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We investigate interference and correlation effects when several detuned emitters are placed along a one-
dimensional photonic waveguide. Such a setup allows multiple interactions between the photons and the
strongly coupled emitters, and underlies proposed devices for quantum information processing. We show, first,
that a pair of detuned two-level systems (2LS) separated by a half wavelength mimic a driven Λ-type three-level
system (3LS) in both the single- and two- photon sectors. There is an interference-induced transparency peak
at which the fluorescence is quenched, leaving the transmitted photons completely uncorrelated. Slightly away
from this separation, we find that the inelastic scattering (fluorescence) is large, leading to nonlinear effects
such as non-reciprocity (rectification). We connect this non-reciprocity to inelastic scattering caused by driving
a dark pole and so derive a condition for maximum rectification. Finally, by placing a true 3LS midway between
the two 2LS, we show that elastic scattering produces only transmission, but inelastic scattering nevertheless
occurs (the fluorescence is not quenched) causing substantial photon correlations.

I. INTRODUCTION

Stimulated by the strong light-matter interaction that
can now be achieved between photons confined in a one-
dimensional (1D) channel and local emitters (qubits), the
study of waveguide quantum electrodynamics (QED) has re-
ceived considerable attention [1–6]. Likewise, driven by the
needs of quantum information and computation to transmit
and process quantum information using photons, it is of great
interest to generate, store, and release single photons in an in-
tegrated photonic circuit. Waveguide QED is a natural way
to approach these needs and is being actively pursued in a
variety of platforms. One recent development, for instance,
is the study of directional coupling between the photons and
emitters in optical systems [7–10]. Another is the rapid ex-
perimental progress in superconducting circuits [11–16] based
on which fundamental quantum system building blocks have
been proposed, such as single-photon generators [17], routers
[18], detectors and counters [19–22], diodes [23, 24], memory
[25, 26], and gates [27–29].

An important advantage of the 1D waveguide geometry is
the ability to attach several local emitters to the waveguide
such that each photon strongly interacts with all of the emit-
ters. Indeed, this feature is behind many of the building blocks
mentioned above, and in addition paves the way for investi-
gating many-body physics [2–4, 30–32] and generating en-
tanglement among the qubits [33–37]. The simplest such sys-
tem consists of two two-level systems (2LS) attached to the
waveguide. Recent work has shown that when the two 2LS
are detuned from each other, rectification of incoming pho-
tonic pulses is possible [24, 38–40].

In this paper, we present two dramatic effects of detuned
emitters in waveguide QED. First, we show that two 2LS cou-
pled to the waveguide can act like a driven Λ-type three-level
system (3LS), a highly desirable structure, not only for a sin-
gle photon but also in the two-photon sector. At certain qubit
separations L, full transmission of photons within a narrow
frequency range is achieved via interference, as in electromag-
netically induced transparency (EIT) in a Λ-3LS [41]. Similar

FIG. 1. Schematic for the “2-3-2” structure: a pair of 2LS, separated
by distance L and detuned by δ, coupled to a 1D waveguide, with an
additional driven Λ-type 3LS placed in the middle. In the rotating
frame, ωs = ωe −∆ where ∆ is the detuning of the classical beam.
Throughout this paper, we assume that two identical photons with
momentum k are incident.

to such a 3LS [42–44], at this transmission peak, the photons
are not correlated. Indeed, there is no inelastic scattering (the
fluorescence is quenched) and no bunching or anti-bunching.

Strong inelastic scattering can however be produced by
slightly changing the qubit separation around the “EIT point.”
This occurs because the dark state associated with EIT ac-
quires a small decay width, producing inelastic scattering. We
show that this is intimately connected to the non-reciprocity
discussed in Refs. [38–40]. In particular, the linear relation
between parameters that maximize rectification reported in
Ref. [38] can be explained assuming the dark state is driven.
Our finding provides useful guidance in designing photonic
rectifiers.

The second multiple-emitter effect presented here is that
the behavior is strikingly different when a genuine driven Λ-
3LS is inserted between the two 2LS, hereafter referred to as
the “2-3-2” structure shown in Fig. 1. In the combined struc-
ture, there continues to be perfect transmission in the elastic
channel, but now inelastic scattering produces photons that
are strongly correlated. The resulting resonance fluorescence
and bunching in the photon-photon correlations, g2(0) > 1,
are both large.

All of our results are obtained using a scattering approach
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developed previously [34, 45, 46], which is equivalent to the
weak-pumping limit in input-output theory [46]. An impor-
tant tool is the use of the total inelastic photon flux as a figure
of merit to find situations and parameters where the photon
correlations are strongest [44].

The rest of this paper is organized as follows: In Sec. II
we describe the Hamiltonian of the systems under considera-
tion. Next, we discuss in Sec. III the mapping between a pair
of detuned 2LS and a driven Λ-3LS under the Markovian ap-
proximation, and then move on to results in first- and second-
order quantities such as single-photon transmittance T (k),
two-photon inelastic-scattering flux F (k), two-photon corre-
lation function g2(t), and time delay τ. The recent proposal
on rectification effects [24, 38–40] is revisited in Sec. IV. In
Sec. V, we discuss how to suppress the fluorescence quench
by interrupting the 2LS pair with a genuine driven Λ-3LS, and
show that the transmitted photons have nontrivial correlations.
We close in Sec. VI with a brief discussion of the validity of
Markovian approximation and the robustness of this mapping
with nonzero dissipation.

