞ. Note that, for a 
given ݉, the TM mode may be obtained from the corresponding TE mode by substituting ࡱ for ࡴ, and െࡴ for ࡱ, keeping in mind that ߱ݎ ൌ ݎ݇ ඥߤబߝబߤሺ߱ሻߝሺ߱ሻ⁄ , and that the ܧ ⁄ܪ  amplitude 
ratio for each mode is always given by ඥߤబߤሺ߱ሻ ⁄ሺ߱ሻߝబߝ . Finally, the various Bessel functions 
of half-integer order are defined by the following formulas [19]: 

ሻݖℓା½ሺܬ  ൌ ට ଶగ௭ ቐsinሺݖ െ ½ℓߨሻ ෎ ሺିଵሻೖሺℓାଶ௞ሻ!ሺଶ௞ሻ!ሺℓିଶ௞ሻ! ቀ ଵଶ௭ቁଶ௞ہℓ ଶ⁄ ۂ
௞ୀ଴  

 ൅ cosሺݖ െ ½ℓߨሻ ෎ ሺିଵሻೖሺℓାଶ௞ାଵሻ!ሺଶ௞ାଵሻ!ሺℓିଶ௞ିଵሻ! ቀ ଵଶ௭ቁଶ௞ାଵہሺℓିଵሻ ଶ⁄ ۂ
௞ୀ଴ ቑ. (11) 

 ℓܻା½ሺݖሻ ൌ ሺെ1ሻℓିଵට ଶగ௭ ቐcosሺݖ ൅ ½ℓߨሻ ෎ ሺିଵሻೖሺℓାଶ௞ሻ!ሺଶ௞ሻ!ሺℓିଶ௞ሻ! ቀ ଵଶ௭ቁଶ௞ہℓ ଶ⁄ ۂ
௞ୀ଴  

 െ sinሺݖ ൅ ½ℓߨሻ ෎ ሺିଵሻೖሺℓାଶ௞ାଵሻ!ሺଶ௞ାଵሻ!ሺℓିଶ௞ିଵሻ! ቀ ଵଶ௭ቁଶ௞ାଵہሺℓିଵሻ ଶ⁄ ۂ
௞ୀ଴ ቑ. (12) 
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 ࣢ℓା½ሺଵሻ ሺݖሻ ൌ ට ଶగ௭ expሼiሾݖ െ ½ሺℓ ൅ 1ሻߨሿሽ ෎ ሺℓା௞ሻ!௞!ሺℓି௞ሻ! ቀ ୧ଶ௭ቁ௞ℓ
௞ୀ଴ . (13) 

Note that √ܬݖℓା½ሺݖሻ is an even function of ݖ when ℓ ൌ 1, 3, 5, and an odd function when ℓ ,ڮ ൌ 2, 4, 6,  This fact will be needed later on, when we try to argue that certain branch-cuts in .ڮ
the complex ߱-plane are inconsequential. Also, the following alternative representation of Bessel 
functions of the first kind, order ߥ, will be found useful: 

ሻݖఔሺܬ  ൌ ሺݖ 2⁄ ሻఔ ෍ ሺିଵሻೖሺ௭ ଶ⁄ ሻమೖ௞! ୻ሺఔା௞ାଵሻஶ௞ୀ଴ · (14) 

Given that ߥ ൌ ℓ ൅ ½ ൒ 3 2⁄  for spherical harmonics, Eq.(14) reveals that ܬℓା½ሺݖሻ ⁄ݖ ՜ 0 
when ݖ ՜ 0. 

Consider now a solid dielectric sphere of radius ܴ, relative permeability ߤሺ߱ሻ, and relative 
permittivity ߝሺ߱ሻ. Inside the particle, the radial dependence of the TE mode is governed by a 
Bessel function of the first kind, ܧ଴ ܬℓା½ሺ݇ݎሻ, and its derivative. The refractive index of the 
spherical particle being ݊ሺ߱ሻ ൌ ඥߤሺ߱ሻߝሺ߱ሻ, the corresponding wave-number inside the particle 
is ݇ሺ߱ሻ ൌ ݊ሺ߱ሻ݇଴ ൌ ݊ሺ߱ሻ߱ ܿ⁄ . The particle is surrounded by free space, which is host to an 
outgoing spherical harmonic whose radial dependence is governed by a type 1 Hankel function, ܧଵ࣢ℓା½ሺଵሻ ሺ݇଴ݎሻ, and its derivative. Invoking the Bessel function identity ܬݖሶఔሺݖሻ ൌ ሻݖఔሺܬߥ െܬݖఔାଵሺݖሻ — which applies to ఔܻሺݖሻ and ࣢ఔሺଵ,ଶሻሺݖሻ as well —we find, upon matching the 
boundary conditions at ݎ ൌ ܴ, that the following two equations must be simultaneously satisfied:  

 ாబ௃ℓశ½ሺ௡௞బோሻඥ௡௞బோ ൌ ாభ࣢ℓశ½ሺభሻ ሺ௞బோሻඥ௞బோ  , (15a) 

 ாబሾሺℓାଵሻ௃ℓశ½ሺ௡௞బோሻ ି ௡௞బோ௃ℓశయ మ⁄ ሺ௡௞బோሻሿఓሺఠሻඥ௡௞బோ ൌ ாభሾሺℓାଵሻ࣢ℓశ½ሺభሻ ሺ௞బோሻ ି ௞బோ࣢ℓశయ మ⁄ሺభሻ ሺ௞బோሻሿඥ௞బோ · (15b) 

Streamlining the above equations, we arrive at 

 ቎ ℓା½ሺ݊݇଴ܴሻܬ െ√݊࣢ℓା½ሺଵሻ ሺ݇଴ܴሻሺℓ ൅ 1ሻܬℓା½ሺ݊݇଴ܴሻ െ ݊݇଴ܴܬℓାଷ ଶ⁄ ሺ݊݇଴ܴሻ െߤ√݊ൣሺℓ ൅ 1ሻ࣢ℓା½ሺଵሻ ሺ݇଴ܴሻ െ ݇଴ܴ࣢ℓାଷ ଶ⁄ሺଵሻ ሺ݇଴ܴሻ൧቏ ቎ܧ଴ܧଵ቏ ൌ 0. (16) 

A non-trivial solution for ܧ଴ and ܧଵ thus exists if and only if the determinant of the 
coefficient matrix in Eq.(16) vanishes, that is, 

ሺ߱ሻܨ  ൌ ݊݇଴ܴ࣢ℓା½ሺଵሻ ሺ݇଴ܴሻܬℓାଷ ଶ⁄ ሺ݊݇଴ܴሻ ൅ ቂሺߤ െ 1ሻሺℓ ൅ 1ሻ࣢ℓା½ሺଵሻ ሺ݇଴ܴሻ െ ଴ܴ࣢ℓାଷ݇ߤ ଶ⁄ሺଵሻ ሺ݇଴ܴሻቃ ܬℓା½ሺ݊݇଴ܴሻ ൌ 0.  (17) 

This is the characteristic equation for leaky TE modes, whose solutions comprise the entire 
set of leaky frequencies ߱௤. (The index ݍ is used here to enumerate the various leaky-mode 
frequencies.) For TM modes, ߤሺ߱ሻ in Eq.(17) must be replaced by ߝሺ߱ሻ. 