II. THE MODEL

We consider a 1D continuum with linear dispersion and bi-
directional photons denoted by “R” and “L” for right-moving
and left-moving, respectively. The Hamiltonian in position
space is, then,

Hph = −i
∫
dx

[
a†R(x)

d

dx
aR(x)− a†L(x)

d

dx
aL(x)

]
. (1)

(For convenience, we take ~ = c = 1.) Each of the two de-
tuned 2LS is characterized by a transition frequency ωi, de-
cay rate Γi, position xi, and raising/lowering operator σi±.
The Hamiltonian of the 2LS is, then, H0

2LS =
∑
i ωiσi+σi−.

We take (without loss of generality) ω1,2 = ω0 ± δ/2 and
x1,2 = ±L/2.

When a pair of distant 2LS is coupled to the waveguide, the
full Hamiltonian isH2-2LS = Hph +H0

2LS +Hint
2-2LS, where

Hint
2-2LS =

∑
α=R,L
i=1,2

√
Γi
2

∫
dx δ(x−xi)

[
a†α(x)σi− + h.c.

]
(2)

in the rotating wave approximation.
For the 2-3-2 structure, a single driven Λ-type 3LS is added

at x = 0 (the middle element in Fig. 1). Its Hamiltonian is
H0

3LS =
∑
β=e,s(ωβσβ+σβ−) + Ω/2(σe+σs− + h.c.), where

“e” and “s” refer to the excited and metastable states of the
3LS, ωs = ωe − ∆ in the rotating frame, and Ω (∆) is the
Rabi frequency (detuning) of the classical beam driving the
e-s transition. The coupling of the 3LS to the waveguide is
given by

Hint
3LS =

∑
α=R,L

√
Γe
2

∫
dx δ(x)

[
a†α(x)σe− + h.c.

]
. (3)

Thus, the full Hamiltonian of the 2-3-2 structure is given by
H2-3-2 = Hph +H0

2LS +H0
3LS +Hint

2-2LS +Hint
3LS.

III. TWO 2LS VS. A Λ-3LS: SIMILARITIES AND
DIFFERENCES

In this section we compare two 2LS with a single driven Λ-
3LS in both the single and two photon sectors. We present the
transmission, inelastic scattering, and photon-photon correla-
tion. When the separation between the two 2LS is a multiple
of λ0/2, there is a clear mapping in the single-photon sector
between the two systems. Here the detuning of the two 2LS
plays the role of the classical driving field in the Λ-3LS.

The main result of this section is that, surprisingly, this
mapping carries over to the two-photon sector as well. For
resonant photons in particular, interference produces a peak
of perfect transmission at which there is no inelastic scatter-
ing nor photon correlation.

A. Single-photon sector

Using standard methods, the single-photon transmission
amplitude t(k) can be obtained for all these systems. For a
pair of 2LS, it is (see, for example, [25, 34])

t(k) =
(k − ω1)(k − ω2)

(k − ω1 + iΓ1

2 )(k − ω2 + iΓ2

2 ) + Γ1Γ2

4 e2ikL
, (4)

while for a driven Λ-type 3LS, it is [42, 47]

t(k) =
(k − ωs) (k − ωe)− Ω2

4

(k − ωs)
(
k − ωe + iΓe

2

)
− Ω2

4

. (5)

Unless otherwise stated, we assume the incoming photon with
momentum k is injected from the left, as depicted in Fig. 1.
With regard to non-reciprocity, because Eq. (4) is invariant
upon exchanging subscripts 1 and 2, it is evident that a pair of
2LS cannot rectify single photons for any separation L [38–
40].

We now apply the Markovian approximation to Eq. (4) by
replacing the propagation factor exp(2ikL) by exp(2ik0L)
where k0 is the average wavevector (ω1 + ω2)/2. This im-
plementation of the Markovian approximation in a scattering
theory approach [34, 45] is equivalent to those made in master
equation approaches. Its validity is ensured when ΓL/c � 1
and |k − k0| . Γ as then the phase difference is very small.
The Markovian approximation is discussed further in Sec. VI.

We introduce a set of “mapping rules” to clarify the rela-
tion between transmission through two 2LS and that through
a driven Λ-3LS:

ωe = ω0 +
δ(Γ1 − Γ2)

2(Γ1 + Γ2)
, ωs = ω0 −

δ(Γ1 − Γ2)

2(Γ1 + Γ2)
,

Ω =
2δ
√

Γ1Γ2

Γ1 + Γ2
, Γe = Γ1 + Γ2. (6)

Using these rules while making the particular choice k0L =
nπ with n an integer, we find that the two amplitudes (4) and
(5) are identical. Notice that the colocated case n = 0 is in-
cluded and that the separation between the two 2LS is a mul-
tiple of half wavelengths, L = nλ0/2. For simplicity in inter-
preting this result, we assume hereafter that the two 2LS have
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FIG. 2. Schematic of the level structure of two detuned 2LS with
k0L = 2nπ in the symmetric-antisymmetric basis. The effective
Λ-type 3LS is formed from the three states |gg〉, |S〉, and |A〉. In the
case of two incident photons at the resonant frequency ω0, the doubly
excited state |ee〉 is not populated because of interference similar to
that causing EIT.

the same decay rate, Γ1,2 = Γ. When mimicking a driven
Λ-3LS using a pair of 2LS, then, the frequency of the “ex-
cited state” is the average frequency ω0 = (ω1 + ω2)/2, and
the “Rabi frequency” Ω is controlled by the 2LS detuning δ.
Ref. [25] has a similar discussion in the L � λ0 limit; see
also Ref. [48].

The mapping is made more transparent by rewriting H0
2LS

in the symmetric-antisymmetric (S-A) basis. Defining σS− =
(σ1−+ σ2−)/

√
2 and σA− = (σ1−− σ2−)/

√
2, one finds

H0
2LS = ω0

∑
i=S,A σi+σi− + δ/2(σS+σA− + h.c.). More-

over, when k0L = nπ, by transforming to the momentum
basis, we find that either the symmetric or the antisymmetric
operator couples to the photons (depending on whether n is
even or odd) but not both. Consequently, the operator struc-
ture for the pair in the S-A basis is precisely in the form of
a driven Λ-3LS—see Fig. 2 for an illustration. However, an
important difference remains: a pair of 2LS can hold up to
two photons, σS+σS+ = −σA+σA+ = σ1+σ2+ 6= 0, while
a driven 3LS can absorb only one photon at a time. As we
discuss below, this difference impacts higher-order quantities.

The single-photon transmission T (k) = |t(k)|2 using
Eq. (4) is shown in Fig. 3 for several detunings δ. For zero
detuning, one obtains a broad transmission minimum as ex-
pected based on the characteristics of a single 2LS. However,
for non-zero detuning, a clear T = 1 EIT-like peak appears
at the resonant frequency ω0, even though no external pump-
ing is present. The transmission does still reach zero at certain
frequencies—the T =0 dips are at ω1,2 = ω0±δ/2 since each
individual 2LS is perfectly reflecting at its resonant frequency.

B. Two-photon sector

We now turn from the single-photon to the two-photon sec-
tor. We find the response in this sector by computing the
two-photon scattering wavefunction |ψ2(k)〉, where k is the
wavevector of both incoming photons, and then extracting ex-
perimental observables [34, 45, 46]. Two important observ-

FIG. 3. Pair of detuned 2LS: Single-photon transmission spectrum
T (k) (left column) and two-photon inelastic flux F (k) (right col-
umn) as a function of incident momentum k for a separation of λ0/2
(so k0L = π). The detuning δ/Γ is set to 0 (top row), 0.35 (middle
row, EIT regime), and 1.5 (bottom row). In the right column, red
dotted curves represent transmitted flux FR, and brown solid curves
represent total flux F = FR + FL. Note that (i) F = 0 at k = ω0,
(ii) T = 0 at k = ω0 ± δ/2, and (iii) T (ω0) = 1 when δ 6= 0. The
inset in panel (d) magnifies the peaks around ω0 = 100Γ.

ables are the two-photon correlation function (second-order
coherence) in the transmission channel,

g2(t) ≡ 〈ψ2|a†R(x)a†R(x+ t)aR(x+ t)aR(x)|ψ2〉
|T (k)|2 , (7)

and the inelastic power spectrum (resonance fluorescence),

Sα(ω) ≡
∫
dte−iωt〈ψ2|a†α(x)aα(x+ t)|ψ2〉, (8)

where α = R or L, with the elastic scattering delta-function
removed. The total inelastic scattering for incoming photons
of momentum k,

F = FR + FL with Fα(k) ≡
∫
dω Sα(ω), (9)

is a valuable figure of merit for the strength of photon-photon
interaction [44] since energy exchange between the photons
is a hallmark of such interaction. Fα(k) can then be used
to compare different structures with the aim of maximizing
interaction and correlation effects [44].

It is known that due to interference effects, a 3LS has a flu-
orescence quench (F = 0) at the EIT resonance ω0 regardless
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of the driving Rabi frequency Ω [41, 44, 49, 50]. The lack of
inelastic scattering implies that the “bound state” part of the
wavefunction is absent [51–54]. Therefore, at the EIT trans-
mission resonance (k = ω0), there is no photon correlation
and g2(t) = 1 for all times [42–44].

For a pair of detuned 2LS, Fig. 3 shows that F (k) behaves
similarly. In principle, the system can absorb two photons and
enter the doubly excited state |ee〉 (see Fig. 2). However, the
coherent interaction between the states |S〉 ≡ σS+|gg〉 and
|A〉 ≡ σA+|gg〉, where |gg〉 is the ground state, blocks the
occupation of |ee〉 in the steady state (for a time-dependent
problem, there is transient occupation of |ee〉). To see this,
consider the case in which |S〉 couples to the waveguide while
|A〉 does not. In the steady state, because the system is Λ-
3LS-like in the single photon sector, |A〉 is populated while
the population of |S〉 is zero. A second photon cannot excite
|ee〉 because σS+σA+ = 0. Alternatively, one can consider
the different paths to reach |ee〉; then, the interference among
them leads to zero occupation. Indeed, we find 〈ee|ψ2〉 = 0
at k = k0: in the steady state, the system is Λ-3LS-like in the
two-photon sector as well.

In Figs. 3(d,f), notice in this regard (i) the dip to F = 0 on
resonance; (ii) the similarity between F in this few emitters,
few photons scenario and the well-known absorption profile
of a dense gas of Λ-3LS probed by laser beams [41]; and (iii)
the symmetry of F with respect to ω0. If the coupling of the
qubits were not symmetric, the resonant frequency and the
corresponding fluorescence quench would be offset from ω0

as given by Eq. (6).
The correlation function g2(t) for two detuned 2LS is also

similar to that of a driven Λ-3LS. Our results are shown in
Fig. 4. When δ is small but not zero, the time delay τ =
d arg[t(k)]/dk associated with the narrow resonance is large
[55], so g2 decays slowly. At the resonance k = ω0, because
the scattering is entirely elastic (F = 0), the photons cannot
be correlated. Indeed, our calculation yields g2(t) ≡ 1 identi-
cally for all time.