Equation (17) must be solved numerically for complex frequencies ߱௤; these being 
characteristic frequencies of the spherical particle’s leaky modes, one expects (on physical 
grounds) to find all the roots ߱௤ of ܨሺ߱ሻ in the lower-half of the complex plane. Note that √݊ܨሺ߱ሻ is an even function of ݊ when ℓ ൌ 1, 3, 5, and an odd function when ℓ ,ڮ ൌ 2, 4, 6,  .ڮ
This is because successive Bessel functions ܬℓା½ and ܬℓାଷ ଶ⁄  alternate between odd and even 
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parities. Note also that ܨሺ߱ሻ vanishes at the zeros of ݊ሺ߱ሻ, that is, ܨሺΩଵሻ ൌ ሺΩଶሻܨ ൌ 0; see 
Eq.(2b). Nevertheless, Ωଵ and Ωଶ do not represent leaky-mode frequencies, because setting ݊ሺΩభ,మሻ ൌ 0 in Eqs.(3)-(10) extinguishes the EM field throughout the dielectric sphere. At the 
poles of ݊ሺ߱ሻ, namely, ߱ ൌ Ωଷ and ߱ ൌ Ωସ given by Eq.(2c), the function ܨሺ߱ሻ is undefined, 
but an arbitrarily small circle centered at Ωଷ (or Ωସ) can be shown to contain an infinite number 
of the zeros of ܨሺ߱ሻ. One could argue that, throughout the dielectric sphere, the EM fields 
associated with the Ωయ,ర frequencies should be negligible, although the mathematical reasoning 
behind this argument is not straightforward. Finally, when ߱ ՜  ሺ߱ሻ approaches a constantܨ ,0
(see the Appendix), and when |߱| ՜ ሺ߱ሻߤ ,∞ ՜ 1 െ ሺ߱௣௠ ߱⁄ ሻଶ and ߝሺ߱ሻ ՜ 1 െ ሺ߱௣௘ ߱⁄ ሻଶ, 
thus allowing the asymptotic behavior of ܨሺ߱ሻ to be determined from Eqs.(11) and (13). 

Our goal is to express an initial field distribution inside the spherical particle (e.g., one of the 
spherical harmonic waveforms given by Eqs.(3)-(10), which oscillate at a real-valued frequency ߱଴) as a superposition of leaky modes, each having its own complex frequency ߱௤. To this end, 
we must form a meromorphic function ܩሺ߱ሻ incorporating the following features: 

i) The function ܨሺ߱ሻ of Eq.(17) appears in the denominator of ܩሺ߱ሻ, thus causing the zeros of ܨሺ߱ሻ to act as poles for ܩሺ߱ሻ. 
ii) A desired initial waveform, say, ܬℓା½ሾ߱݊ሺ߱ሻݎ ܿ⁄ ሿ, appearing in the numerator of ܩሺ߱ሻ. 
iii) The real-valued frequency ߱଴ associated with the initial waveform acting as a pole for ܩሺ߱ሻ. 
iv) In the limit when |߱| ՜ ሺ߱ሻܩ ,∞ ՜ 0 exponentially, so that ׯ  ሺ߱ሻd߱ over a circle of largeܩ

radius ܴ௖ would vanish. 

A simple (although by no means the only) such function is 

ሺ߱ሻܩ  ൌ √ఠ ୣ୶୮ሺ୧ோఠ ௖⁄ ሻ௃ℓశ½ሺ௞௥ሻሺఠିఠబሻிሺఠሻ · (18) 

With reference to Eq.(11), note that the pre-factor 1 √݊⁄  of the Bessel function in the 
numerator of ܩሺ߱ሻ cancels the corresponding pre-factor that accompanies the denominator. The 
remaining part of the Bessel function in the numerator will then have the same parity with 
respect to ݊ሺ߱ሻ as the function that appears in the denominator. Consequently, switching the 
sign of ݊ሺ߱ሻ does not alter ܩሺ߱ሻ, indicating that the branch-cuts associated with ݊ሺ߱ሻ in the 
complex ߱-plane do not introduce discontinuities into ܩሺ߱ሻ. The presence of √߱ expሺiܴ߱ ܿ⁄ ሻ in 
the numerator of ܩሺ߱ሻ is intended to eliminate certain undesirable features of the Hankel 
functions appearing in the denominator. The function ܩሺ߱ሻ is thus analytic everywhere except at 
its poles, where its denominator vanishes. The poles, of course, consist of ߱ ൌ ߱଴, which is the 
frequency of the initial EM field residing inside the spherical particle at ݐ ൌ 0, and ߱ ൌ ߱௤, 
which are the leaky-mode frequencies found by solving Eq.(17) —or its TM mode counterpart. 
The zeros of the refractive index ݊ሺ߱ሻ, namely, ߱ ൌ Ωభ,మ, do not become poles of ܩሺ߱ሻ, because 
the numerator of ܩሺΩభ,మሻ also equals zero. At the poles ߱ ൌ Ωయ,ర of the refractive index, ܩሺ߱ሻ is 
undefined, but it is well-behaved in the sense that the integral of ܩሺ߱ሻ around a small circle 
centered at ߱ ൌ Ωయ,ర, whose radius passes between consecutive poles, approaches zero as the 
radius of the circle goes to zero. For this reason, one can invoke Cauchy’s theorem in order to 
construct a leaky-mode expansion for the dielectric sphere, even though the integrand, ܩሺ߱ሻ, has 
non-isolated singularities at Ωయ,ర (and also when ߱ ՜ ∞). These mathematical details will be 
addressed in a forthcoming paper. 
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In the limit |߱| ՜ ∞, where ߤሺ߱ሻ ՜ 1 െ ሺ߱௣௠ ߱⁄ ሻଶ and ߝሺ߱ሻ ՜ 1 െ ሺ߱௣௘ ߱⁄ ሻଶ, we find 
that ܩሺ߱ሻ approaches zero exponentially. Thus, the vanishing of ׯ  ሺ߱ሻd߱ around a circle ofܩ
large radius ܴ௖ ensures that all the residues of ܩሺ߱ሻ add up to zero, that is, 

 ඥఠబ ୣ୶୮ሺ୧ோఠబ ௖⁄ ሻ௃ℓశ½ሾఠబ௡ሺఠబሻ௥ ௖⁄ ሿிሺఠబሻ ൅ ෍ ඥఠ೜ ୣ୶୮ሺ୧ோఠ೜ ௖⁄ ሻ௃ℓశ½ሾఠ೜௡ሺఠ೜ሻ௥ ௖⁄ ሿሺఠ೜ି ఠబሻிᇲ൫ఠ೜൯௤ ൌ 0. (19) 

The initial field distribution ܬℓା½ሾ߱଴݊ሺ߱଴ሻݎ ܿ⁄ ሿ may thus be expanded as the following 
superposition of all the leaky modes: 

ݎℓା½ሾ߱଴݊ሺ߱଴ሻܬ  ܿ⁄ ሿ ൌ ෍ ሺఠ೜ ఠబ⁄ ሻ½ ୣ୶୮ሾ୧ோሺఠ೜ି ఠబሻ ௖⁄ ሿிሺఠబሻ൫ఠబି ఠ೜൯ிᇲ൫ఠ೜൯ ൈ௤ ݎℓା½ሾ߱௤݊ሺ߱௤ሻܬ ܿ⁄ ሿ. (20) 

To incorporate into the initial distribution the denominator √݇ݎ, which accompanies all the 
field components in Eqs.(3)-(10), we modify Eq.(20) — albeit trivially — as follows: 