The equivalence between a pair of detuned 2LS separated
byL = nλ0/2 and a driven Λ-3LS is, then, established in both
the single- and two-photon sectors. (As this result depends
upon the Markovian approximation, ΓL/c � 1, the value of
n is limited.) Thus, using weak coherent states, one could
experimentally obtain EIT-like properties in situations where
driving is inconvenient.

C. Identical 2LS

The special case δ = 0, Figs. 3(a,b) and 4(a), requires ad-
ditional interpretation. Note that in this case one of the states
|A〉 or |S〉 is completely decoupled, suggesting that there must
be a change in properties. The mapping rules Eq. (6) imply
that the zero-detuning case behaves like a single 2LS with the
decay rate doubled. This is indeed true in the single-photon
sector: in Fig. 3(a), T (k) has an inverse Lorentzian dip with
width 2Γ, agreeing with the fact that a 2LS behaves like a
mirror at resonance [2, 4].

In contrast, this is not true in the two-photon sector—a sin-

FIG. 4. The two-photon correlation function g2(t) in the transmis-
sion channel for (a-c) a pair of detuned 2LS and (d) a 2-3-2 structure.
The detunings are (a) δ/Γ = 0, (b) δ/Γ = 0.35, (c) δ/Γ = 1.5,
and (d) δ/Γ = 0.35, in which Ω/Γ = 3 as well. The incident fre-
quency k is chosen for each case so that T = 50% and k is on the
red-detuned side of the ω0 = 100Γ resonance. [The resonance itself,
k = ω0 is not used because for case (a) g2(t) is ill-defined because
in the elastic channel all photons are reflected, T (k) = 0, while for
cases (b) and (c), g2(t) = 1 (gray line).] The characteristic time
delay τ for each case is labeled. For panel (a), we use the fact that
τ = 2/Γ for an array of identical 2LS [46]. The separation between
the two 2LS in all cases is L = λ0/2.

gle 2LS [56] does not exhibit the fluorescence quench shown
in Fig. 3(b). This can be understood by first noting that the
Markovian approximation causes the system to be periodic in
L such that the behavior for k0L = π is exactly the same as
for k0L = 0, corresponding to two colocated 2LS. It is known
that the fluorescence is quenched on resonance for two colo-
cated, identical 2LS [57], thereby explaining the F = 0 dip
in Fig. 3(b). Similarly, no correlation between the photons is
generated on resonance, g2(t) = 1 for the reflected photons
[58] (since T = 0 and F = 0, everything is elastically re-
flected), a result that we reproduce (not shown). These effects
result from interference [58] involving the fourth level |ee〉
(though see discussion of the effect of loss below): there is an
EIT-like three level interference in the two-photon sector.
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As a result, the mapping works only when δ 6= 0; when
δ = 0, the two-photon behavior of a pair of 2LS and a Λ-3LS
are different.

IV. RECTIFICATION LINKED TO INELASTIC
SCATTERING

We now turn to discussing rectification produced by two de-
tuned 2LS. We have seen that non-reciprocity does not occur
in the one-photon sector [Eq. (4)], and so we naturally turn to
the two-photon sector, asking under what circumstances does
substantial rectification occur.

We first note that in the colocated case (L = 0) there can be
no rectification for any number of photons—a point-like sys-
tem cannot break left-right symmetry. Since for k0L = nπ
within the Markovian approximation, the properties of the
system are the same as for the colocated case, for these spac-
ings there likewise cannot be any rectification for any number
of photons. Indeed, we check that our two-photon results are
symmetric upon interchanging qubits 1 and 2 (see [59] for
the demonstration). This is consistent with calculations using
other approaches [38–40, 60] for these conditions, and rein-
forces the conclusion of Sec. III B that two detuned 2LS with
this separation behave like a driven Λ-3LS.

If the separation between the two 2LS deviates slightly
from k0L = nπ, it is known, however, that non-reciprocal
effects do occur [38–40]. To study these cases, we begin by
reiterating that our scattering theory approach is completely
equivalent to input-output theory when a small coherent state
amplitude A is used [46]. For the purpose of comparing with
previous work, therefore, we focus on results at the lowest
power we are aware of, namely those in Fig. 2(d) of Ref. [38]
[61]. It can be seen that rectification is maximized roughly
along a straight line in the δ-L plane, given through fitting by

δ/Γ ≈ 3.18
( L

λ0/2
− 1
)
. (10)

Therefore, we consider the situation slightly away from L =
λ0/2 (choosing n = 1 here for simplicity).

Under the Markovian approximation, the transmission am-
plitude (4) has two poles:

ω± = ω0 −
iΓ

2
± 1

2

√
δ2 − Γ2e2ik0L. (11)

In the EIT regime (k0L ≈ π and δ/Γ � 1), we can expand
the poles ω± to first order in δ and L, obtaining

ω± =

{
ω0 − Γ

2 (k0L− π), (dark)
ω0 + Γ

2 (k0L− π)− iΓ. (bright)
(12)

In addition, both poles have aO(δ2) contribution to the imagi-
nary part (omitted) so that the dark pole is not fully decoupled
and can be driven. Recall that in the rectification setup usually
considered [24] the incident frequency k is on resonance with
the second qubit, k = ω0 − δ/2. In order to drive the dark

pole, L and δ must then satisfy

δopt/Γ ≈ π
( L

λ0/2
− 1
)
, (13)

which is very close to the fitted line (10). The fact that the
(nearly) dark pole has a very small imaginary part has two
immediate implications. First, since the response time scale
of the system is long, the system should be extraordinarily
sensitive to the incident power, i.e. the number of photons
arriving in that long time scale. Second, to get the maxi-
mum rectification one should tune very close to the dark pole
[62]. Therefore, rectification is maximized when the driving
frequency matches the real part of the dark pole.