 ௃ℓశ½ሾఠబ௡ሺఠబሻ௥ ௖⁄ ሿඥఠబ௡ሺఠబሻ௥ ௖⁄ ൌ ෎ ൫ఠ೜ ఠబ⁄ ൯ൣ௡ሺఠ೜ሻ ௡ሺఠబሻ⁄ ൧½ ୣ୶୮ൣ୧ோ൫ఠ೜ି ఠబ൯ ௖⁄ ൧ிሺఠబሻ൫ఠబି ఠ೜൯ிᇲ൫ఠ೜൯௤ ൈ ௃ℓశ½ሾఠ೜௡ሺఠ೜ሻ௥ ௖⁄ ሿටఠ೜௡ሺఠ೜ሻ௥ ௖⁄ · (21) 

The above formula is a central result of the present paper, indicating that a general EM field 
distribution excited from outside the cavity can be represented by a superposition of leaky 
modes. Indeed, upon termination of the external excitation, the field that remains within the 
cavity is, in general, a superposition of functions similar to that appearing on the left-hand-side 
of Eq.(21), with the spectral weight associated with each such function depending on its 
oscillation frequency ߱଴. Thus, with the important caveat discussed in the following paragraph, 
Eq.(21) provides an explicit formula for computing the leaky-mode expansion coefficients 
corresponding to the post-excitation evolution of the intra-cavity field. 

Without going into details, it must be pointed out that the argument for the vanishing of the 
contour integral around a large circle in the ߱-plane contains a couple of subtleties. One is that 
the integration contour must pass between the poles that represent the very resonances used for 
the expansion. While the straightforward reasoning about the exponential decay of the integrand 
cannot be applied to such a portion of the integral, it can be shown that its contribution does 
indeed vanish in the limit ܴ௖ ՜ ∞ if our choice for ܩሺ߱ሻ as given by Eq.(18) is somewhat 
modified in such a way as to accelerate its approach to zero when |߱| ՜ ∞. The second issue is 
that, besides ߱ ՜ ∞ being an accumulation point for the singularities of ܩሺ߱ሻ, there exist other 
such points, namely, the poles Ωଷ,ସ of the Lorentzian refractive index; see Fig.1. In this case, it 
can be shown that the requirements for the series convergence are less restrictive than those 
pertaining to ߱ ՜ ∞. In fact, one can introduce additional poles into ܩሺ߱ሻ by multiplying its 
denominator with ሺ߱ െ Ωଷሻሺ߱ െ Ωସሻ and still obtain a convergent series. These convergence 
issues are brought about by the dispersion properties of the refractive index together with the fact 
that ݊ሺ߱ሻ ՜ 1 when |߱| ՜ ∞, issues that, to the best of our knowledge, have not been discussed 
in the existing literature concerning leaky-mode expansion of dispersive optical cavities. 
Unfortunately, a detailed exposition of the convergence proof is beyond the scope of the present 
paper and must be presented elsewhere. The bottom line is that the convergence of the series can 
be guaranteed if the leaky-mode expansion coefficients in Eq.(21) are multiplied by the 
additional factor ሺ߱଴ െ Ωଷሻሺ߱଴ െ Ωସሻ ሾሺ߱௤ െ Ωଷሻሺ߱௤ െ Ωସሻሿ⁄ . 



9 
 

Taking advantage of the flexibility of ܩሺ߱ሻ, we now extend the same treatment to the 
remaining components of the EM field. For instance, if we choose 

ሺ߱ሻܩ  ൌ √ఠ ୣ୶୮ሺ୧ோఠ ௖⁄ ሻ ௃ℓశ½ሺ௞௥ሻఠሺఠ ି ఠబሻሺఠ ି Ωయሻሺఠ ି Ωరሻఓሺఠሻிሺఠሻ , (22) 

then ܩሺ߱ሻ ՜ 0 exponentially in the limit when |߱| ՜ ∞, resulting in a vanishing integral around 
the circle of large radius ܴ௖ in the ߱-plane. We thus arrive at an alternative form of Eq.(21), 
which is useful for expanding the field component ܪ௥ appearing in Eqs.(4) and (6), that is, 

 ௃ℓశ½ሾఠబ௡ሺఠబሻ௥ ௖⁄ ሿఓሺఠబሻ௥ఠబඥఠబ௡ሺఠబሻ௥ ௖⁄ ൌ ෍ ሺఠ೜ ఠబ⁄ ሻሾ௡ሺఠ೜ሻ ௡ሺఠబሻ⁄ ሿ½ ୣ୶୮ሾ୧ோሺఠ೜ି ఠబሻ ௖⁄ ሿிሺఠబሻሺఠబି ఠ೜ሻிᇲሺఠ೜ሻ௤  

 ൈ ሺఠబିΩయሻሺఠబିΩరሻሺఠ೜ିΩయሻሺఠ೜ିΩరሻ ൈ ௃ℓశ½ሾఠ೜௡ሺఠ೜ሻ௥ ௖⁄ ሿఓሺఠ೜ሻ௥ఠ೜ሾఠ೜௡ሺఠ೜ሻ௥ ௖⁄ ሿ½· (23) 

Similarly, if we choose 

ሺ߱ሻܩ  ൌ √ఠ ୣ୶୮ሺ୧ோఠ ௖⁄ ሻሾ௞௥௃ሶℓశ½ሺ௞௥ሻା½௃ℓశ½ሺ௞௥ሻሿఠሺఠ ି ఠబሻሺఠ ି Ωయሻሺఠ ି Ωరሻఓሺఠሻிሺఠሻ  , (24) 

it continues to be meromorphic (i.e., free of branch-cuts), and will have a vanishing integral over 
a large circle of radius ܴ௖ in the limit when ܴ௖ ՜ ∞. The relevant expansion of the field 
components ܪఏ and ܪఝ appearing in Eqs.(4) and (6) will then be obtained from ܩሺ߱ሻ of Eq.(24). 

In this way, one can expand into a superposition of leaky modes the various ܧ- and ܪ-field 
components that comprise an initial distribution. It will then be possible to follow each leaky 
mode as its phase evolves while its amplitude decays with the passage of time. 

As for the beam that leaks out of the cavity and into the free-space region ݎ ൐ ܴ, it can be 
shown that the fields grow exponentially along the radial direction, but of course this exponential 
growth terminates at ݎ ൌ  where the leaked beam meets up with the tail end of the beam that ,ݐܿ
was originally reflected from the surface of the sphere (i.e., prior to the abrupt termination of the 
incident beam at ݐ ൌ 0). The EM energy in the region ܴ ൏ ݎ ൏  is just the energy that has ݐܿ
leaked out of the spherical cavity, with the exponential decline of the field amplitude in time 
compensating for the expansion of the region “illuminated” by the leaked beam. 

Before concluding this section, a note concerning over-completeness might be in order. It is 
known that resonant modes are subject to sum rules which make it possible to create nontrivial 
linear combinations that sum-up to zero [20,21]. Our method also allows derivation of such sum 
rules. To this end it is sufficient to remove the factor ߱ ሺ߱ െ ߱଴ሻ⁄  from the function ܩሺ߱ሻ. This 
will not modify the asymptotic behavior at infinity, but it eliminates the contribution of the pole 
at ߱଴, thus giving rise to an over-completeness relation. 