This is an example demonstrating how the single-particle
poles affect higher-order quantities: one-photon transport,
corresponding to the linear response, is not sensitive to the
slight shift of one-photon poles, but two- and multiple-photon
transport are. Therefore, higher-order quantities such as F (k)
are suitable tools for understanding the non-reciprocity.

Non-reciprocity is often quantified in terms of a rectifica-
tion factor which is simply the difference in transmission from
the left and right divided by their sum. From our two-photon
scattering wavefunction, for a system driven from the left, the
transmitted photon intensity for x� 0 is [46]

RR〈ψ2(k)|a†R(x)aR(x)|ψ2(k)〉RR = |t(k)|2 δ(0)

π
+X→(k),

(14)
where the subscript “→” denotes the driving direction and
X(k) is the sum of F (k) and an interference term as described
in Appendix A. It is clear that the first (second) term repre-
sents the linear (nonlinear) transport. Similarly, if the system
is driven from the right, the transmitted intensity for x� 0 is

LL〈ψ2(k)|a†L(x)aL(x)|ψ2(k)〉LL = |t(k)|2 δ(0)

π
+X←(k).

(15)
The rectification factor R is therefore proportional to the dif-
ference in X ,

R ∝ |X→(k)−X←(k)|, (16)

which can be calculated in our scattering theory approach.
Note that we can only obtain an unnormalized rectification
factor because the scattering states are delta-normalized and
so the infinity δ(0), representing the “volume” of the system,
appears in the expressions [46].

In Fig. 5, we present results for F (k) and |X→(k) −
X←(k)| for parameters chosen both on and off the optimal
straight line (13). Fig. 5(a) shows clearly the substantial in-
elastic scattering for δopt: δopt/Γ = −0.06 for k0L = 0.98π.
F peaks at a very large value when the driving frequency
matches the second qubit, k = ω0−δopt/2 (see [44] for values
of F in other systems).

These conclusions carry over directly to the left-
driving/right-driving difference in both F and X shown in
Figs. 5(b,c). These non-reciprocity measures do indeed peak
at the detuning given by (13) when the energy of the incident
photon matches the second qubit. For non-optimal δ, there are
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FIG. 5. Non-reciprocal effects for a pair of 2LS as a function of incident frequency k. (a) Transmitted inelastic flux F (k) for several qubit
detunings δ. The peak position is at ω0 − δopt/2 ≈ 100.03Γ. The inset magnifies the peaks. (b) Difference of transmitted flux due to left- (→)
and right-driving (←) for two L and two δ. (k0L, δ/Γ) = (0.98π,−0.06) (solid green), (0.98π,−0.12) (dashed yellow), (1.02π,+0.06)
(dot-dashed black), and (1.02π,+0.12) (dotted magenta). (c) Unnormalized rectification factor given by the difference in transmitted intensity.
The color scheme and parameters are the same as in (b). ω0/Γ = 100 in all panels.

peaks as a function of driving frequency but they are consid-
erably smaller (note the logarithmic scale) than those at δopt.
Note that in these non-optimal cases, the peak is near the fre-
quency of the dark pole not at the frequency of the second
qubit—further indication that it is the dark pole that controls
rectification.

We note in passing that the region of large rectification is,
strictly speaking, not an extended line on the δ-L plane, but
rather a collection of segments. The reason is three-fold: (i)
under the Markovian approximation, the system has periodic-
ity L, so such a segment would appear around L = nλ0/2;
(ii) when δ is large, neither pole is dark and so only small rec-
tification is expected, following the trend in Fig. 5; (iii) for
large L, where the Markovian approximation no longer holds,
an infinite number of poles will appear in Eq. (4), making the
analysis difficult. This is an interesting regime which remains
largely unexplored (see, however, [31]). Because of the pro-
liferation of poles, there is the possibility to achieve strong
rectification at multiple frequencies.

The main conclusions of this section are, then, that inelas-
tic scattering is an inevitable ingredient for designing network
components such as a photonic rectifier that rely on nonlinear
transport of photons, that working at maximized F (k) is of-
ten the optimal choice [44], and that rectification results from
driving a dark pole.

V. RECOVERING THE FLUORESCENCE: 2-3-2

We now turn to discussing our second structure, namely the
2-3-2 structure shown in Fig. 1. We show that by combining
in this way the two elements discussed above, one can achieve
both perfect elastic transmission and strong inelastic scatter-
ing with photon correlations.

The transmission T and total inelastic flux F for the 2-3-2
structure, calculated as described above, are shown in Fig. 6.
The insertion of an undriven Λ-3LS (Ω=0) midway between

the two 2LS disrupts the interference effect causing the EIT-
like transmission peak [panel (a)]. Thus in this case there is a
broad transmission minimum, which is a precursor to a pho-
tonic bandgap [46]. On the other hand, the classical driving of
the 3LS causes an EIT-like feature to appear in transmission,
T = 1 at k = ω0 [panel (c)], which is natural since the EIT
peak of the driven Λ-3LS and the EIT-like interference peak
of the two 2LS coincide.

FIG. 6. For the 2-3-2 Structure: Single-photon transmission spec-
trum T (k) (left column) and two-photon inelastic flux F (k) (right
column) as a function of incident momentum k for 2LS-3LS-2LS
separated by λ0/4 (so k0L = π). The detuning is δ/Γ = 0.35,
and the Rabi frequency of the classical beam Ω/Γ is 0 (top row)
and 3 (bottom row). In the right column, red dotted curves repre-
sent transmitted flux FR, and brown solid curves represent total flux
F = FR + FL. Note that (i) F 6= 0 at k = ω0, (ii) T = 0 at both
k = ω0± δ/2 and ω0±Ω/2, and (iii) T (ω0) = 1 when Ω 6= 0. The
inset in panel (d) magnifies the peaks around ω0 = 100Γ.
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FIG. 7. For the 2-3-2 structure excited at resonance, (a) the two-
photon normalized power spectrum S(ω)/F as a function of output
frequency ω, and (b) the two-photon correlation function g2(t) in the
transmission channel. In (a), both the transmitted fluorescence SR/F
(red dotted line) and the total fluorescence SR/F + SL/F (brown
solid line) are shown. In panel (b), the uncorrelated value g2 = 1
is labeled by a gray horizontal line, and the characteristic time delay
τ is also labeled (see main text). The inset magnifies Γt ∈ [0, 20].
Parameters used are k = ω0 = 100Γ, L = λ0/2, δ/Γ = 0.35, and
Ω/Γ = 3 such that T = 100%.

In sharp contrast to the previous cases, however, at the EIT-
like resonance the fluorescence is not quenched, F ≈ 3.75 6=
0 in Fig. 6(d). The corresponding power spectrum at reso-
nance is plotted in Fig. 7(a): a sharp peak at ω0 and two side
peaks around ω0 ± Ω/2 are seen. The fact that the non-trivial
“bound state” part of the wavefunction (or equivalently the
two-photon irreducible T-matrix) is nonzero at resonance is
key to causing these effects, a feature which is not present in
either the isolated Λ-3LS or pair of detuned 2LS.

Likewise, the photon correlation function g2(t) is not iden-
tically one: it is shown for k = ω0 in Fig. 7(b). There is clear
bunching at short times, g2(0) ≈ 3.47, followed by a slow
decay of (oscillating) anti-bunching. The time delay,

τ = (4Γ/δ2) + (2Γ/Ω2) + Γ(4Γ/δ2)(2Γ/Ω2), (17)

is indicated in Fig. 7(b), as in the double 2LS case. The last
term signals the importance of interference: the time delay is
not simply accumulated component by component.

Several off-resonant features of the 2-3-2 results are inter-
esting. First, F is asymmetric about k = ω0 [Fig. 6(b,d)]:
while in the previous cases T and F are both symmetric with
respect to ω0 (see Fig. 3), here only T is symmetric. We
find that interchanging the two 2LS causes F (k) to reflect
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FIG. 8. Non-reciprocal transmitted inelastic flux F and intensity X
as a function of incident frequency k for the 2-3-2 structure. (a) Dif-
ference of transmitted flux due to left- (→) and right-driving (←). (b)
Unnormalized rectification factor given by the difference in transmit-
ted intensity. Note that the value at k = 100Γ in both panels is zero.
Parameters used are the same as those used in Fig. 6(d).

about k = ω0. The lack of left-right symmetry suggests non-
reciprocity effects; indeed, Fig. 8 shows that significant non-
reciprocity and rectification occurs in this case for a range of
input frequencies. The non-reciprocity effects have not been
optimized here—we leave that for future study as there are
many parameters for the 2-3-2 case. Nevertheless, as one
point of comparison, if the separation between the emitters is
doubled (separation between emitters of λ0/2 so k0L = 2π),
then F (k) is symmetric about k = ω0, there is no inelas-
tic scattering at that symmetry point, and there are no non-
reciprocity effects.

The off-resonant photon correlations for the 2-3-2 are
shown in Fig. 4(d), where T = 50%. g2(t) in this case has
many similarities to that for a pair of detuned 2LS shown in
panel (b). Note, however, several differences as well: oscilla-
tions are present due to interference between the three qubits,
and the bunching at t = 0 is substantially larger.

These results suggest that structures that are slightly more
complicated than the double 2LS, like the 2-3-2 structure con-
sidered here, may show enhanced rectification. Because there
can be several dark poles in such more complicated structures
even in the Markovian regime, this rectification may occur for
a wider range of frequencies.

VI. LOSS AND RELAXING THE MARKOVIAN
APPROXIMATION

We now briefly comment on two issues that have been ne-
glected above. Both arise from the fact that the interference-
induced transmission peaks here are “composite” in the sense
that the transparency is due to scattering between qubits, not
within the level structure of a single qubit as in EIT. This
may in principle lead to different properties for certain struc-
tures, even if the nominal scattering characteristics are iden-
tical. In our double 2LS system, much as in the case of a
lossy 2LS placed in a cavity [63, 64], the effect of decay to
non-waveguide modes is quite different from that in EIT.