4. Numerical results. As pointed out earlier, the zeros ߱௤ of the characteristic function ܨሺ߱ሻ 
appearing in Eq.(17) must be confined to the lower-half of the complex ߱-plane. This is because, 
when the incident beam is removed, the time-dependence factor expሺെi߱௤ݐሻ of the 
corresponding leaky modes inside and outside the cavity can only decrease with time. Also, 
considering that ߝሺെ߱௤כሻ ൌ ሻכሺെ߱௤ߤ ሺ߱௤ሻ, andכߝ ൌ ሻכሺ߱௤ሻ, and ݊ሺെ߱௤כߤ ൌ כሺ߱ሻ always appear in pairs such as ߱௤ and െ߱௤ܨ ሺ߱௤ሻ, the zeros ofכ݊ . Consequently, leaky frequencies appear in the 
third and fourth quadrants of the ߱-plane as mirror images of each other. 

Trivial leaky modes occur at ߱௤ ൌ Ωଵ௠ and Ωଵ௘ (with their twins occurring at െ߱௤כ ൌ Ωଶ௠ 
and Ωଶ௘), where ݊ሺΩଵ,ଶሻ ൌ 0. Substitution into Eqs.(3)-(10) reveals that, for these trivial leaky 
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modes, which are associated with the zeros of the refractive index ݊ሺ߱ሻ, both ܧ and ܪ fields 
inside and outside the cavity vanish. Finally, referring to the complex ߱-plane of Fig.1, note that 
when ߱ crosses (i.e., moves from immediately above to immediately below) one of the branch-
cuts, ݊ሺ߱ሻ gets multiplied by െ1, which causes ܨሺ߱ሻ of Eq.(17) to be multiplied by േi 
(depending on the value of ℓ being even or odd). 

The contour plots in Fig.2 show, within two segments of the fourth quadrant of the ߱-plane, 
the zeros of Reሾܨሺ߱ሻሿ in red (solid) lines and the zeros of Imሾܨሺ߱ሻሿ in blue (dashed) lines. Both Reሺ߱ሻ and Imሺ߱ሻ are normalized by the (arbitrarily chosen) reference frequency ߱୰ୣ୤ ൌ1.216 ൈ 10ଵହ rad/sec, which corresponds to the free-space wavelength ߣ୰ୣ୤ ൌ  The .݉ߤ 1.55
chosen value of ℓ for the plots of Fig.2 is 10, the dielectric sphere has radius ܴ ൌ  ,݉ߤ 1.55
permeability ߤሺ߱ሻ ൌ 1.0, and the refractive index, ݊ሺ߱ሻ ൌ ඥߝሺ߱ሻ, is governed by a single 
Lorentz oscillator having ߱௥ ൌ 2߱୰ୣ୤, ߱௣ ൌ 5߱୰ୣ୤, and ߛ ൌ 0.02߱୰ୣ୤. The 4th quadrant pole and 
zero of ݊ሺ߱ሻ are thus located at Ωଷ௘ ؆ ሺ2.0 െ 0.01iሻ߱୰ୣ୤ and Ωଵ௘ ؆ ሺ5.385 െ 0.01iሻ߱୰ୣ୤, 
respectively. The parameter values chosen here do not necessarily represent a realistic cavity 
such as a fused silica micro-sphere. Nevertheless, we have chosen these values with the 
following illustration in mind. Despite being artificial, they preserve the “topology” of the 
resonant pole distribution in the ߱-plane, while allowing a reasonable visualization. The small 
size of the cavity, together with a strongly lossy and dispersive medium, effectively isolates the 
important features that we would like to show. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Contours in the complex ߱-plane representing regions where Reሾܨሺ߱ሻሿ ൌ 0 (solid red lines) and Imሾܨሺ߱ሻሿ ൌ 0 (dashed blue lines). The real and imaginary axes are normalized by the reference frequency ߱୰ୣ୤ ൌ 1.216 ൈ 10ଵହ rad/sec. Where a solid red and a dashed blue curve cross, ܨሺ߱ሻ vanishes; these crossing 
points (some of them marked with small circles) correspond to TE leaky-mode frequencies ߱௤ ൌ ߱௤ᇱ ൅ i߱௤ᇳ of 
the spherical cavity at the chosen value of ℓ ൌ 10. The spherical particle has radius ܴ ൌ  ,݉ߤ 1.55
permeability ߤሺ߱ሻ ൌ 1.0, and refractive index ݊ሺ߱ሻ ൌ ඥߝሺ߱ሻ governed by a single Lorentz oscillator. The 4th 
quadrant pole and zero of ݊ሺ߱ሻ are, respectively, at Ωଷ௘ ؆ ሺ2.0 െ 0.01iሻ߱୰ୣ୤ and Ωଵ௘ ؆ ሺ5.385 െ 0.01iሻ߱୰ୣ୤. 

The points where the contours depicted in Fig.2 cross each other —several crossing points 
are circled in the plot —represent the zeros of ܨሺ߱ሻ, which we have denoted by ߱௤ ൌ ߱௤ᇱ ൅ i߱௤ᇳ 
and referred to as leaky-mode frequencies. The region of the ߱-plane depicted in Fig.2(a) 
contains the 4th quadrant leaky-mode frequencies to the left of Ωଷ௘; a large number of such 
frequencies are seen to accumulate in the vicinity of ߱ ൌ Ωଷ௘, where the coupling of the incident 
light to the cavity is weak, and the damping within the sphere is dominated by absorption losses. 

(a) (b)

Reሺ߱ ߱౨౛౜⁄ ሻ Reሺ߱ ߱౨౛౜⁄ ሻ 

Imሺ Imሺ
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The region of the ߱-plane depicted in Fig.2(b) contains the 4th quadrant leaky-mode frequencies 
to the right of Ωଵ௘. The imaginary part ߱௤ᇳ of these leaky frequencies is seen to acquire large 
negative values as the corresponding real part ߱௤ᇱ  increases. No leaky frequencies were found in 
the upper-half of the ߱-plane, nor were there any in the strip between Ωଵ௘ and Ωଷ௘. As 
mentioned earlier, symmetry considerations ensure that the poles in the third and fourth 
quadrants are mirror-images of each other. As will be seen shortly, when the dielectric sphere is 
illuminated with a real-valued excitation frequency ߱, resonances occur in the vicinity of ߱ ൌ ߱௤ᇱ , i.e., at and around the real parts of the various leaky mode frequencies. 

Note that the leftmost zero-crossing shown in Fig.2(b) represents a zero of the refractive 
index ݊ሺ߱ሻ, which has multiplicity equal to the order of the Bessel function associated with the 
modal field. However, this zero of the function ܨሺ߱ሻ is cancelled out by the numerator of ܩሺ߱ሻ, 
as can be readily seen by expanding in the vicinity of the complex zero of ݊ሺ߱ሻ. As such, the 
leftmost zero-crossing in Fig.2(b) does not contribute to the leaky-mode expansion. 