In Fig. 9 we plot the transmission for a pair of 2LS sep-
arated by λ0/2, with and without a loss rate of Γ′ to other



8

Markovian

Eaxct

Exact HlossyL

Exact HNML

0.0

0.2

0.4

0.6

0.8

1.0

T

99.2 99.4 99.6 99.8 100.0 100.2 100.4 100.6 100.8

k�G

FIG. 9. Assessing the lossless and Markovian approximations: the
single-photon transmission T (k) as a function of incident frequency
k for a pair of detuned 2LS with δ/Γ=0.35. Loss: the difference be-
tween the exact lossless (orange dashed, L=λ0/2) and lossy (purple
dotted) curves shows that modest loss has a significant effect on the
EIT-like resonance—the peak transmission (at k0 =100Γ) decreases
from 100% to T ≈ 56.9% for Γ′/Γ=0.02.
Markovianity: For L = λ0/2 (and lossless), the Markovian result
(green solid) is nearly indistinguishable from the exact result. In
contrast, for L= 20λ0, the exact result (magenta dot-dashed) is sig-
nificantly different from the Markovian curve (which is the same for
the two cases).

channels (taken to be the same for both 2LS) [65]. We use a
large Purcell factor, Γ/Γ′ = 50, since it is known that loss is
small in superconducting circuits [2]. The transmission peak
here is apparently not robust against loss, in sharp contrast
to conventional setups where EIT is insensitive to loss in the
excited state [41].

This sensitivity to Γ′ can be understood using the S-A level
structure discussed above (Sec. III B and Fig. 2). In the loss-
less case, the asymmetric state |A〉 plays the role of the excited
state with decay rate 2Γ (for L=λ0/2), while the symmetric
state |S〉 is metastable (zero decay rate). Loss Γ′ is added to
both states when the mapping conditions Eq. (6) are satisfied.
As a result, the “metastable state” is not more stable than the
excited state with regard to the non-waveguide modes, caus-
ing the transmission peak to shrink.

Finite loss affects not only the transmission peak but also
the fluorescence quench and the correlations g2(t), as they are
also caused by precise interference. It is known, for instance,
that for identical colocated 2LS with loss (δ = 0, L= 0, and
Γ′ 6= 0), inelastic scattering produces a “Lorentzian-squared”
spectrum [30, 66] and causes correlation of the reflected pho-
tons, yielding g2(0) ≈ 0 instead of 1 [34].

Finally, we briefly assess the importance of the Markovian
approximation: Fig. 9 also shows the single-photon transmis-
sion in the lossless case calculated without using the Marko-
vian approximation, Eq. (4). There is, as expected, no dis-
cernible difference for L= λ0/2: the Markovian approxima-
tion works very well when the time for a round trip between
the qubits is small enough compared to the inverse decay rates,
2L/c � 1/Γ [30, 31, 34, 46]. However, when the qubits are
separated by L = 20λ0, corresponding to 2LΓ/c ≈ 2.5, the

exact curve and the Markovian approximation clearly differ.
Curiously, the effect of non-Markovianity is most clearly seen
in the width of the resonant peak and the shape of the tails
rather than the peak height.

There is increasing interest in quantifying and understand-
ing general features of quantum non-Markovianity [67–69].
Recent developments in “slow-light” systems in which the
group velocity is rather low, such as photonic crystal waveg-
uides [70, 71] or surface acoustic waves [72, 73], suggest
that waveguide QED provides a concrete arena in which non-
Markovianity will play a role. Indeed, non-Markovianity
measures have started being applied in waveguide QED [74,
75], and it would be interesting to see further discussions in
the present contexts. In this regard, we emphasize that our ap-
proach can handle the non-Markovian regime [34, 44, 46] in
the one- and two-photon sectors.

VII. CONCLUSIONS

The results presented here concern rectification, inelastic
scattering, and photon correlations in two simple multiple-
emitter quantum systems—a pair of detuned 2LS and the 2-3-
2 structure. Our approach is to find scattering state solutions
with either one or two incident photons, thereby connecting to
weak coherent state excitation.

We have shown that the response of a pair of 2LS separated
by L=nλ0/2 is identical to that of a driven Λ-3LS in both the
single- and two-photon sectors. In particular, there is an EIT-
like transmission peak at which the fluorescence is quenched
and the photons are uncorrelated. No rectification occurs.

Tuning the separation slightly away from nλ0/2, we
showed that the ensuing rectification (which is solely in the
two-photon sector) is caused by inelastic scattering associated
with driving the dark pole of the two-2LS system. The loca-
tion of this pole establishes a connection between the sepa-
ration between the 2LS and detuning of their frequencies for
which the non-reciprocity will be maximum.

Finally, we showed that when a genuine driven Λ-3LS is
inserted between the pair, inelastic scattering accompanied by
photon correlation does occur. In this 2-3-2 system, then, one
can create strongly correlated photons at perfect elastic trans-
mission.
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Appendix A: Transmission photon intensity

In this section we give explicit expressions for X→(k) of
the two-qubit system. Following the recipe of constructing
the two-photon scattering wavefunction in Refs. [34, 45, 46],
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we have

X→(k) =
F→(k)

2π
+ (interference term), (A1)

where F→(k) =
∫
dωSR(ω) is the transmitted inelastic flux

for left-driving, and the interference term is

− 2× e−ikx√
4π

t(k)∗
∑
i,j

RRi(k, x)(G−1)ije
→
j (k)2 + h.c.,

(A2)
where the matrix elements Gij are defined in Refs. [34, 45],
e→i (k) is the wavefunction of qubit i [34]:

e→1 (k) =

√
Γe−ikL/2

[
i(2k − 2ω0 + δ)− Γ

(
1− e2ikL

)]
i
√
π [(2k − 2ω0 + iΓ)2 + Γ2e2ikL − δ2]

,

(A3)

e→2 (k) =

√
ΓeikL/2(2k − 2ω0 − δ)√

π [(2k − 2ω0 + iΓ)2 + Γ2e2ikL − δ2]
, (A4)

and the function RRi(k, x) is defined as [46]

RRi(k, x) =
e→i (k)∗√

π

∫
dq
eiqx [t(q)e→i (q)∗ + r←(q)e←i (q)∗]

k − q + i0+

(A5)
with r(k) the reflection amplitude [34]

r→(k) = −iΓ4(k − ω0) cos(kL) + 2 (Γ− iδ) sin(kL)

(2k − 2ω0 + iΓ)2 + Γ2e2ikL − δ2
.