To investigate the resonant behavior of the dielectric sphere described in conjunction with 
Fig.2, we pick a real-valued frequency ߱, then select a mode consisting of incoming and 
outgoing Hankel functions outside the sphere, matched to a Bessel function of the first kind 
residing inside. The resulting equations do not depend on the azimuthal mode number ݉, which 
indicates that, for a given integer ℓ, the modes associated with all values of ݉ between െℓ and ℓ 
are degenerate. Figure 3 shows the computed amplitude ratio of the ܧ-field inside the sphere to 
the incident ܧ-field, plotted versus the normalized excitation frequency ߱/߱୰ୣ୤. Here the ܧ-field 
amplitude is defined as the magnitude of ܧ଴ in Eq.(5). As before, ܴ ൌ ሺ߱ሻߤ ,݉ߤ 1.55 ൌ ሺ߱ሻ follows a single Lorentz oscillator model ሺ߱௥ߝ ,1.0 ൌ 2߱୰ୣ୤, ߱௣ ൌ 5߱୰ୣ୤, ߛ ൌ 0.02߱୰ୣ୤ሻ, and the 
selected TE mode has ℓ ൌ 10. In the interval ሾΩଷ௘, Ωଵ௘ሿ between the pole and zero of the 
refractive index (see Fig.1), the field amplitude inside the cavity is seen to be vanishingly small. 
Outside this “forbidden” zone, the field has resonance peaks at specific frequencies, and the ratio ܧ୧୬ୱ୧ୢୣ ⁄୧୬ୡ୧ୢୣ୬୲ܧ  can vary significantly between adjacent peaks and valleys. For the chosen set of 
parameters in Fig.3, the minimum resonance frequency occurs at ߱ ؆ 0.76253߱୰ୣ୤. 
Fig.3. Logarithmic plot of the ratio of the ܧ-field inside the 
sphere to the incident ܧ-field, for a dielectric sphere of radius ܴ ൌ at ℓ ݉ߤ 1.55 ൌ 10. The horizontal axis represents the 
normalized excitation frequency ߱ ߱୰ୣ୤⁄ . The refractive index ݊ሺ߱ሻ ൌ ඥߝሺ߱ሻ of the spherical particle is governed by a 
single Lorentz oscillator. The 4th quadrant pole and zero of ݊ሺ߱ሻ are at Ωଷ௘ ؆ ሺ2.0 െ 0.01iሻ߱୰ୣ୤ and Ωଵ௘ ؆ ሺ5.385 െ0.01iሻ߱୰ୣ୤, respectively. The EM field hardly penetrates the 
dielectric sphere in the frequency interval between the pole 
and zero of ݊ሺ߱ሻ. Outside this “forbidden” interval, the ܧ-
field amplitude ratio exhibits sharp peaks at certain 
frequencies, which is indicative of resonant behavior. 

A comparison of Fig.2 with Fig.3 reveals a close relationship between the leaky mode 
frequencies and the resonances of the dielectric sphere. Resonances occur at or near the (real-
valued) frequencies ߱ ൌ ߱௤ᇱ , and the height and width of a resonance line are, by and large, 
determined by the decay rate ߱௤ᇳ of the corresponding leaky mode —unless the leaky mode 
frequency happens to be so close to the pole(s) of the refractive index ݊ሺ߱ሻ that the strong 
absorption within the medium would suppress the resonance. It must be emphasized that the 
presence of a gap in the frequency domain (such as that between ߱ ൌ ReሺΩଷ௘ሻ and ߱ ൌ ReሺΩଵ௘ሻ 

߱ ߱౨౛౜⁄  

logଵ
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in the present example) should not prevent the leaky modes from forming a complete basis. This 
is because one expects, on physical grounds, that the ensemble of leaky modes would carry all 
the spatial frequencies needed to capture the various features of an arbitrary initial EM field 
distribution. 

For leaky TE modes, the radial dependence of the ܧ-field inside and outside the dielectric 
sphere are given by ܧ଴ ሻݎℓା½ሺ݇ܬ ⁄ݎ݇√  and ܧଵ ࣢ℓା½ሺଵሻ ሺ݇బݎሻ ඥ݇బݎൗ , respectively. Here ݇ሺ߱ሻ ൌ݊ሺ߱ሻ߱ ܿ⁄  and ݇బሺ߱ሻ ൌ ߱ ܿ⁄ . Plots of the ܧ-field amplitude for several leaky ℓ ൌ 10 TE modes 
of a sphere of radius ܴ ൌ  are shown in Fig.4. The refractive index of the dielectric ݉ߤ 1.55
material at the reference frequency ߱୰ୣ୤ ൌ 1.216 ൈ 10ଵହ rad/sec is ݊ሺ߱୰ୣ୤ሻ ൌ 3.055 ൅ 0.0091i. 
The fields are plotted as functions of the normalized radial coordinate ݎ/ܴ, with frames (a) and 
(b) depicting the real and imaginary components of the ܧ-field. The solid (black) curve, the 
dashed (red) curve, and the dash-dotted (blue) curve correspond to ߱ ߱୰ୣ୤⁄ ൌ 0.76253 ൅0.00128i, 0.938779 ൅ 0.00199i, and 1.08039 ൅ 0.00275i, respectively. 

Figure 5 provides a comparison between the ܧ-field inside a spherical cavity and its 
expansion in terms of the leaky-modes (ܴ ൌ ℓ ,݉ߤ 1.55 ൌ 10 TE mode, ߱ ൌ 1.8߱୰ୣ୤). The 
solid black and solid red lines show, respectively, the real and imaginary parts of the target 
solution, ܧ୧୬ୱ୧ୢୣሺݎሻ, whereas the symbols superposed on these solid lines represent the leaky-
mode expansion, ∑ ሻ௤ݎ୪ୣୟ୩୷ሺܧ , of the target function composed of 100 terms. The convergence is 
seen to be rather poor near the surface of the sphere ሺ0.9 ൏ ݎ ܴ⁄ ൏ 1.0ሻ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. The ܧ-field amplitude inside and outside a solid dielectric sphere of radius ܴ ൌ  plotted ,݉ߤ 1.55
versus the normalized radial coordinate ݎ/ܴ for three ℓ ൌ 10 TE modes. The real part of the field is shown in 
(a), while its imaginary part appears in (b). The solid black, dashed red, and dash-dotted blue curves 
correspond, respectively, to ߱ ߱୰ୣ୤⁄ ൌ 0.76253 ൅ 0.00128i , 0.938779 ൅ 0.00199i, and 1.08039 ൅0.00275i (߱୰ୣ୤ ൌ 1.216 ൈ 10ଵହ rad/sec). The particle, whose permeability is ߤሺ߱ሻ ൌ 1.0, has a refractive 
index ݊ሺ߱ሻ ൌ ඥߝሺ߱ሻ governed by a single Lorentz oscillator (߱௥ ൌ 2߱୰ୣ୤, ߱௣ ൌ 5߱୰ୣ୤, and ߛ ൌ 0.02߱୰ୣ୤). 

The error of the leaky-mode expansion depicted in Fig.5 (superposed on the function being 
expanded) illustrates that the gap between the expansion and its target function, while 
indiscernible at small radii, grows in the vicinity of the boundary of the cavity. This behavior is 
generic, and a manifestation of the fact that our leaky-mode expansion converges rather slowly. 
In fact, adding hundreds or even thousands of terms to the expansion only results in a minuscule 
reduction in the residual error. We have traced this behavior to the fact that the terms in the 
expansion do not enter their asymptotic regime until their count is on the order of 10ଵ଴. The 

(a) (b)
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practical consequence here is that, while a good approximation can be achieved with a fairly 
small number of terms, suppressing the error below a few parts in a thousand becomes utterly 
impractical. That being said, one should keep in mind that the expansion error is due primarily to 
those basis functions that decay rapidly upon termination of the excitation. In other words, due to 
the large imaginary parts ߱௤ᇳ of their eigen-frequencies, the contribution of high-order leaky 
modes will disappear almost instantly once the excitation is terminated. If, for some applications, 
accuracy beyond a few parts in a thousand turns out to be necessary, it is worth noting that, with 
the asymptotic information about convergence rates 
that can easily be determined for these series, it is 
highly likely that convergence accelerating re-
summation methods can be deployed. 

Fig.5. Comparison of the ܧ-field inside a spherical cavity with 
its expansion as a superposition of leaky modes (ܴ ൌ ℓ ,݉ߤ 1.55 ൌ 10 TE mode, ߱ ൌ 1.8߱౨౛౜). The real and imaginary parts of ܧ୧୬ୱ୧ୢୣሺݎሻ are shown as solid lines — black and red (grey), 
respectively. The superposed symbols (i.e., small solid circles) 
represent the result of leaky-mode expansion, ∑ ሻ௤ݎ୪ୣୟ୩୷ሺܧ , 
composed of 100 terms. 

For the remaining set of figures, we shall ignore the dispersive nature of the dielectric host 
and simply assume that ߤሺ߱ሻ ൌ 1.0 and ߝሺ߱ሻ ൌ 2.25 at and around the reference frequency ߱౨౛౜ ൌ 1.216 ൈ 10ଵହ rad sec⁄  (corresponding to the vacuum wavelength ߣ౨౛౜ ൌ  This is .(݉ߤ 1.55
tantamount to confining the frequency range of interest to Ωଵ௠ ا ߱ ا Ωଷ௘. Unlike the previous 
example in which the parameter selection was driven by the visualization needs, the parameter 
values in the following examples are comparable to those found in actual  experiments [1,2]. 

Figure 6 shows the resonances of a dielectric sphere of radius ܴ ൌ  ౨౛౜ and refractiveߣ50
index ݊ ൌ 1.5 for the ℓ ൌ 340 TE and TM modes. The contours of real and imaginary parts of 
the characteristic equation ܨሺ߱ሻ ൌ 0 have been plotted in the ߱-plane, as was done for a 
different set of parameters in Fig.2. Where the contours cross each other, the function ܨሺ߱ሻ 
vanishes, indicating the existence of a leaky mode at the crossing frequency ߱௤ ൌ ߱௤ᇱ ൅ i߱௤ᇳ. The 
ratio |߱௤ᇱ ߱௤ᇳ⁄ | is a measure of the ܳ-factor of the spherical cavity at (or near) the excitation 
frequency ߱ ൌ ߱௤ᇱ .  

Fig. 6. Computed ܳ-factor versus the resonance frequency for a 
solid dielectric sphere (ܴ ൌ ߤ ,݉ߤ 77.5 ൌ 1, ݊ ൌ 1.5) in the 
vicinity of ߱౨౛౜ ൌ 1.216 ൈ 10ଵହ rad sec⁄ . The leaky frequencies ߱௤ ൌ ߱௤ᇱ ൅ i߱௤ᇳ are solutions of ܨሺ߱ሻ ൌ 0, which have been found 
numerically. The ratio |߱௤ᇱ ߱௤ᇳ⁄ | is used as a measure of the cavity ܳ-factor at the excitation frequency ߱ ൌ ߱௤ᇱ . Shown are computed ܳ-factors for both TE and TM modes (solid blue squares for TE, 
open red circles for TM) at several resonance frequencies of the 
dielectric sphere corresponding to ℓ ൌ 340. 

Shown in Fig.6 are the computed ܳ-factors of the spherical cavity for both TE and TM 
modes at the various resonance frequencies corresponding to ℓ ൌ 340. (Note that the 
characteristic equation does not depend on ݉, which indicates that, for a given integer ℓ, the 
modes associated with all ݉ between െℓ and ℓ are degenerate.) The lowest resonance frequency 
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occurs at ߱ ؆ 0.78߱୰ୣ୤. The large values of ܳ seen in Fig.6 are a consequence of the fact that 
the refractive index ݊ is assumed to be purely real; later, when absorption is incorporated into the 
model via the imaginary part of ݊, the ܳ-factors will drop to more reasonable values. 

The direct method of determining the resonances of the spherical cavity involves the 
computation of the amplitude ratio ܧ౟౤౩౟ౚ౛/ܧ౟౤ౙ౟ౚ౛౤౪ for an incident Hankel function of type 2 
(incoming wave) and a fixed mode number ℓ. (As pointed out earlier, the amplitude of each ܧ-
field is defined as the magnitude of the corresponding ܧ଴ in Eq.(5), with the radial dependence of 
the inside field being given in terms of the Bessel function ܬℓା½ሺ݇ݎሻ, while that of the incident 
field outside the sphere involves the Hankel function ࣢ఔሺଶሻሺ݇଴ݎሻ.) Once again, the results are 
independent of the azimuthal mode number ݉, as the modes associated with ݉ ൌ െℓ to ℓ are all 
degenerate. Figure 7 shows plots of ܧ౟౤౩౟ౚ౛/ܧ౟౤ౙ౟ౚ౛౤౪ for the spherical cavity of radius ܴ ൌ  ,౨౛౜ߣ50
refractive index ݊ ൌ 1.5, and mode number ℓ ൌ 340, at and around ߱౨౛౜ ൌ 1.216 ൈ 10ଵହ rad sec⁄ ; 
the results for both TE and TM modes are presented in the figure. The resonances are seen to be 
strong, with narrow linewidths. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  7. Plots of the amplitude ratio of the ܧ-field inside the dielectric sphere ሺܴ ൌ ,݉ߤ 77.5 ߤ ൌ 1, ݊ ൌ 1.5ሻ 
to the incident ܧ-field for the ℓ ൌ 340 spherical harmonic. The horizontal axis represents the excitation 
frequency ߱ normalized by ߱୰ୣ୤ ൌ 1.216 ൈ 10ଵହ rad sec⁄ . (a) TE mode. (b) TM mode. Note that the cutoff 
frequency for both modes is ߱ ؆ 0.78߱୰ୣ୤, below which no resonances are excited. Above the cutoff, in 
between adjacent resonances, the field amplitude inside the cavity drops to exceedingly small values. The 
occurrence of extremely large resonance peaks in these plots is due to the assumed value of the refractive 
index ݊ being purely real. (c) Close-up view of the resonance lines of the glass ball for the ℓ ൌ 340 spherical 
harmonic, showing the TM resonances (dashed red lines) being slightly shifted away from the TE resonances 
(solid black lines). (d) Magnified view of an individual TE resonance line centered at ߱ோ ൌ 1.00207߱୰ୣ୤. 
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Outside the resonance peaks and especially at lower frequencies, it is seen that the coupling 
of the incident beam to the cavity is extremely weak. The TE and TM modes are quite similar in 
their coupling efficiencies and resonant line-shapes, their major difference being the slight shift 
of TM resonances toward higher frequencies, as can be seen in Fig.7(c). Figure 7(d) is a 
magnified view of the line-shape for a single TE resonant line centered at ߱ ൌ 1.00207߱౨౛౜. 

To gain an appreciation for the effect of the mode 
number ℓ on the resonant behavior of our spherical cavity, 
we show in Fig.8 the computed ratio ܧ౟౤౩౟ౚ౛/ܧ౟౤ౙ౟ౚ౛౤౪ for ℓ ൌ 10, 20 and 25. It is observed that, with an increasing 
mode number ℓ, the lowest accessible resonance moves to 
higher frequencies, and that the ܳ-factor associated with 
individual resonance lines tends to rise. 