(A6)
The calculation of X←(k) follows in a similar way.

We close by three remarks: (i) the reflection amplitude
r(k) is not invariant upon exchanging qubit 1 and 2, as
which qubit is hit first matters; (ii) the amplitudes r←(k)
and {e←i (k)} for right-driving can be simply obtained by
taking r←(k) = r→(k)|δ→−δ , e←1 (k) = e→2 (k)|δ→−δ and
e←2 (k) = e→1 (k)|δ→−δ , which exploits the mirror symmetry;
(iii) all contour integrals, after the Markovian approximation
is made, can be solved symbolically [59] using Mathematica.
However, we are unable to write down a concise closed form
for the results for arbitrary δ and L; a limiting case (δ = 0) is
given in Ref. [45].
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“Quantum rectifier in a one-dimensional photonic channel,”
Phys. Rev. A 93, 043821 (2016).

[41] Michael Fleischhauer, Atac Imamoglu, and Jonathan P. Maran-
gos, “Electromagnetically induced transparency: Optics in co-
herent media,” Rev. Mod. Phys. 77, 633–673 (2005).

[42] Huaixiu Zheng, Daniel J. Gauthier, and Harold U. Baranger,
“Strongly correlated photons generated by coupling a three- or
four-level system to a waveguide,” Phys. Rev. A 85, 043832
(2012).

[43] Dibyendu Roy and Nilanjan Bondyopadhaya, “Statistics of
scattered photons from a driven three-level emitter in a one-
dimensional open space,” Phys. Rev. A 89, 043806 (2014).

[44] Yao-Lung L. Fang and Harold U. Baranger, “Photon corre-
lations generated by inelastic scattering in a one-dimensional
waveguide coupled to three-level systems,” Physica E 78, 92–
99 (2016).

[45] Yao-Lung L. Fang, Huaixiu Zheng, and Harold U. Baranger,
“One-dimensional waveguide coupled to multiple qubits:
photon-photon correlations,” EPJ Quantum Technology 1, 3
(2014).

[46] Yao-Lung L. Fang and Harold U. Baranger, “Waveguide QED:
Power spectra and correlations of two photons scattered off
multiple distant qubits and a mirror,” Phys. Rev. A 91, 053845
(2015).

[47] D. Witthaut and A. S. Sørensen, “Photon scattering by a three-
level emitter in a one-dimensional waveguide,” New J. Phys.
12, 043052 (2010).

[48] Zeyang Liao, Hyunchul Nha, and M. Suhail Zubairy, “Dy-
namical theory of single-photon transport in a one-dimensional
waveguide coupled to identical and nonidentical emitters,”
Phys. Rev. A 94, 053842 (2016).

[49] Peng Zhou and S Swain, “Ultranarrow Spectral Lines via Quan-
tum Interference,” Phys. Rev. Lett. 77, 3995–3998 (1996).

[50] Eduardo Sánchez-Burillo, Luis Martı́n-Moreno, David Zueco,
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Leek, Einar Magnusson, and Riccardo Manenti, “Supercon-
ducting devices in quantum optics,” (Springer International
Publishing, Cham, 2016) Chap. 9: Quantum Acoustics with
Surface Acoustic Waves, pp. 217–244.

[74] T. Tufarelli, M. S. Kim, and F. Ciccarello, “Non-Markovianity
of a quantum emitter in front of a mirror,” Phys. Rev. A 90,
012113 (2014).

[75] T. Ramos, B. Vermersch, P. Hauke, H. Pichler, and P. Zoller,
“Non-markovian dynamics in chiral quantum networks with
spins and photons,” Phys. Rev. A 93, 062104 (2016).

http://dx.doi.org/10.1103/PhysRevLett.96.153601
http://dx.doi.org/10.1103/PhysRevLett.96.153601
http://dx.doi.org/ 10.1103/PhysRevA.79.023837
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/ 10.1103/RevModPhys.88.021002
http://dx.doi.org/ 10.1103/RevModPhys.89.015001
http://dx.doi.org/10.1103/PhysRevX.2.011014
http://dx.doi.org/10.1038/ncomms4808
http://dx.doi.org/ 10.1126/science.1257219
http://dx.doi.org/ 10.1126/science.1257219
http://dx.doi.org/ 10.1103/PhysRevA.90.012113
http://dx.doi.org/ 10.1103/PhysRevA.90.012113
http://dx.doi.org/ 10.1103/PhysRevA.93.062104

	Multiple Emitters in a Waveguide:  Non-Reciprocity and Correlated Photons at Perfect Elastic Transmission
	Abstract
	Introduction
	The model
	Two 2LS vs. a -3LS: Similarities and differences
	Single-photon sector
	Two-photon sector
	Identical 2LS

	Rectification Linked to Inelastic Scattering
	Recovering the fluorescence: 2-3-2
	Loss and Relaxing the Markovian Approximation
	Conclusions
	Acknowledgments
	Transmission photon intensity
	References