Fig. 8. Excitation frequency dependence of the ratio of the ܧ-field inside 
a glass sphere to the incident ܧ-field for ℓ ൌ 10 (solid black), ℓ ൌ 20 
(dashed blue), and ℓ ൌ 25 (dash-dotted red) TE spherical harmonics. 

Finally, Fig.9 shows computed ܳ-factors ሺܳ ൌ |߱௤ᇱ ߱௤ᇳ⁄ |ሻ for a spherical cavity having ܴ ൌ77.5 µm, ߤ ൌ 1.0, ݊ ൌ ݊ᇱ ൅ i݊ᇳ, and ℓ ൌ 340. Setting ݊ᇱ ൌ 1.5 allows a comparison between 
the results depicted in Fig.6, where ݊ᇳ ൌ 0, and those in Fig.9, which correspond to ݊ᇳ ൌ 10ି଼ 
(blue squares), 10ି଻ (red circles), and 10ି଺ (black diamonds). These positive values of ݊ᇳ 
account for the presence of small amounts of absorption within the dielectric sphere. Compared 
to the case of ݊ᇳ ൌ 0, the resonance frequencies in Fig.9 have not changed by much, but the ܳ-
factors of the various resonances are seen to have declined substantially. As expected, the 
greatest drop in the ܳ-factor is associated with the largest value of ݊ᇳ. This is a practically 
interesting finding, especially in light of the previous result on the ܳ-factors of an idealized 
cavity, which could reach exceedingly high values. Here we see that accounting for realistic 
values of optical loss brings down the computed ܳ-factor to the levels observed in experiments 
[1,2]. This also indicates that the limiting factor in the best spherical resonators available today is 
most likely the medium properties rather than roughness and other cavity imperfections as one 
might reasonably presume. Considering that the measured absorption coefficients (e.g., ݊ԣ ؆10ି଻ for a fused silica micro-sphere in the visible optical 
range) are comparable to the theoretical values of ݊ԣ 
needed to bring the ܳ-factor of a perfectly spherical 
dielectric resonator to within the range of the highest ܳ-
factors that are currently accessible to experiments, it is 
reasonable to conclude that the ܳ-factor-limiting 
physical effect is in fact absorption within the micro-
sphere. Needless to say, scattering from surface 
roughness and also deleterious effects of inclusions, 
impurities, and material inhomogeneities could result in 
mode-mixing, which causes further reduction of the ܳ-
factor. Nevertheless, the purity and the polish quality of 
existing dielectric micro-spheres are such that their 
observed ܳ-factors indeed appear to be limited by the 
absorption coefficient ݊ԣ of the host material. 

ℓ ൌ 10ℓ ൌ 20ℓ ൌ 25
߱ ߱౨౛౜⁄  

logଵ
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Fig. 9. Similar to Fig. 6, except that the
refractive index ݊ ൌ ݊ᇱ ൅ i݊ᇳ of the dielectric
sphere is now allowed to have a small
nonzero imaginary part, ݊ᇳ, representing
absorption within the material. 
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5. Concluding remarks. Leaky modes contain a wealth of information about the resonant 
behavior of dielectric cavities, including the lifetimes associated with the light trapped inside the 
cavity immediately after the source of excitation is turned off. Listed below is a summary of the 
main results of the present paper, with emphasis placed not only on mathematical aspects but 
also on the physical attributes of our findings. 

1. A dielectric or metallic sphere, when illuminated from the outside or excited internally, 
contains EM fields. Once the excitation is terminated, the trapped fields inside the sphere decay 
by leaking out and/or by being absorbed within the sphere. We have identified the complete set 
of leaky modes, and shown the conditions under which a trapped field can be expressed as a 
superposition of these leaky modes. 

2. We have proven the completeness of these leaky modes under special circumstances, although 
completeness under more general conditions remains to be demonstrated. We have modelled the 
dielectric function ߝሺ߱ሻ ൌ ݊ଶሺ߱ሻ of the spherical particle as a single Lorentz oscillator, thereby 
treating dispersion and absorption of the material medium in a simple yet physically realistic 
way. While we have assumed that the sphere is surrounded by free space, the results can be 
readily extended to the case of a surrounding dielectric medium. 

3. Our completeness proof rigorously accounts for realistic dispersion effects, including 
absorption losses, the existence of branch-cuts associated with the Lorentz oscillator model of 
the refractive index, and the fact that infinitely many complex poles accumulate in the vicinity of 
the singular point(s) of the refractive index. 

4. We did not invoke the Green function (or tensor) that has been traditionally used to analyze 
this type of problem. Instead, we relied on the exact solutions of Maxwell’s equations to identify 
the leaky modes, then constructed the modal expansion of an initial field distribution using a 
straightforward application of the Cauchy theorem of complex analysis; see, e.g., Eq.(19). The 
explicit formulas derived here for the expansion coefficients allow easy evaluation of the relative 
contributions to an arbitrary initial distribution (inside the spherical particle) of the various leaky 
modes; see Eq.(23). 

5. With regard to the conventional Green’s function approach, we note that one can certainly 
rewrite Maxwell’s equations into an integral equation, and the boundary conditions at infinity are 
carried by the choice of the Green function. Usually the waves at infinity are either outgoing or 
incoming, since, for these boundary conditions, Green’s functions are easy to find. However, for 
the specific goal of obtaining leaky-mode expansions of the fields, one also needs to find the 
leaky modes, then express Green’s functions as sums of the leaky modes. This can certainly be 
done at a formal level, but there are two problems that have to be faced. The first is to find an 
effective way to calculate the coefficients of the expansion; this, in general, is not a simple 
problem, and numerical methods might have to be deployed. The second is that the question of 
convergence of the resulting expansion must be treated separately, as there is nothing in the 
Green function formulation that would guarantee the convergence of the leaky-mode expansion. 
To the best of our knowledge, the arguments given in favor of the convergence in the literature 
do not constitute a rigorous proof, if only because the question of accumulation points of the 
resonance poles has so far not been analyzed within the Green function framework. 

6. As a matter of fact, most works utilizing Green’s functions seem to target primarily 
applications to cavity perturbations rather than address questions of convergence [22-28]. In 
contrast, the approach taken in the present paper is to i) find the leaky modes, ii) find the explicit 
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expansion coefficients of the functions of interest with respect to the modes, and iii) decide on 
the convergence of the series. Solving Maxwell’s equations using scattering boundary conditions 
in conjunction with Cauchy’s theorem addresses the three aforementioned goals in a well-
designed, easy-to-use package. Ours is a highly flexible approach in which the design of the 
leaky modes and the corresponding expansion coefficients are guided by the question of 
convergence. In fact, rather than being some late-comer to the game, in our approach 
convergence is actually a design tool. 

7. Our numerical results have intimated a close association between resonant behavior and the 
leaky eigen modes of dielectric spheres. The fact that spherical harmonics with large ℓ values are 
associated with high-ܳ resonances hints at the importance of electromagnetic angular momentum 
in relation to the long lifetimes of the modes trapped inside these cavities. In other words, there 
appears to be a connection between the strength of the circular motion of EM energy inside a 
cavity and the time it takes for this energy to leak out. We have seen a similar relation between 
the azimuthal mode number ݉ and the cavity ܳ-factor in the case of cylindrical cavities [15]. In 
fact, when the radius ܴ and the refractive index ݊ of a dielectric cylinder are the same as those of 
a sphere, and when the mode number ݉ for the cylinder is the same as the mode number ℓ for 
the sphere ሺ݉ ൌ ℓ ب 1ሻ, the plots of ܳ-factor versus resonance frequency for the two cavities 
are found to be nearly identical. 

8. Leaky modes are often characterized as “unphysical” because they seem to carry infinite 
energy. We have emphasized that the EM field distribution outside the sphere grows 
exponentially with radial distance, while decaying exponentially with time. The exponential 
growth with distance, however, is not unphysical, because the fields only extend to a distance ݎ ൌ  is the time elapsed since the external/internal ݐ from the sphere’s surface, where ݐܿ
excitation of the spherical particle was terminated. Considering that the leaky modes exist only 
after the termination of the excitation, the outer tails of the leaky modes within the surrounding 
medium do not extend to infinity and, therefore, the well-known exponential growth of the field 
amplitude with distance does not constitute a violation of the law of conservation of energy. 
(Note that the situation discussed here is completely analogous to that in quantum mechanics; 
see, e.g., [29].) 

9. In Fig.2, we presented a typical map of the leaky frequencies ߱௤ in the complex ߱-plane, and 
drew attention to the singular points of this map, which are located at the pole(s) and zero(s) of 
the refractive index ݊ሺ߱ሻ of the spherical particle. It must be emphasized that, when the excited 
field has a frequency close to the pole(s) of the refractive index, there will be a large number of 
closely-spaced leaky frequencies that must be included in any physically meaningful expansion 
of the initial field distribution. 

10. We have provided several numerical examples, some with artificial parameter values to 
emphasize the mathematical aspects of the leaky mode expansion (e.g., Figs. 2-5), and some with 
physically realistic parameter values (e.g., Figs.6-9) in order to draw attention to the behavior of 
leaky modes in problems of practical interest. 

11. Finally, it is interesting to note that small amounts of absorption or loss can dramatically 
suppress the ܳ-factors of a solid dielectric sphere at large ℓ and in the vicinity of the cutoff 
frequency, as revealed by a comparison between Fig.6 and Fig.9. This finding indicates that the ܳ-factors occurring in practice might be actually limited by the material properties rather than 
the particle’s surface quality. 



18 
 

In conclusion, the present paper has described a general approach to analyzing and 
computing the leaky modes of solid dielectric spheres. In Sec.3, we presented the outlines of a 
completeness proof for expanding certain initial field distributions as a sum over leaky modes. 
Mathematical details and some of the subtleties associated with the series convergence were 
either skipped over or mentioned only briefly. These subtleties, which revolve around the 
behavior of the accumulated poles of the function ܩሺ߱ሻ of Eq.(18) when ߱ approaches the poles Ωయ,ర of the refractive index ݊ሺ߱ሻ, and also when ߱ ՜ ∞, will be the subject of a forthcoming 
mathematics-oriented paper. 
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Appendix 
We show that ܨሺ߱ሻ of Eq.(17) approaches a constant when ߱ ՜ 0. In the limit ݖ ՜ 0, we have 

ሻݖఔሺܬ  ՜ ሺ௭ ଶ⁄ ሻഌ୻ሺఔାଵሻ· (A1) 

 ఔܻሺݖሻ ՜ ሺ௭ ଶ⁄ ሻഌ୲ୟ୬ሺఔగሻ୻ሺଵାఔሻ െ ሺ௭ ଶ⁄ ሻషഌୱ୧୬ሺఔగሻ୻ሺଵିఔሻ ;      ሺߥ ് an integerሻ. (A2) 

Therefore, when ߱ ՜ 0, considering that ݇଴ ൌ ߱ ܿ⁄ ՜ 0, we will have 

ሺ߱ሻܨ  ൌ ݊݇଴ܴ࣢ℓା½ሺଵሻ ሺ݇଴ܴሻܬℓାଷ ଶ⁄ ሺ݊݇଴ܴሻ ൅ ሾሺߤ െ 1ሻሺℓ ൅ 1ሻ࣢ℓା½ሺଵሻ ሺ݇଴ܴሻ െ ଴ܴ࣢ℓାଷ݇ߤ ଶ⁄ሺଵሻ ሺ݇଴ܴሻሿ ܬℓା½ሺ݊݇଴ܴሻ 
 ൌ ݊݇଴ܴܬℓା½ሺ݇଴ܴሻܬℓାଷ ଶ⁄ ሺ݊݇଴ܴሻ ൅ ሾሺߤ െ 1ሻሺℓ ൅ 1ሻܬℓା½ሺ݇଴ܴሻ െ ℓାଷܬ଴ܴ݇ߤ ଶ⁄ ሺ݇଴ܴሻሿ ܬℓା½ሺ݊݇଴ܴሻ 

 ൅i݊݇଴ܴ ℓܻା½ሺ݇଴ܴሻܬℓାଷ ଶ⁄ ሺ݊݇଴ܴሻ ൅ iሾሺߤ െ 1ሻሺℓ ൅ 1ሻ ℓܻା½ሺ݇଴ܴሻ െ ଴ܴ݇ߤ ℓܻାଷ ଶ⁄ ሺ݇଴ܴሻሿ ܬℓା½ሺ݊݇଴ܴሻ  

 ՜   ୧ሺିଵሻℓାଵ௡௞బோ୻ሺ½ିℓሻ୻ሺℓାହ ଶ⁄ ሻ ሺ½݇଴ܴሻିሺℓା½ሻሺ½݊݇଴ܴሻℓାଷ ଶ⁄  

 ൅ ୧୻ሺℓାଷ ଶ⁄ ሻ ቂሺିଵሻℓశభሺఓିଵሻሺℓାଵሻ୻ሺ½ିℓሻ ሺ½݇଴ܴሻିሺℓା½ሻ െ ሺିଵሻℓఓ௞బோ୻ሺି½ିℓሻ ሺ½݇଴ܴሻିሺℓାଷ ଶ⁄ ሻቃ ሺ½݊݇଴ܴሻℓା½ 

 ՜  ୧ሺିଵሻℓశభ௡ℓା½୻ሺℓାଷ ଶ⁄ ሻ ቂሺఓିଵሻሺℓାଵሻ୻ሺ½ିℓሻ ൅ ଶఓ୻ሺି½ିℓሻቃ ൌ ୧ሺିଵሻℓሾଵ ା ℓ ା ℓఓሺ଴ሻሿሾ௡ሺ଴ሻሿℓశ½ሺℓା½ሻ୻ሺ½ ା ℓሻ୻ሺ½ ି ℓሻ · (A3) 

The identity Γሺݔ ൅ 1ሻ ൌ  ሻ has been used in the above derivation. We may now invokeݔΓሺݔ
the identity Γሺ½ ൅ ½ሻΓሺݔ െ ሻݔ ൌ ߨ cosሺݔߨሻ⁄  to arrive at 

 limఠ՜଴ ሺ߱ሻܨ ൌ iൣඥߤሺ0ሻߝሺ0ሻ ൧ℓା½ሾ1 ൅  ℓ ൅  ℓߤሺ0ሻሿ ሾሺℓ ൅ ½ሻߨሿൗ · (A4) 

It is seen that ܨሺ߱ሻ has no poles at ߱ ൌ 0, which indicates that, in the vicinity of ߱ ൌ 0, the 
function ܩሺ߱ሻ is not singular. 
  

0 0

0

0
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